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A UNIFIED THEORY OF WEAKLY g-CLOSED SETS AND
WEAKLY g-CONTINUOUS FUNCTIONS

TAKASHI NOIRI AND VALERIU POPA

ABSTRACT. We introduce the notion of weakly mmng-closed sets as a
unified form of weakly w-closed sets [38], weakly rg-closed sets [23],
weakly mg-closed sets [40] and weakly mg*-closed sets [29]. Moreover,
we introduce and study the notion of weakly mng-continuous functions
to unify some modifications of weakly g-continuous functions.

1. INTRODUCTION

The concept of generalized closed (briefly g-closed) sets in a topological
space was introduced by Levine [16]. These sets were further considered
by Dunham and Levine [13]. In 1981, Munshi and Bassan [21] introduced
the notion of g-continuous functions. The notion of g-continuity is also
studied in [5], [8], [9], [10] and other papers. Various forms of g-continuity
are studied in [12], [31], [38], [41], [43] and other papers. A unified form of
g-closed sets is obtained in [26].

A weak form of g-closed sets is introduced in [42]. Some forms of weakly
g-closed sets and weak g-continuity are introduced and studied in [29], [31],
[38] and [40].

In [32] and [33], the present authors introduced and studied the notions of
m-structures, m-spaces and m-continuity. A set with two minimal structures
is used in Theorems 4.1 and 4.2 of [36], Theorems 4.2 and 4.3 of [37], and
Theorems 7.4 and 7.5 of [27]. The notion of bi-m-spaces is introduced in
[25]. A similar notion was recently introduced in [7].

In the present paper, we introduce the notion of weakly mng-closed sets
as a unified form of weakly g-closed sets [42], weakly w-closed sets [3§],
weakly rg-closed sets [23], weakly mg-closed sets [40] and weakly mg*-closed
sets [29]. Moreover, we introduce and study the notion of weakly mng-
continuous functions to obtain a unified form of some modifications of weakly
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g-continuous functions. By using m-continuity, we obtain several character-
izations and properties of weakly mng-continuous functions.

2. PRELIMINARIES

Let (X, 7) be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset
A is said to be regular open if A = Int(Cl(A)). We recall some generalized
open sets in a topological space.

Definition 2.1. Let (X, 7) be a topological space. A subset A of X is said
to be

a-open [24] if A C Int(Cl(Int(A))),

semi-open [15] if A C Cl(Int(A)),

preopen [18] if A C Int(Cl(A)),

B-open [1] or semi-preopen [3] if A C Cl(Int(Cl(A))),

b-open [4] if A C Int(Cl(A)) U Cl(Int(A)),

The family of all a-open (resp. semi-open, preopen, b-open, (-open, m-
open, regular open) sets in (X, 7) is denoted by a(X) (resp. SO(X), PO(X),
BO(X), B(X), 7(X), RO(X)).

Definition 2.2. Let (X,7) be a topological space. A subset A of X is
said to be a-closed [19] (resp. semi-closed [11], preclosed [18], b-closed [4],
B-closed [1], w-closed) if the complement of A is a-open (resp. semi-open,
preopen, b-open, [-open, m-open).

Definition 2.3. Let (X, 7) be a topological space and A a subset of X. The
intersection of all a-closed (resp. semi-closed, preclosed, b-closed, S-closed,
m-closed) sets of X containing A is called the a-closure [19] (resp. semi-

closure [11], preclosure [14], b-closure [4], B-closure [2], m-closure) of A and
is denoted by aCl(A) (resp. sCl(A), pCl(A), bCl(A), gCI(A), 7CI(A)).

Definition 2.4. Let (X, 7) be a topological space and A a subset of X. The
union of all a-open (resp. semi-open, preopen, b-open, S-open, m-open) sets
of X contained in A is called the a-interior [19] (resp. semi-interior [11],
preinterior [14], b-interior [4], B-interior [2], w-interior) of A and is denoted
by aInt(A) (resp. sInt(A), pInt(A), bInt(A), glnt(A), wInt(A)).

