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B. Y. CHEN’S INEQUALITIES FOR BI-SLANT

SUBMANIFOLDS IN COSYMPLECTIC SPACE FORMS

RAM SHANKAR GUPTA

Abstract. In this paper we obtain B. Y. Chen’s inequalities for a bi-
slant submanifold M of a cosymplectic space form M(c), when the struc-
ture vector field ξ of the ambient space is tangent to M .

1. Introduction

In the theory of Riemannian submanifolds it is quite interesting to estab-
lish a relationship between the intrinsic and extrinsic invariants. Basically,
the Riemannian invariants are intrinsic characteristics of Riemannian man-
ifolds. In 1993, B. Y. Chen [6] has obtained an inequality between sectional
curvature K, the scalar curvature τ (intrinsic invariant) and the mean cur-
vature function ||H|| (extrinsic invariant) of a submanifold M of the real
space form of constant curvature c. Moreover, Chen [4] also introduced a
new type of Riemannian invariants of a Riemannian manifold.

Let M be a Riemannian manifold of dimension m and let {e1, e2, . . . , em}
be any orthonormal basis of the tangent space TpM at any point p ∈ M .
then the scalar curvature τ at p ∈M is given by

τ =
∑

1≤i<j≤m

K(ei ∧ ej) (1.1)

for any point p ∈M , we denote

(infK)(p) = inf{K(π) : π ⊂ TpM,dimπ = 2} (1.2)

where K(π) denotes the sectional curvature of M associated with a plane
section π ⊂ TpM at p ∈M .

The Chen invariant δM at any point p ∈M is defined as

δM (p) = τ(p)− (infK)(p). (1.3)
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For a submanifold M of a real space form M(c), Chen has given a ba-
sic inequality in terms of the intrinsic invariant δM and the squared mean
curvature of the immersion, as

δM ≤ m2(m− 2)

2(m− 1)
||H||2 + 1

2
(m+ 1)(m− 2)c. (1.4)

The above inequality also holds good in case M is an anti-invariant sub-
manifold of complex space form M(c)[7]. In case of contact manifold, De-
fever, Mihai and Verstralen [11] obtained an inequality similar to that of
(1.4), for C-totally real submanifold of a Sasakian space form with constant
φ-sectional curvature c, given by

δM ≤ m2(m− 2)

2(m− 1)
||H||2 − 1

2
(m+ 1)(m− 2)

c+ 3

4
. (1.5)

2. Preliminaries

A (2m+1)-dimensional Riemannian manifold M is said to be an almost
contact metric manifold if there exists structure tensors (ϕ, ξ, η, g), where ϕ
is a (1, 1) tensor field, ξ a vector field, η a 1-form and g the Riemannian
metric on M satisfying [9]

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1, η(ϕX) = 0 (2.1)

and

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for any X,Y ∈ TM , where TM denotes the Lie algebra of vector fields on
M .

An almost contact metric manifold M is called a cosymplectic manifold
if [13],

(∇Xϕ)Y = 0 and ∇Xξ = 0 (2.2)

where ∇ denotes the Levi-Civita connection on M .
The curvature tensor R of a cosymplectic space form M(c) is given by

[14],

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + η(X)η(Z)Y

− η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y, Z)ξ

− g(ϕX,Z)ϕY + g(ϕY,Z)ϕX + 2g(X,ϕY )ϕZ} (2.3)

for all X,Y, Z ∈ TM .
Now, letM be an m-dimensional isometrically immersed Riemannian sub-

manifold of a cosymplectic manifold M with induced metric g. Denoting by
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TM the tangent bundle ofM and by T⊥M the set of all vector fields normal
to M , we write

ϕX = PX + FX (2.4)

for any X ∈ TM , where PX (resp. FX) denotes the tangential (resp.
normal) component of ϕX.

From now on we assume that the structure vector field ξ is tangent toM .
We make the direct orthogonal decomposition TM = D ⊕ ξ.

A submanifold M is said to be slant if for any non zero vector X tangent
to M at p such that X is not proportional to ξp, the angle θ(X) between
ϕX and TpM is constant i. e., is independent of the choice of p ∈ M and
X ∈ TpM −{ξp}. Sometime the angle θ(X) is termed as the wirtinger angle
of the slant immersion.

Invariant and anti-invariant immersions are slant immersions with slant
angle θ = 0 and θ = π

2 , respectively. A slant immersion which is neither
invariant nor anti-invariant is called a proper slant immersion.

