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RESULTS ON THE BETA FUNCTION

BRIAN FISHER

1. INTRODUCTION

The Beta function is usually defined by

1
B(z,y) = / 1 — )y tat
0
for z,y > 0, see for example Sneddon [4]. It then follows that
_ I(@)l(y)
B(x,
and this equation is used to define B(z,y) for z,y < O and z,y # —1,-2,....
It was proved in [2] that
1—e
B(z,y) = N—lim "l —)vtat
e—0 €
for x,y # 0,—1,—2,..., where N is the neutrix, see van der Corput [1],
having the domain N = {e : 0 < € < %} with negligible functions finite
linear sums of the functions

Aln"le, n"e (A<0, r=1,2,..))

and all functions of e which converge to zero in the usual sense as € tends
to zero.

Note that if a function F(e) = v(e) + f(e), where v(e) is the sum of the
divergent negligible functions of F'(¢), then p.f. F(¢), Hadamard’s finite part
of F(e), is equal to f(e) and so

N—lim F'(e¢) = lim f(e) = lim p.f. F'(e).
e—0 e—0 e—0
Thus, taking the neutrix limit of a function F),(¢) as € tends to 0 is equivalent
to taking the normal limit of the function p.f. F'(¢) as € tends to 0.
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It was proved that this neutrix limit for B(x,y) exists for all z,y and so
was used to define B(x,y) for all z,y. Note that if x > 0, we could write
1—e€
B(z,y) = N—lim t* N1 — )y tat
e—0 0
and if y > 0, we could write
1
B(z,y) =N—lim [ #*7}(1 —t)Yy"Ldt.

e—0 €

For example, it was proved in [2] that

B(0,0) = B(0,1) = 0 (1)
and
— (r— 1\ (~1)
B(O,m:;( e @)
forr=1,2,....

More generally, it was proved in [3] that if

opta
Bp,q(ffay) = WB(%?J),
then
1—e
By (x,y) = N—lim " LnP (1 — )1 In9(1 — t) dt
e—0 €

for z,y # 0,—1,—2,.... It was proved that this neutrix limit exists for all z, y
and p, ¢ and so was used to define B(z,y) for all z,y and p,qg = 0, —1, -2, .. ..
The following theorem was proved in [3].

Theorem 1.

Byq(A, 1) = Bgp(p, A)
forp,q=20,1,2,... and all A, p.

The following results were also proved in [3].

Bpo(0,1)=0: p=1,2,.... (3)
Bpo(0,0) = Byo(1,0) = (=1)Ppl¢(p+1): p=12,..., (4)
where ( denotes the zeta function.
Bp,o((),?“—kl):i(?;)w: pr=1,2,.... (5)
i=
Byo(—1,0) = —p! + (-1)¢(p+1): p=1,2,.... (6)
Bp,o(—r—l,l):—pi!: pr=0,1,2,.... (7)

(r+ 1)ptt
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2. MAIN RESULTS

We now prove the following generalization of equation (6).

Theorem 2.

pro(_r7 O) = -
=0

forp,r=1,2,....
Proof. We have

1—e 1—e
/ T P (1 — ) tdt = / TP+ (1 - ) dt

and it follows that

1—e
B,o(—r,0) = N—lim T nPt(1 —t) "t
e—0 €
= Bpo(—7,1) + Bpo(—r+1,0)
p!

= —W"’pro(_r"’_l’o)v (9)
on using equation (7) for r,p=1,2,.... O
Now assume that equation (8) holds for some r and p = 1,2,.... This is

true when » = 1 and p = 1,2,... by equation (4). Then using equation (9)
and our assumption, we have

r—1

Bpo(—=r—1,0) = —(T_Fpl!)pﬂ - Z (T_p;)pﬂ + (=1)PplC(p+1)

= -3 i R+

and so equation (8) holds for r + 1. Equation (8) now follows by induction.
Theorem 3.
Bpi1,0(2,—1) = (=1 (p + 1I[C(p +2) — ((p + 1)] (10)

forp=1,2,... and
Bip(2,-1) =((2) - 1. (11)
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Proof. We have

1—e 1 1—e
/ InPt(1—t)"tdt = —1 t(1—t)"tdInPtt¢
€ p €
1
= ﬁ[(l —)e T InPTH 1 —€) —e(1 — )t nPT ¢
p
1 1—e€
- (1 —t) " Pt 4 ¢(1 — ) 2Pl ) at
p €
and it follows that
1—€
B,o(1,0) = N—lim InP (1 — )~ dt
e—0 €
1
=-1 N—lim[(1 — €)e ' InPTH(1 —€) — (1 — )L InPT! ¢
p e—0
1 1—e
— ﬁN—lim [(1—t) " Pt 4 ¢(1 — ¢) 2Pt ¢) at
p e—0 €
1
= 0= 77 Bpr10(1,0) + By o2, ~ 1)),

forp=1,2,....
Using equation (4), we now have

(=DPpiC(p+1) = (=1)"p!C(p +2) —

and equation (10) follows for p =1,2,....
In the particular case when p = 0, we have

1—e 1—e€
/ (1—t)"t dt:/ t(1—t)"tdint

=[1—e)etIn(l—€) —e(l —€)'Ing

meH,O(z? -1)

1—e
—/ [(1—t) " Int +¢(1 —t)"*Int] dt
and it follows that
1—e
B(1,0) :N—lim/ Int(1—t)"tat
e—0 €

= N-lim[(1 — €)e 'In(l —€) — e(1 — €)' In¢]
e—0
1—¢
— N—lim (1=t Int+¢(1—t)%Int]dt
e—0 €

= —1—[B1,(1,0) + By (2, —1)]
=—1+¢(2) — B1o(2,-1) =0
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on using equations (1) and (4), proving equation (11). O
Theorem 4.