3. MINIMAL STRUCTURES AND m-CONTINUITY

Definition 3.1. Let X be a nonempty set and P(X) the power set of X.
A subfamily mx of P(X) is called a minimal structure (briefly m-structure)
on X [32], [33] if 0 € mx and X € my.
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By (X, mx), we denote a nonempty set X with an m-structure mx on X
and call it an m-space. Each member of mx is said to be mx-open (briefly
m-open) and the complement of an mx-open set is said to be mx-closed
(briefly m-closed).

Remark 3.1. Let (X, 7) be a topological space. Then the famlly a(X) is a

topology which is finer than 7. The families SO(X), PO(X), BO(X), 8(X),
m(X) and RO(X) are all m-structures on X.

Definition 3.2. Let X be a nonempty set and mx an m-structure on X.
For a subset A of X, the mx-closure of A and the myx-interior of A are
defined in [17] as follows:

(1) mCl(A) ={F:ACF,X—-Femx},

(2) mInt(A) = U{U : U C A,U € mx}.

Remark 3.2. Let (X 7) be a topological space and A a subset of X. If mx
= 7 (resp. SO(X), PO(X), a(X), 5(X), BO(X), 7(X)), then we have
(1) mCl(A) = CI(A) (resp. sCl(A), pCl(A), aCl(A), gCI(A), bCI(A),
mCl(A)),
(2) mInt(A)=
mlnt(A)).

Lemma 3.1 (Maki et al. [17]). Let X be a nonempty set and myx a minimal
structure on X. For subsets A and B of X, the following properties hold:

(1) mCl(X —A) = X —mInt(A) and mInt(X — A) = X — mCIl(A),

(2) If (X — A) € mx, then mCl(A) = A and if A € mx, then mlnt(A)

= A4,

(3) mCl( ) =0, mCl(X) = X, mInt()) =0 and mInt(X) = X,

(4) If A C B, then mCl(A) C mCl(B) and mInt(A) C mInt(B),

(5) AC mCl(A) and mInt(A) C A,

(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Definition 3.3. A minimal structure mx on a nonempty set X is said to
have property B [17] if the union of any family of subsets belonging to mx
belongs to mx.

Remark 3.3. If (X, 7) is a topological space, then SO(X), PO(X), a(X),
B(X) and BO(X) have property B.

Lemma 3.2. (Popa and Noiri [35]). Let X be a nonempty set and mx an
m-structure on X satisfying property B. For a subset A of X, the following
properties hold:

(1) A e mx if and only if mInt(A) = A,

(2) A is mx-closed if and only if mCl(A) = A,

(3) mInt(A) € mx and mCl(A) is mx-closed.

Int(A) (resp. sInt(A), pInt(A), alnt(A), gInt(A), bInt(A),
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Definition 3.4. Let (Y, o) be a topological space. A function f : (X, myx) —
(Y, 0) is said to be m-continuous [33] at x € X if for each open set V' con-
taining f(z), there exists U € mx containing = such that f(U) C V. The
function f is said to be m-continuous if it has this property at each point
reX.

Theorem 3.1. (Popa and Noiri [33]). For a function f : (X,mx) — (Y, 0),
the following properties are equivalent:

(1) f is m- contz’nuous
(2) f ( = mlnt(f~1(V)) for every open set V of Y;
(3) f ) mCI(f~ (F)) for every closed set F of Y;
(4) mCI(f~Y(B)) C f~Y(CUB)) for every subset B of Y;
(5) f(mCl( )) C CL(f(A)) for every subset A of X;
(6) f~1(Int(B)) C mInt(f~Y(B)) for every subset B of Y.
Corollary 3.1. (Popa and Noiri [33]). For a function f : (X,mx) — (Y, 0),
where mx has property B, the following properties are equivalent:

(1) fis m-continuous;

(2) f~YV) is mx-open in X for every open set V of Y;

(3) f7Y(F) is mx-closed in X for every closed set F of Y.

Definition 3.5. A function f: (X, mx) — (Y,0) is said to be m*-continu-
ous [20] if f=1(V) is mx-open in X for each open set V of Y.

Remark 3.4.

(1) If f:(X,mx) — (Y,0) is m*-continuous, then it is m-continuous.
By Example 3.4 of [20], every m-continuous function may not be
m’*-continuous.

