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B. Y. CHEN’S INEQUALITIES FOR BI-SLANT
SUBMANIFOLDS IN COSYMPLECTIC SPACE FORMS

RAM SHANKAR GUPTA

ABSTRACT. In this paper we obtain B. Y. Chen’s inequalities for a bi-
slant submanifold M of a cosymplectic space form M (c), when the struc-
ture vector field £ of the ambient space is tangent to M.

1. INTRODUCTION

In the theory of Riemannian submanifolds it is quite interesting to estab-
lish a relationship between the intrinsic and extrinsic invariants. Basically,
the Riemannian invariants are intrinsic characteristics of Riemannian man-
ifolds. In 1993, B. Y. Chen [6] has obtained an inequality between sectional
curvature K, the scalar curvature 7 (intrinsic invariant) and the mean cur-
vature function ||H|| (extrinsic invariant) of a submanifold M of the real
space form of constant curvature c. Moreover, Chen [4] also introduced a
new type of Riemannian invariants of a Riemannian manifold.

Let M be a Riemannian manifold of dimension m and let {ej,ea,...,en}
be any orthonormal basis of the tangent space T,M at any point p € M.
then the scalar curvature 7 at p € M is given by

T = Z K(ei/\ej) (1.1)
1<i<j<m
for any point p € M, we denote
(inf K)(p) = inf{K(7) : # C T,M,dim 7 = 2} (1.2)

where K (m) denotes the sectional curvature of M associated with a plane
section m C T, M at p € M.
The Chen invariant d; at any point p € M is defined as

dum(p) = 7(p) — (inf K)(p). (1.3)
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For a submanifold M of a real space form M(c), Chen has given a ba-
sic inequality in terms of the intrinsic invariant dj; and the squared mean
curvature of the immersion, as

m2(m — 2)
2(m—1)
The above inequality also holds good in case M is an anti-invariant sub-
manifold of complex space form M (c)[7]. In case of contact manifold, De-
fever, Mihai and Verstralen [11] obtained an inequality similar to that of
(1.4), for C-totally real submanifold of a Sasakian space form with constant
p-sectional curvature c, given by

m2(m — 2) 1 c+3
B ) P =5+ Dm === (19)

o < HHHQ—F%(m—i-l)(m—Q)c. (1.4)

oy < 1

2. PRELIMINARIES

A (2m+1)-dimensional Riemannian manifold M is said to be an almost
contact metric manifold if there exists structure tensors (¢, £, 7, g), where ¢
is a (1, 1) tensor field, £ a vector field, n a 1-form and g the Riemannian
metric on M satisfying [9]

@X =X +nX)§, ¢6=0, nE) =1 nX)=0 (2.1
and
9(¢X,9Y) = g(X,Y) = n(X)n(Y), n(X)=g(X,§)
for any X,Y € TM, where TM denotes the Lie algebra of vector fields on
M.
An almost contact metric manifold M is called a cosymplectic manifold
if [13],
(Vx9)Y =0 and Vx&=0 (2.2)
where V denotes the Levi-Civita connection on M.

The curvature tensor R of a cosymplectic space form M(c) is given by
[14],

R(X.Y)Z = {{g(Y. 2)X - (X, 2)Y +n(X)n(Z)Y
—n(Y)n(2)X +n(Y)g(X, Z2)§ —n(X)g(Y, 2)¢

— 9(0X, Z)pY +g(9Y, Z)pX + 29(X, Y )9pZ} (2.3)
for all X,Y,Z € TM.

Now, letM be an m-dimensional isometrically immersed Riemannian sub-
manifold of a cosymplectic manifold M with induced metric g. Denoting by
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TM the tangent bundle of M and by T M the set of all vector fields normal
to M, we write
¢pX =PX +FX (2.4)

for any X € TM, where PX (resp. FX) denotes the tangential (resp.
normal) component of ¢X.

From now on we assume that the structure vector field £ is tangent to M.
We make the direct orthogonal decomposition TM = D @ &.

A submanifold M is said to be slant if for any non zero vector X tangent
to M at p such that X is not proportional to &,, the angle §(X) between
¢X and T,M is constant i. e., is independent of the choice of p € M and
X € T,M —{&,}. Sometime the angle 6(X) is termed as the wirtinger angle
of the slant immersion.