A submanifoldM tangent to structure vector field ξ is said to be a bi-slant
submanifold of a cosymplectic manifold M , if there exist two orthogonal
differentiable distributions D1 and D2 on M , such that

(i) TM possesses an orthogonal direct decomposition of D1 and D2 i.
e. TM = D1 ⊕D2 ⊕ ξ.

(ii) Di is slant distribution with slant angle θi for any i = 1, 2.

If we take the dimD1 = 2n1 and dimD2 = 2n2, then it is obvious that
in case either n1 vanishes or n2, the bi-slant submanifold reduces to a slant
submanifold. Hence, the bi-slant submanifolds are generalized cases of slant
submanifolds. moreover, slant submanifolds, invariant submanifolds and
anti-invariant submanifolds are particular cases of bi-slant submanifolds.

Let R and R denote the curvature tensors of the submanifold M and
cosymplectic space form M(c), respectively. Then the equation of Gauss is
given by

R(X,Y, Z,W ) = R(X,Y, Z,W )−g(h(X,W ), h(Y,Z))+g(h(X,Z), h(Y,W ))
(2.5)

for all X,Y, Z,W ∈ TM .
We denote by h the second fundamental form of M and by AN the Wein-

garten map associated with N ∈ T⊥M . We put

hri,j = g(h(ei, ej), er) and ∥h∥2 =
m∑

i,j=1

g(h(ei, ej), h(ei, ej)) (2.6)

for any ei, ej ∈ TM and er ∈ T⊥M .
The mean curvature vector H is defined as H = 1

m(trace h). We say that
the submanifold M is minimal, if the mean curvature vector H vanishes
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identically. It is well known that for a cosymplectic manifold

h(X, ξ) = 0. (2.7)

For a given orthonormal frame {e1, e2, . . . , em} of a differentiable distri-
bution D, we denote the squared norms of P and F respectively, by

∥P∥2 =
m∑

i,j=1

g2(ei, P ej) and ∥F∥2 =
m∑
i=1

∥Fei∥2. (2.8)

It can be readily seen that ∥P∥2 and ∥F∥2 are independent of the choice of
the above orthonormal frame.

For any i = 1, 2, . . . ,m where {e1, e2, . . . , em, ξ} is a local orthonormal
frame, we have

m∑
j=1

g2(ei, ϕej) = cos2θ. (2.9)

A plane section π in a cosymplectic manifold M is said to be a ϕ-section,
if it is spanned by a unit tangent vector X orthonormal to ξ and ϕX, i. e.

K(π) = K(X,ϕX) = g(R(X,ϕX)ϕX,X). (2.10)

The sectional curvature of a ϕ-section is called ϕ-sectional curvature. A
cosymplectic manifold M with constant ϕ-sectional curvature c is said to be
a cosymplectic space form and is usually denoted by M(c).

For an orthonormal basis {e1, e2, . . . , em, em+1 = ξ} of the tangent space
TpM at p ∈ M , from (1.1), the scalar curvature τ at p of M assumes the
form

2τ =
m∑
i̸=j

K(ei ∧ ej) + 2
m∑
i=1

K(ei ∧ ξ). (2.11)

Now, we mention the following results for our subsequent use.

Corollary 2.1. [12] Let M be a slant submanifold of an almost contact
metric manifold M with slant angle θ. Then for any X,Y ∈ TM , we have

g(PX,PY ) = cos2θ{g(X,Y )− η(X)η(Y )} (2.12)

g(FX,FY ) = sin2θ{g(X,Y )− η(X)η(Y )}. (2.13)

Lemma 2.1. [6] Let a1, a2, . . . , ak, c be k + 1 (k ≥ 2) real numbers such
that ( k∑

i=1

ai

)2

= (k − 1)

( k∑
i=1

a2i + c

)
.

Then 2a1a2 ≥ c and the equality holds if and only if a1+a2 = a3 = · · · = ak.
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3. Chen’s inequality for bi-slant submanifolds in cosymplectic
space forms

Theorem 3.1. Let ψ : M → M be an isometric immersion from a Rie-
mannian (m+ 1 = 2n1 + 2n2 + 1)-dimensional bi-slant submanifold M into
a cosymplectic space form M(c) of dimension 2m+ 1. Then, we have

τ −K(π) ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2)

+
3c

4
[(n1 − 1)cos2θ1 + n2cos

2θ2] (3.1)

on D1, and

τ −K(π) ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2)