(2) Let mx have property B, then it follows from Corollary 3.1 that f
is m~continuous if and only if f is m*-continuous.

For a function f: (X, mx) — (Y, 0), we define D,,(f) as follows:

D, (f) = {x € X : f is not m-continuous at z}.

Theorem 3.2. (Popa and Noiri [34]). For a function f : (X,mx) — (Y, 0),
the following pr’opertz’es hold:
Di(f) = Ugeo tfHG) — mInt(f~1(G))}
=Upge oy {f~ (Int( )) — mInt(f~
= Uge povy {mCI(f~1(B )) fHeuB)}
= Uae Pix {mCI( ) — F7HCU(f(A)}

(
=Upe 7 {mCl( 3 )) fHE)L,
where F is the family of closed sets of (Y, o).

H(B))}
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4. WEAKLY mng-CLOSED SETS

Definition 4.1. Let (X,7) be a topological space. A subset A of X is
said to be g-closed [16] (resp. w-closed [41], rg-closed [30], mg-closed [12]) if
Cl(A) C U whenever A C U and U is open (resp. semi-open, regular open,
m-open) in X.

Remark 4.1. An w-closed set is said to be sg*-closed [22], g-closed [43] or
semi-star generalized closed [39].

Definition 4.2. Let (X, 7) be a topological space and mx an m-structure
on X. A subset A of X is said to be mg*-closed [26] if C1(A) C U whenever
AcUand U € mx.

Remark 4.2. Let (X, 7) be a topological space and mx an m-structure on
X. If mx =7 (resp. SO(X), RO(X), m(X)), then we obtain Definition 4.1.

Definition 4.3. Let (X, 7) be a topological space. A subset A of X is said
to be weakly g-closed [42] (resp. weakly w-closed [38], weakly rg-closed [23],
weakly mg-closed [40]) if Cl(Int(A)) C U whenever A C U and U is open
(resp. semi-open, regular open, m-open) in X.

The following definition is a generalization of Definition 4.3.

Definition 4.4. Let (X, 7) be a topological space and mx an m-structure
on X. A subset A is said to be weakly mg*-closed (briefly wmg*-closed) [29]
if Cl(Int(A)) C U whenever A C U and U € mx.

Remark 4.3. Let (X, 7) be a topological space and mx an m-structure on
X. If mx =7 (resp. SO(X), RO(X), m(X)), then we obtain Definition 4.3.

Recently, a new generalization of weakly g-closed sets is introduced as
follows:

Definition 4.5. Let (X, mx) be an m-space. A subset A of X is said to be
m-weakly g-closed [31] if mCl(mInt(A)) C U whenever A C U and U € mx.

Definition 4.6. Let X be a nonempty set and mx,nx minimal structures
on X. A set X with two minimal structures is called a bi-m-space [25] or a
biminimal structure space [7] and is denoted by (X, mx,nx).

A subset A of a bi-m-space (X, mx,ny) is said to be mng-closed [25] if
nCl(A) € U whenever A C U and U € mx. Now, we introduce the notion
of weakly g-closed sets in a bi-m-space (X, mx,nx) as follows:

Definition 4.7. Let (X, mx,nx) be a bi-m-space. A subset A of X is
said to be weakly mng-closed (briefly wmng-closed) if nCl(nlnt(A)) Cc U
whenever A C U and U € my.
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Remark 4.4. Let (X, mx,nx) be a bi-m-space and 7 a topology for X.

(1) Ifny = 7and mx = 7 (resp. SO(X), RO(X), 7(X)), then we obtain
the definition of weakly g-closed sets [42] (resp. weakly w-closed sets
[38], weakly rg-closed sets [23], weakly mg-closed sets [40]).

(2) If nx = 7, then we obtain the definition of weakly mg*-closed sets
[29].

(3) If nx = mx, then we obtain the definition of m-weakly g-closed sets
[31].

Theorem 4.1. Let (X, mx,nx) be a bi-m-space and A a subset of X. If A
is mng-closed, then A is wmng-closed.

Proof. Since A is mng-closed, we have nCl(A) C U whenever A C U and
U € myx and hence nCl(nInt(A)) C nCl(A) C U. Therefore, A is wmng-
closed. 0

Remark 4.5. The converse of Theorem 4.1 is not true as shown by Example
3.3 of [31], Example 3.5 of [40] and Example 3.6 of [38].