Invariant and anti-invariant immersions are slant immersions with slant
angle § = 0 and 6 = 7, respectively. A slant immersion which is neither
invariant nor anti-invariant is called a proper slant immersion.

A submanifold M tangent to structure vector field £ is said to be a bi-slant
submanifold of a cosymplectic manifold M, if there exist two orthogonal
differentiable distributions D and Dy on M, such that

(i) TM possesses an orthogonal direct decomposition of Dy and Do i.
e. TM:DlEBDQEBg
(ii) D; is slant distribution with slant angle 6; for any i = 1, 2.

If we take the dim D = 2nq and dimDs = 2ns, then it is obvious that
in case either nq vanishes or no, the bi-slant submanifold reduces to a slant
submanifold. Hence, the bi-slant submanifolds are generalized cases of slant
submanifolds. moreover, slant submanifolds, invariant submanifolds and
anti-invariant submanifolds are particular cases of bi-slant submanifolds.

Let R and R denote the curvature tensors of the submanifold M and
cosymplectic space form M (c), respectively. Then the equation of Gauss is
given by

R(X)Y,Z,W) = R(X,Y, Z,W)—g(h(X,W),MY, Z))+g(h(X, Z), (Y, W))
(2.5)
forall X,Y, Z, W € TM.
We denote by h the second fundamental form of M and by Ay the Wein-
garten map associated with N € T+-M. We put
hi;=g(h(eiej),er) and [[hl* = Y g(h(ei,e)), hleie;))  (2.6)
ij=1
for any e;,e; € TM and e, € T+M.
The mean curvature vector H is defined as H = X (trace h). We say that
the submanifold M is minimal, if the mean curvature vector H vanishes
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identically. It is well known that for a cosymplectic manifold

h(X,&) =0. (2.7)
For a given orthonormal frame {ej,es,...,e,} of a differentiable distri-
bution D, we denote the squared norms of P and F respectively, by
m m
1P| = > g*(ei, Pej) and ||FII* =) [[Fe;|*. (2.8)
ij=1 i=1

It can be readily seen that || P||? and ||F||?> are independent of the choice of
the above orthonormal frame.
For any i = 1,2,...,m where {ej,ea,...,e,,£} is a local orthonormal

frame, we have
m

292(% pej) = cos?0. (2.9)
j=1
A plane section 7 in a cosymplectic manifold M is said to be a ¢-section,
if it is spanned by a unit tangent vector X orthonormal to £ and ¢X, i. e.

K(r) = K(X,0X) = g(R(X,$X)$X, X). (2.10)

The sectional curvature of a ¢-section is called ¢-sectional curvature. A
cosymplectic manifold M with constant ¢-sectional curvature c is said to be
a cosymplectic space form and is usually denoted by M (c).

For an orthonormal basis {e1, €2, ..., em,emt+1 = £} of the tangent space
T,M at p € M, from (1.1), the scalar curvature 7 at p of M assumes the

form
m

m
21 =) K(eiNej) +2)  K(ei A§). (2.11)
i#] i=1
Now, we mention the following results for our subsequent use.

Corollary 2.1. [12] Let M be a slant submanifold of an almost contact
metric manifold M with slant angle 8. Then for any X,Y € TM, we have

g(PX,PY) = cos*0{g(X,Y) —n(X)n(Y)} (2.12)
g(FX,FY) = sin’6{g(X,Y) —n(X)n(Y)}. (2.13)
Lemma 2.1. [6] Let aj,a,...,ax,c be k+1 (k > 2) real numbers such
that
k 2 k
(Za,) = (k— 1)(2%2 —I—c).
i=1 i=1

Then 2a1ao > ¢ and the equality holds if and only if a1 +as = az = -+ = ag.
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3. CHEN’S INEQUALITY FOR BI-SLANT SUBMANIFOLDS IN COSYMPLECTIC
SPACE FORMS

Theorem 3.1. Let v : M — M be an isometric immersion from a Rie-
mannian (m+ 1 = 2n; 4 2ng + 1)-dimensional bi-slant submanifold M into
a cosymplectic space form M(c) of dimension 2m + 1. Then, we have

(m+1)2(m —1)

r— K(m) < |HIP + 5 (m +1)(m - 2)
+ %[(nl — 1)cos®0; + nacos0s]  (3.1)

on Dy, and

(m + 1)%(m — 1)
2m

T K(n) < ||H||2+§(m+1>(m_z)

+ %[n1608291 + (ng — 1)cos®6y]  (3.2)

on Do.