+
3c

4
[n1cos

2θ1 + (n2 − 1)cos2θ2] (3.2)

on D2.
The equality cases in (3.1) and (3.2) hold at a point p ∈ M if and only

if there exist an orthonormal basis {e1, e2, . . . , em, em+1 = ξ} of TpM and

an orthonormal basis {em+2, em+3, . . . , e2m+1} of T⊥
p M such that the shape

operators of M in M(c), at a point p take the following forms

Am+2 =

 a 0 0 . . . 0
0 b 0 . . . 0
0 0 λIm−1

 , a+ b = λ (3.3)

Aer =

 hr11 hr12 0 . . . 0
hr12 −hr11 0 . . . 0
0 0 0m−1

 , r ∈ {m+ 3, . . . , 2m+ 1}

(3.4)

Proof. Using Gauss equation in the expression of the curvature tensor R of
cosymplectic space form M(c) given by (2.3), we obtain

R(X,Y, Z,W ) = g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W ))

+
c

4

{
g(Y, Z)g(X,W )− g(X,Z)g(Y,W ) + η(X)η(Z)g(Y,W )

−η(Y )η(Z)g(X,W ) + η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)

−g(ϕX,Z)g(ϕY,W ) + g(ϕY,Z)g(ϕX,W ) + 2g(X,ϕY )g(ϕZ,W )
}

(3.5)

for any X,Y, Z,W ∈ TM .
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For an orthonormal basis {e1, e2, . . . , em, em+1 = ξ} of TpM at p ∈ M ,
putting X = W = ei and Y = Z = ej ,∀i, j ∈ {1, . . . ,m + 1}, in (3.5), we
get

m+1∑
i,j=1

R(ei, ej , ej , ei) = g(h(ei, ei), h(ej , ej))− g(h(ei, ej), h(ej , ei))

+
c

4

{
g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)

}
+
c

4

{
η(ei)η(ej)g(ej , ei)

−η(ej)η(ej)g(ei, ei) + η(ej)η(ei)g(ei, ej)− η(ei)η(ei)g(ej , ej)

−g(ϕei, ej)g(ϕej , ei) + g(ϕej , ej)g(ϕei, ei) + 2g(ei, ϕej)g(ϕej , ei)
}

or,

m+1∑
i,j=1

R(ei, ej , ej , ei) = (m+ 1)2∥H∥2 − ∥h∥2 + c

4
{(m+ 1)2 − (m+ 1)}

+
c

4

{
1− (m+ 1) + 1− (m+ 1) + 3

m+1∑
i,j=1

g2(ei, ϕej)
}

or,
m∑
i̸=j

R(ei, ej , ej , ei) + 2

m∑
i=1

R(ei, ξ, ξ, ei) = (m+ 1)2∥H∥2 − ∥h∥2

+
c

4
{(m+ 1)2 − (m+ 1)}+ c

4

{
− 2m+ 3

m+1∑
i,j=1

g2(ei, ϕej)
}
.

Now using (2.11) in the above equation, we get

2τ = (m+ 1)2∥H∥2 − ∥h∥2 + c

4
m(m+ 1) +

c

4

{
− 2m+ 3

m+1∑
i,j=1

g2(ei, ϕej)
}

or,

2τ = (m+ 1)2∥H∥2 − ∥h∥2 + c

4
m(m− 1) + 3

c

4

m+1∑
i,j=1

g2(ei, ϕej). (3.6)

SinceMm+1 is bi-slant submanifold of a cosymplectic space formM
2m+1

(c),
where (m + 1) = 2n1 + 2n2 + 1, we may consider an adapted bi-slant or-
thonormal frame as follows:

e1, e2 = sec θ1Pe1, . . . , e2n1−1, e2n1 = sec θ1Pe2n1−1

e2n1+1, e2n1+2 = sec θ2Pe2n1+1, . . . , e2n1+2n2−1, e2n1+2n2

= sec θ2Pe2n1+2n2−1 and e2n1+2n2+1 = ξ.
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Then, we have

g(e1, ϕe2) = −g(ϕe1, e2) = −g(ϕ1, sec θ1Pe1)
or,

g(e1, ϕe2) = − sec θ1 g(Pe1, P e1).

Now, using (2.12), we get

g(e1, ϕe2) = −cos θ1
or,

g2(e1, ϕe2) = cos2 θ1.

Similarly,

g2(ei, ϕei+1) =

{
cos2 θ1, for i = 1, . . . , 2n1 − 1

cos2 θ2, for i = 2n1 + 1, . . . , 2n1 + 2n2 − 1.