A subset A of an m-space (X, mx) is said to be mx-regular closed [6] if
A = mCl(mlInt(A)).

Theorem 4.2. Let (X,mx,nx) be a bi-m-space. Then every nx-regular
closed set is wmng-closed.

Proof. Let A be nx-regular closed, A C U and U € mx. Then nCl(nInt(A))
= A C U. Therefore, A is wmng-closed. O

Remark 4.6. Let (X, mx,nx) be a bi-m-space and 7 a topology for X.

(1) If nx =7 and mx = SO(X) (resp. m(X)), then by Theorem 4.2 we
obtain Proposition 3.3 of [38] (resp. Theorem 3.6 of [40]).

(2) The converse of Theorem 4.2 is not true as shown by Example 3.7
of [40] and Example 3.6 of [38].

Theorem 4.3. Let (X, mx,nx) be a bi-m-space. If A is an nx-closed set,
then A is wmng-closed.

Proof. Let A be an nx-closed set. Then, by Lemma 3.1, A = nCI(A). Let
A C U and U € my, then nCl(nInt(A)) C nCl(4) = A C U. Hence A is
wmng-closed. O

Remark 4.7. Let (X, mx,nx) be a bi-m-space and 7 a topology for X.

(1) If nx =7 and mx = SO(X) (resp. m(X)), then by Theorem 4.3 we
obtain Corollary 3.4 of [38] (resp. Theorem 3.4 of [40]).

(2) If nx = mx, then by Theorem 4.3 we obtain Lemma 3.4 of [31].

(3) The converse of Theorem 4.3 is not true as shown by Example 3.3
of [40] and Example 3.6 of [38].
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Theorem 4.4. Let (X, mx,nx) be a bi-m-space. If A is a wmng-closed set
and A C B C nCl(nlnt(A)), then B is wmng-closed.

Proof. Let B C U and U € mx. Since A is wmng-closed and A C U,
nCl(nInt(A)) C U. By Lemma 3.1, nCl(nlnt(B)) C nCl(nInt(nCl(nlnt(A))))
C nCl(nInt(A)) C U. Hence B is wmng-closed. O

Remark 4.8. Let (X, mx,nx) be a bi-m-space and 7 a topology for X.
By Theorem 4.4, the following hold:

(1) If nx =7 and mx = SO(X) (resp. 7(X)), then we obtain Theorem
3.15 of [38] (resp. Theorem 3.23 of [40]).

(2) If nx = 7, then we obtain Theorem 5.2 of [29].

(3) If mx = nx, then we obtain Lemma 3.4(iii) of [31].

Theorem 4.5. Let (X,mx,nx) be a bi-m-space and nx have property B.
If A is wmng-closed, nx-open and mx-open, then A is nx-closed.

Proof. Since A is wmng-closed and mx-open, nCl(nlnt(A)) C A. Since A
is nx-open, nCl(A) C A and hence by Lemma 3.1 nCl(A) = A. Since nx
has property B, A is nx-closed. O

Remark 4.9. Let (X, mx,nx) be a bi-m-space and 7 a topology for X.

(1) If nx = 7 and mx = 7(X), then by Theorem 4.5 we obtain Theorem
3.17 of [40].
(2) If mx = nx, then by Theorem 4.5 we obtain Lemma 3.4(ii) of [31].

Theorem 4.6. Let (X, mx,nx) be a bi-m-space. A subset A of X is wmng-
closed if and only if nCl(nlnt(A)) N F = () whenever ANF = 0 and F is
mx -closed.

Proof. Necessity. Suppose that A is wmng-closed. Let AN F = () for any
mx-closed set F. Then A C X — F € my and nCl(nlnt(4)) C X — F.
Therefore, nCl(nlnt(A)) N F = ().

Sufficiency. Let A C U and U € mx. Then AN (X —U) = () and
X — U is mx-closed. By hypothesis nCl(nInt(A4)) N (X — U) = () and hence
nCl(nlnt(A)) C U. Therefore, A is wmng-closed. O

Remark 4.10. Let (X, mx,nyx) be a bi-m-space and 7 a topology for X.
If nx = 7 (resp. mx = nx), then by Theorem 4.6 we obtain Theorem 5.3
of [29] (resp. Theorem 3.9 of [31]).