The equality cases in (3.1) and (3.2) hold at a point p € M if and only
if there exist an orthonormal basis {e1,e2,...,em,ems1 = &} of T,M and
an orthonormal basis {€m+t2,€m+3, ..., €2m+1} of TpLM such that the shape

operators of M in M(c), at a point p take the following forms

a 0 0 . . .0
Amin=| 0 b 0 . . L0 |, atb=x (3.3)
0 0 A1
R, 0 .. .0
A., = | hiy —h}; 0 . . 0], re{m+3,...,2m+1}
0 0 Om—1

(3.4)

Proof. Using Gauss equation in the expression of the curvature tensor R of
cosymplectic space form M (c) given by (2.3), we obtain

R(X,Y, 2, W) = g(h(X, W), (Y, 2)) — g(h(X, Z), h(Y, W))

+ 1 {90 2)g(X. W) = g(X, Z2)g (Y, W) + (X )n(Z)g(Y, W)

—n(Y)n(Z)g(X, W) +n(Y)n(W)g(X, Z) — n(X)n(W)g(Y, Z)
—9(6X, Z)g(8Y, W) + g(8Y, Z)g(6X, W) +29(X, 0¥ )g(6Z, W)} (3.5)

forany X, Y, Z, W € TM.
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For an orthonormal basis {ej, s,

cesem,emyl =&} of TyM at p € M,
putting X =W =e¢; and Y = Z =¢;,Vi,j € {1,...,m + 1}, in (3.5), we
get

m+1
> Rlei ej,e5,e1) = g(hlei, ), hlej, e5)) — g(hles, e5), hlej, e1))
ig=1

C
_’_7

4{9(% ej)g(ei,ei) — g(ei, ej)g(ej, ez‘)} + %{U(ez‘)n(ey‘)g(ey‘a €i)

—n(ej)n(e;)g(ei, e;) +nlej)n(ei)g(eis e;) — nlei)n(ei)gle;, e;)

—gldeis e5)g(dej,e:) + gldes, e)g(dei, i) + 2g(es, de;)g(dej ei) |
or,

m+1
> Reisejrej,e) = (m+1)°|H|” = ||h]|* + 2{(m +1)° = (m+1)}
i,j=1
c m+1
+Z{1 —(mA )+l (m+1)+3Y g2(6i,¢€j)}
ij=1
or,

Z R(ei7 €5, €5, ei) +2 E R(eia 57 57 ei)

(m+ 1| H|]*> — ||n]?
i#j i=1
c c m—+1
hd 2 _ ) I 2(,. )
+4{(m+1) (m+1)}+4{ 2m—|—3i;19 (ez,gbej)}.

Now using (2.11) in the above equation, we get

c c m—+1
21 = (m+ 1)*|| H|[” — [|A[* + gm+ 1)+

4{ —2m+3 Z g2(ei,¢ej)}
or,

3,7=1

m—+1
c c
or = (m + 1)2||H||> = ||h||> + Jmlm=1)+37 > g dej).  (3.6)
i,j=1
Since M™*! is bi-slant submanifold of a cosymplectic space form !

(©),
where (m + 1) = 2n; + 2ng + 1, we may consider an adapted bi-slant or-
thonormal frame as follows:

€1, €2 = sec 91P61, c.o .y €2n,—1,€2n; = SEC 01P€2n1,1
€2n,+1, €2, +2 = seC B2 Peop, 11,

<3 €2n142n0—15 €2n1+2n9
= sec 02 Pean, 12n,—1 and egn;42n,11 = §.
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Then, we have

gle1, pea) = —g(ge1, ea) = —g(¢p1,sec 1 Pey)
or,
g(e1, ge2) = —secty g(Pey, Pey).