Hence, we have

m+1∑
i, j=1

g2(ei, ϕej) = 2{n1 cos2 θ1 + n2 cos
2 θ2}.

Using this relation in (3.6), we obtain

2τ = (m+1)2∥H∥2−∥h∥2+ c

4
m(m−1)+

3c

4
[2(n1 cos

2 θ1+n2 cos
2 θ2)]. (3.7)

Putting

ϵ = 2 τ− (m+ 1)2(m− 1)

m
∥H∥2− c

4
(m+1)(m−2)− 3c

2
[n1 cos

2 θ1+n2 cos
2 θ2]

(3.8)
in (3.7), we get

ϵ =
(m+ 1)2

m
∥H∥2 − ∥h∥2 + c

2
or,

(m+ 1)2∥H∥2 = m∥h∥2 +m
{
ϵ− c

2

}
. (3.9)

Let p ∈M, π ⊂ TpM , dim π = 2 and π is orthogonal to ξ.
Now, we consider the following two cases:

Case (i). Let π be tangent to the differentiable distribution D1 and let it
be spanned by orthonormal basis vectors e1 and e2. If we take em+2 in the
direction of mean curvature vector H i. e. em+2 =

H
∥H∥ , then from (3.9), we

get(m+1∑
i=1

hm+2
i i

)2
= m

{m+1∑
i=1

(
hm+2
i i

)2
+
∑
i̸=j

(
hm+2
i j

)2
+

2m+1∑
r=m+3

∑
i, j

(
hri j

)2
+ϵ− c

2

}
.

(3.10)
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Now using lemma (2.1) in (3.10), we get

2hm+2
1 1 hm+2

2 2 ≥
∑
i ̸=j

(
hm+2
i j

)2
+

2m+1∑
r=m+3

∑
i, j

(
hri j

)2
+ ϵ− c

2
. (3.11)

On the other hand, we have

K(π) = R(e1, e2, e2, e1) = g(h(e1, e1), h(e2, e2))

− g(h(e1, e2), h(e1, e2)) +
c

4
+

3c

4
cos2 θ1

or,

K(π) =
2m+1∑
r=m+2

{
g(h(e1, e1), er) g(h(e2, e2), er)

− g(h(e1, e2), er) g(h(e1, e2), er) +
c

4
+

3c

4
cos2 θ1

}
or,

K(π) =

2m+1∑
r=m+2

{
hr1 1h

r
2 2 − (hr1 2)

2
}
+
c

4
+ 3

c

4
cos2 θ1 (3.12)

or,

K(π) = hm+2
1 1 hm+2

2 2 +

2m+1∑
r=m+3

hr1 1h
r
2 2 −

2m+1∑
r=m+2

(
hr1 2

)2
+
c

4
+

3c

4
cos2 θ1.

Using (3.11) in the above equation, we obtain

k(π) ≥ 1

2

∑
i ̸=j

(
hm+2
i j

)2
+

1

2

2m+1∑
r=m+3

2m+1∑
i j=1

(
hri j

)2

+
ϵ

2
− c

4
+

2m+1∑
r=m+3

hr1 1h
r
2 2 −

2m+1∑
r=m+2

(
hr1 2

)2
+
c

4
+

3c

4
cos2 θ1

or,

K(π) ≥ ϵ

2
+ 3

c

4
cos2 θ1. (3.13)

Now using (3.8) in (3.13), we obtain

τ −K(π) ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2)

+
3c

4
[(n1 − 1)cos2θ1 + n2cos

2θ2].
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Case (ii). If π is tangent to D2, we obtain, as in Case (i)

τ −K(π) ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2)

+
3c

4
[n1cos

2θ1 + (n2 − 1)cos2θ2].

These are the desired inequalities.
If at any point p ∈M , equality in (3.1) and (3.2) hold, then the inequal-

ities in (3.11) and (3.13) become equalities. Hence, we have

hm+2
1 j = hm+2

2 j = hm+2
i j = 0, i ̸= j > 2

hri j = 0, ∀ i ̸= j, i, j = 3, . . . , 2m+ 1, r = m+ 3, . . . , 2m+ 1

hr1 1 + hr2 2 = 0, ∀ r = m+ 3, . . . , 2m+ 1

hm+2
1 1 + hm+2

2 2 = hm+2
3 3 = · · · = hm+2

m+1m+1.