Theorem 4.7. Let (X,mx,nx) be a bi-m-space. If a subset A of X is
wmng-closed, then nCl(nlnt(A)) — A does not contain any nonempty mx -
closed set. Moreover, the converse holds if nx C mx and both nx and mx
have property B.
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Proof. Suppose that A is a wmng-closed set. Let F' be an mx-closed set
and F' C nCl(nInt(A)) — A. Then A C X — F and X — F' € mx and hence
nCl(nInt(A)) € X —F'. Therefore, we have F' C X —nCl(nlnt(A)). However,
F C nCl(nInt(A)) and F C nCl(nInt(A)) N (X — nCl(nlnt(A4))) = 0.
Conversely, suppose that A is not wmng-closed. Then () # nCl(nlnt(A))—
U for some U € myx containing A. Since nx C mx and both ny and
mx have property B, nCl(nInt(A)) — U is mx-closed. Moreover, we have
) # nCl(nInt(A)) — U C nCl(nlnt(A)) — A. Therefore, nCl(nInt(A)) — A
contains a nonempty m x-closed set. ([l

Remark 4.11. Let (X, mx,nyx) be a bi-m-space and 7 a topology for X.
Then, by Theorem 4.7, the following hold:

(1) If nx =7 and mx = SO(X) (resp. 7(X)), then we obtain Theorem
3.12 of [38] (resp. Theorem 3.19 of [40]).

(2) If nx = 7, then we obtain Theorem 5.5 of [29].

(3) If nx = mx, then we obtain Theorem 2.8(ii) of [31].

Definition 4.8. Let (X, mx,nx) be a bi-m-space. A subset A of X is said
to be weakly mng-open (briefly wmng-open) if X — A is weakly mng-closed.
The family of all wmng-open sets in (X, mx,nx) is denoted by wmnGO(X).

Remark 4.12. Let (X, mx,nx) be a bi-m-space and 7 a topology for X.
(1) If nx = 7 and mx = 7 (resp. SO(X), 7(X), RO(X)), then a wmng-
open set is weakly g-open (resp. weakly w-open [38], weakly mg-open
[40], weakly rg-open [23]).
(2) If nx = 7, then a wmng-open set is wmg*-open [29].
(3) If nx = my, then a wmng-open set is mwg-open [31].

The family of weakly g-open (resp. weakly w-open, weakly mg-open,
weakly rg-open, wmg*-open) sets is denoted by wGO(X) (resp. ww(X),
wrGO(X), wrGO(X), wmG*O(X)). These families are obviously minimal
structures on X and they are called wmng-structures on X. In general,
wmng-structures do not have property B.

Definition 4.9. Let (X, mx, nx) be a bi-m-space and wmnGO(X) a wmng-
structure on X. For a subset A of X, the wmng-closure and the wmng-
interior of A are defined as follows:

(1) wmnCly(A) =n{F:AC F,X — F € wnnGO(X)},

(2) wmnInty(A) =U{U : U C A,U € wmnGO(X)}.

5. WEAKLY mng-CONTINUOUS FUNCTIONS

Definition 5.1. Let (X, mx, nx) be a bi-m-space and wmnGO(X) a wmng-
structure on X. A function f : (X, mx,nx) — (Y,0) is said to be
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(1) wmng-continuous at x € X if f : (X, wmnGO(X)) — (Y,0) is m-
continuous at x, equivalently if for each open set V' containing f(x)
there exists a wmng-open set U containing x such that f(U) C V.
The function f is said to be wmng-continuous if it has this property
at each point z € X.

(2) w(mn)*g-continuous if f: (X, wmnGO(X)) — (Y, o) is m*-continu-
ous, equivalently if f~!(K) is wmng-closed in X for each closed set
KofY.

Remark 5.1. Let (X, 7) be a topological space and mx,nx m-structures
on X.

(1) If ny = 7 and mx = SO(X) (resp. m(X)), then a w(mn)*g-continu-
ous function is weakly w-continuous [38] (resp. weakly mg-continuous
40]).