Now, using (2.12), we get

g(e1, pea) = —cos 0,
or,

g*(e1, pey) = cos® 6.
Similarly,
cos?@;, fori=1,...,2n; —1
cos®fy, fori=2n;+1,...,2n1 +2ny — 1.

g*(ei, peiy1) = {

Hence, we have
m+41

Z 92(61‘, qbej) = 2{711 cos? 01 + no cos? 02}

i, j=1

Using this relation in (3.6), we obtain

3
o = (m—|—1)2||HH2—||h|]2+§m(m—1)—|—zc[2(n1 cos? 01 +ng cos? 6)]. (3.7)

Putting
1)%(m — 1 3
€=27— (m + 1)"(m )\|HH2—Z(m+1)(m—2)—2C[n1 cos? 01 +ng cos® )
(3.8)
in (3.7), we get
(m +1)? c
e="———[H[* = [In]*+ 3
m
or,
c
(m+ D2 H? = mlh|* +m{e -2 }. (3.9)

Let pe M, m C T,M, dim m = 2 and 7 is orthogonal to .

Now, we consider the following two cases:
Case (i). Let 7 be tangent to the differentiable distribution D; and let it
be spanned by orthonormal basis vectors e; and es. If we take e;,42 in the

direction of mean curvature vector H i. e. ep42 = ﬁ, then from (3.9), we
get
m+1 ) 9 m+1 ) 9 ) 9 2m+1 9 c
+2\° _ + +
(mre) =m{ 30 (o) 22 (%) + 30 32 (k) +eg
i=1 i=1 1#£] r=m-+3 1,j

(3.10)
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Now using lemma (2.1) in (3.10), we get

2m—+1
2 2
2h s = S (W) Y S (k) e . (3.11)
i#£j r=m+3 i,j

On the other hand, we have
K(m) = R(e1, e, €2,€1) = g(h(e1, e1), h(ez, €2))

3
— g(hler, e2), hle1, e2)) + = + == cos? 6,

4 4
or,
2m+1
Km =Y {ghler.en.e) glheser).er)
r=m-+2
c 3c
— glhler,e2), er) glh(er, ez),er) + 7 + = cos® 0y }
or,
2m+1 . .
Km= Y {hqthQ - (h{2)2} + 5+ 35 cos? 6y (3.12)
r=m-+2
or,
2m+1 2m+1 > o 3¢
K(m) = hi?hgyt? + Z hi1hyo — Z ( 12) 1t ZCOSQ 0y
r=m+3 r=m-+2
Using (3.11) in the above equation, we obtain
1 o 1 2l 2mil 5
2
bz g 3o () +5 3 30 (nn)
i#j r=m+3 ij=1
¢ c 2m+1 2m+1 9 c 3c
+§_Z+ Z hgthQ— Z ( 71‘2> +1+ZC08291
r=m-+3 r=m-+2
or,
K(m) > % —{—32 cos® 6. (3.13)

Now using (3.8) in (3.13), we obtain

r— K(r) < (m+1)%(m —1)
- 2m

|HIP + S m+1)(m —2)

3
+Zc[(n1 — 1)cos*01 + nacos>0a).
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Case (ii). If 7 is tangent to Da, we obtain, as in Case (i)

(m+1)%(m —1)

- K <
T (W) - 2m

|HI? + 5 (m +1)(m —2)

3
+Zc[n1003291 + (ng — 1)003292].

These are the desired inequalities.
If at any point p € M, equality in (3.1) and (3.2) hold, then the inequal-
ities in (3.11) and (3.13) become equalities. Hence, we have
2 2 2 .
thJr :hg?r :h?}Jr =0, i#j>2
W, =0, Yi#j, @,j=3,....2m+1Lr=m+3,....2m+1
hii+hy, =0, Vr=m+3,...,2m+1

+2 +2 _ pm+2 _ — pm+2
M +hyy " =hgs™ = = hp
Now, if we take ey, eo such that hg”2+2 = 0 and letting a = hY;, b =
hyo, A= hy42 = =ty it follows that the shape operators assume
the desired form. ([l

Corollary 3.1. Let M be an m + 1-dimensional contact CR-submanifold
with in a 2m+ 1-dimensional cosymplectic space form M (c). Then, we have

m 2 m — Cc C
r— K(m) < | “;ni 1)||H||2+8(m+1)(m2)+34(n1 ~1)
on Dy, and
r— K < PV D ey -2 4 5o,

on Do.
Now, we have the following result.