Now, if we take e1, e2 such that hm+2
1 2 = 0 and letting a = hr1 1, b =

hr2 2, λ = hm+2
3 3 = · · · = hm+2

m+1m+1, it follows that the shape operators assume
the desired form. �

Corollary 3.1. Let M be an m + 1-dimensional contact CR-submanifold
with in a 2m+1-dimensional cosymplectic space form M(c). Then, we have

τ −K(π) ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2) +

3c

4
(n1 − 1)

on D1, and

τ −K(π) ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2) +

3c

4
n1

on D2.

Now, we have the following result.

Theorem 3.2. Let M be an (m+ 1)-dimensional θ-slant submanifold with
θ1 = θ2 = θ in a (2m+1)-dimensional cosymplectic space form M(c). Then,
we have

δM ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2) +

3c

8
(m− 2) cos2 θ.

The equality holds at a point p ∈ M if and only if there exists an or-
thonormal basis {e1, e2, . . . , em, em+1 = ξ} of TpM and an orthonormal

basis {em+2, em+3, . . . , e2m+1} of T⊥
p M such that the shape operators of M
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in cosymplectic space form M(c) take the following forms

Am+2 =

 a 0 0 . . . 0
0 b 0 . . . 0
0 0 λIm−1

 , a+ b = λ

Aer =

 hr11 hr12 0 . . . 0
hr12 −hr11 0 . . . 0
0 0 0m−1

 , r = m+ 3, . . . , 2m+ 1.

Corollary 3.2. Let M be an (m+1)-dimensional invariant submanifold of
a (2m+ 1)-dimensional cosymplectic space form M(c). Then, we have

δM ≤ c(m2 + 2m− 8)

8
.

Corollary 3.3. LetM be an (m+1)-dimensional anti-invariant submanifold
of a (2m+ 1)-dimensional cosymplectic space form M(c). Then, we have

δM ≤ (m+ 1)2(m− 1)

2m
∥H∥2 + c

8
(m+ 1)(m− 2).

4. Examples of bi-slant submanifolds of cosymplectic
manifolds

Example 4.1. For any θ1, θ2 ∈ [0, π/2]

x (u, v, w, s, z) = (u, 0, w, 0, v cos θ1, v sin θ1, s cos θ2, s sin θ2, z)

defines a 5-dimensional bi-slant submanifold M , with slant angles θ1 and θ2
in R9 with its usual cosymplectic structure (ϕ0, ξ, η, g), given by:

η = dz, ξ =
∂

∂z

g = η ⊗ η +
{ 4∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi)
}

and

ϕ0

{ 4∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

}
=

4∑
i=1

(
− Yi

∂

∂xi
+Xi

∂

∂yi

)
.

Furthermore it is easy to see that:

e1 =
∂

∂x1
, e2 = cos θ1

∂

∂y1
+ sin θ1

∂

∂y2
, e3 =

∂

∂x3

e4 = cos θ2
∂

∂y3
+ sin θ1

∂

∂y4
and e5 =

∂

∂z
= ξ
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form a local orthonormal frame of TM . If, we define D1 = {e1, e2} and
D2 = {e3, e4}, then a simple computation yields, g(ϕ0e1, e2) = cos θ1 and
g(ϕ0e3, e4) = cos θ2 proving that the distribution D1 is θ1-slant and the
distribution D2 is θ2-slant.

Example 4.2. For any θ1, θ2 ∈ [0, π/2]

x(u, v, w, s, z) = (cosα1 cosα2 u− sinα1 s, sinα1 cosα2 u

+ cosα1 s , cosα1 sinα2 u, sinα1 sinα2 u, w, − sinα2 v, 0 , cosα2 v, z)

defines a 5-dimensional bi-slant submanifold M , with slant angles θ1 = π/2
and cos2 θ2 = sin2 α1 in R9 with its usual cosymplectic structure.

We can choose orthonormal frame on TM , given by

e1 = (cosα1 cosα2, sinα1 cosα2, cosα1 sinα2, sinα1 sinα2, 0, 0, 0, 0, 0)

e2 = − sinα2
∂

∂y2
+ cosα2

∂

∂y4
, e3 =

∂

∂y1

e4 = − sinα1
∂

∂x1
+ cosα1

∂

∂x2
and e5 =

∂

∂z
= ξ

where, distributions are defined by D1 = {e1, e2} and D2 = {e3, e4}. Then
it can be easily seen that g(e1, ϕ0e2) = 0 and g(e3, ϕ0e4) = sinα1, that is,
distribution D1 is θ1-slant with θ1 = π/2 and the distribution D2 is θ2-slant
with cos2 θ2 = sin2 α1.
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