Byo(r,0) = (r—1)Bp1(r —1,1) + pBp—11(r — 1, 1), (12)
forp=1,2...andr=2,3,....

Proof. Note that By, 1(r — 1,1) and Bp_11(r — 1,1) are standard forms of
the Beta function.
We have

1—e 1—e¢
/ TP t(1 —t) "t dt = —/ t" P tdIn(1 —t)
=—(1—¢) " 'InP(1 —€)lne+ e tInPeln(l — )
1—e
+/ [(r = 1)t" 2Pt 4+ pt" 2P~ ¢] In(1 — t) dt

and it follows that

1—e
By o(r,0) = N—lim " HnP (1 —t)"dt
e—0 €
=(r—=1)Bpi(r—1,1)+pBp-11(r —1,1),
proving equation (12). O

In the next theorem, the constants c (i) are defined by the expansion

o
L= (1= = 3 (i)
i=1
for p,r =1,2,.... In particular

0, s < p,
epr(s) =19 (1%  s=p, (13)
r—s, s=p-+1

Theorem 5.

Cpr(s
Bpo(r,—s) = (r—1)Bpo(r—1,—s+1)+pBy_10(r—1, —s+1)+p’;(), (14)
forp,s=1,2,...andr=2,3,....
In particular

Byo(r,—s)=(r—1)Bpo(r—1,—s+1)+pBp_10(r —1,—s+1), (15)
fors=1,2,...,p—1and p,r=2,3,...,
(=1)°

Bso(r,—s) = (r—1)Bso(r—1,—s+1)+sBs_10(r—1,—s+1)+ .
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fors=1,2,... andr=2,3,... and

BS,L(](T‘, —S) = (7" — 1)BS,170(T — 1, —S + 1)

4 (s—1)Bs_oo(r —1,—s+1) — (_1)(;_5) (17)

fors=23,...andr=2,3,....
Proof. We have

1—e 1 1—e
/ Pl — )5 dt = - / T InPtd(l—t)"*
€ S €

(1—e) tnP(1—¢€) € lInPe
s€’ s(1—¢€)s

l1—e
+ / [(r — )" 2P t 4 pt" 2P~ ) (1 — )~ dt

and it follows that
1—e
Bpo(r,—s) = N—lim 7L nP t(1 — t)—s—l dt

e—0 €

C S
= p’;( ) +0+ (r—1)Bpo(r—1,—s+1)+pBp_10(r—1,—s+1),

proving equation (14).
Equations follow (15) to (17) on using equation (13). O

Corollary 5.1. By, o(r, —s) is a linear sum of the standard forms of the Beta
function B;o(j,1) fors=1,2,... andp,r =s+2,s+3,....

In particular,

Bp,o(rv _1) = (7“ - 1)(T - 2)Bp,0(r -2, 1)

+p(2r —3)Bp-1,0(r —2,1) + p(p — 1) Bp—20(r —2,1) (18)
Proof. Equation (12) shows that the Corollary is true when s = 0.

Now assume the Corollary is true for some positive integer s. We then
have from equation (14) on noting that ¢, ,(s) = 0, since p > s,
Bpo(r,—s—1)=(r—1)Bpo(r —1,—s) + pBp_10(r — 1, —5)

=(r—1[Bpo(r—1,—s+1)+pBp_10(r —1,—s+1)]
+pl(r =1)Bp10(r =1, =s+ 1)+ (p = 1)pBp20(r — 1, —s + 1)]

and it follows that the Corollary holds for s + 1. The result now follows by
induction.
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When s = 1, we have from equation (15)
Bpo(r,—1) = (r—1)Bpo(r —1,0) + pBp_1,0(r — 1,0)
=(r—=1[(r—2)Bpo(r —2,1)+ pBp_10(r —2,1)]
—i—p[(r — Q)Bp_L()(T -2, 1) + (p — 1)Bp_270(7’ — 2, 1)]
and equation (18) follows. O

Theorem 6.
Bp1(0,1) = (=1)"*'pl¢(p + 2), (19)
forp=1,2,....

Proof. We have

1—e 1—e
/ t'nPtIn(l —t)dt = —— In(1 —t)dInPtt¢
e p+1Je
1
= — "1 —¢)lne— InP M eln(l —¢)
p+1
1 1—e
— (1—t)" InPTtedt
p+1Je
and it follows that
1—e
By1(0,1) = N—lim t ' InP tIn(1 —t)dt
e—0 €
1
= O + Ime_i_l?O(l, 0),
and equation (19) follows on using equation (4). O
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