Theorem 3.2. Let M be an (m + 1)-dimensional -slant submanifold with
61 = 02 = 0 in a (2m—+1)-dimensional cosymplectic space form M(c). Then,
we have

1)2(m —1 3
oy < E ;nim LiH)? + g(m F1)(m—2)+ g(m — 2) cos? .
The equality holds at a point p € M if and only if there exists an or-
thonormal basis {e1,ea,...,em,ems1 = &} of Tp,M and an orthonormal

basis {€m+2, €m+3,s -, €am+1} Of TpLM such that the shape operators of M
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in cosymplectic space form M(c) take the following forms

a 0 0 . . .0
Apio=|( 0 b 0 . . 0], a+b=2A
00 M1
1]’?1 7]1,2 O . . . O
Ae, = | hly —h}; O . . . 0], r=m+3,...,.2m+1.
0 0 Opm—1

Corollary 3.2. Let M be an (m+ 1)-dimensional invariant submanifold of
a (2m + 1)-dimensional cosymplectic space form M(c). Then, we have

c(m?+2m—38
oy < ( S ).

Corollary 3.3. Let M be an (m+1)-dimensional anti-invariant submanifold
of a (2m + 1)-dimensional cosymplectic space form M(c). Then, we have

(m +1)2(m — 1)
2m

bar < VI + 5 (m + 1) (m - 2).

4. EXAMPLES OF BI-SLANT SUBMANIFOLDS OF COSYMPLECTIC
MANIFOLDS
Example 4.1. For any 61, 62 € [0, 7/2]
x (u,v,w,s,z) = (u,0,w,0,vcosby,vsinby, scosbs, ssinby, z)

defines a 5-dimensional bi-slant submanifold M, with slant angles #; and 65
in RY with its usual cosymplectic structure (¢, &, 7, g), given by:

0
:d = —
77 z? 'S az
g :n®77+{Z(dz’@dmz+dyz®dyz)}
i=1

and

4 4
%{2 (XiaiiJrYi;yi) +Zaaz} :Z;(—n(;zﬁxi;yi).

1= =

Furthermore it is easy to see that:

e S e —cosei+sin0 9 e _ 9
l_amla 2 — 18y1 16y27 3_8.%'3
. 0
e4 = cos b + sin 6, and e5=—=¢

ay? oyt 0z
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form a local orthonormal frame of TM. If, we define D1 = {ej,e2} and
Dy = {es,eq}, then a simple computation yields, g(¢oe1,e2) = cosf; and
g(poes, e4) = cosBy proving that the distribution D; is #;-slant and the
distribution D5 is #5-slant.

Example 4.2. For any 6;,02 € [0,7/2]
x(u,v,w,s,z) = (cos ai cosaz u — sin o s, sin a cos ag u
+ cos g §,cos aq sin ag u, sin o sin ag u, w, —sinag v, 0, cos ag v, z)

defines a 5-dimensional bi-slant submanifold M, with slant angles 6; = /2
and cos? 0 = sin? oy in R? with its usual cosymplectic structure.
We can choose orthonormal frame on T'M, given by

e1 = (cos aj cos g, sin o cos ag, €os a1 sin g, sinag sinag, 0, 0, 0, 0, 0)

) 0 n 0 0
€9 = —sinap—— +cosag——, e3= —
2 283/2 28y4 3 oyt
si 9 + cos d 4
€4 = —sin ] — + cos and e = — =
4 Loal 1 oa2 > 0z

where, distributions are defined by D; = {e1,e2} and Dy = {e3,e4}. Then
it can be easily seen that g(e1, doe2) = 0 and g(es, poes) = sinay, that is,

distribution D; is #;-slant with 6, = 7/2 and the distribution Dy is #3-slant

with cos? 0y = sin® a;.

Acknowledgement. I would like to thank referee for careful reading of the
manuscript and pointing out the mistakes.
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