(2) If nx = 7, then a w(mn)*g-continuous function is wm*g*-continuous
[29].

Let (X, mx,nx) be a bi-m-space and wmnGO(X) a wmng-structure on
X. For a function f: (X, mx,nx) — (Y,0), we denote the set of all points
of X at which the function f is not wmng-continuous by Dyymng(f)-

Theorem 5.1. Let (X, mx,nx) be a bi-m-space and wmnGO(X) a wmng-
structure on X. For a function f : (X,mx,nx) — (Y,0), the following
properties hold:
Dumng(f) = UGEU{f_ (G) — wmnlnty(f~1(G))}
= Upe pov) {f71(Int(B)) — wmnlntg( F=HB))}
= Uge Py {wmnCly(f (B )) H(CUB))}
= Uae ) {wmnCly (A) ( (f (A))}

=Upe 7 {wmnC1 (f~ (F)) Y)Y
where F is the family of closed sets of (Y, a)

Proof. The proof follows immediately from Theorem 3.2. O

Theorem 5.2. Let (X,mx,nx) be a bi-m-space. Then for a function f :
(X,mx,nx) — (Y,0), the following properties are equivalent:

(1) fis wmng-continuous;

(2) f ( ) = wmnlnty(f~1(V)) for every open set V of Y;

(3) f~H(F) = wmnCl ( (F)) for every closed set F of Y;

(4) wmnCly(f~YB)) C f~YCUB)) for every subset B of Y;

(5) (wmnCl (A)) C Cl( (A)) for every subset A of X;

(6) f~'(Int(B)) C wmnlnty(f~1(B)) for every subset B of Y.

Proof. The proof follows immediately from Theorem 3.1. U
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Corollary 5.1. Let (X, mx,nx) be a bi-m-space and wnnGO (X ) a wmng-
structure on X with property B. For a function f: (X,mx,nx) — (Y,0),
the following properties are equivalent:

(1) fis wmng-continuous;

(2) f~YV) is wmng-open in X for every open set V of Y;

(3) f7Y(F) is wmng-closed in X for every closed set F of Y.

Proof. The proof follows from Corollary 3.1. O

Definition 5.2. Let (X, mx) be an m-space and A a subset of X. The mx -
frontier of A, mFr(A), [33] is defined by mFr(A) = mCl(A) NmCl(X — A) =
mCl(A) — mInt(A).

If (X,mx,nx) is a bi-m-space and wmnGO(X) a wmng-structure, then
wmnFry(A) = wmnCly(A) NwmnCly (X — A) = wmnClg(A) —wmnlnty(A).

Lemma 5.1. (Popa and Noiri [33]). The set of all points of X at which
a function f: (X,mx) — (Y,0) is not m-continuous is identical with the
union of the m-frontiers of the inverse images of open sets containing f(z).

Theorem 5.3. Let (X, mx,nx) is a bi-m-space and wmnGO(X) a wmng-
structure. Then, the set of all points of X at which a function f: (X, mx,nx)
— (Y, 0) is not wmng-continuous is identical with the union of the wmng-
frontiers of the inverse images of open sets containing f(x).

Proof. The proof follows from Lemma 5.1. U

Let (X, 7) be a topological space and A a subset of X. A point z € X
is called a 6-cluster point of A if CI(V) N A # () for every open set V
containing x. The set of all #-cluster points of A is called the 0-closure of A
and is denoted by Cly(A) [44]. If A = Clg(A), then A is said to be 0-closed.
The complement of a #-closed set is said to be 6-open.

Lemma 5.2. (Noiri and Popa [28]). Let (Y, o) be a regular space. For a
function f: (X, mx) — (Y,0), the following properties are equivalent:

(1) fis m-continuous;

(2) f71(Cly(B)) = mCI(f~1(Cly(B))) for every subset B of Y;

(3) f~YK) =mCl(f1(K)) for every §-closed set K of Y;

(4) f~Y(V) = mInt(f~1(V)) for every 0-open set V of Y.

Corollary 5.2. (Noiri and Popa [28]). Let (Y, o) be a regular space and mx
an m-structure on X with property B. For a function f: (X,mx) — (Y,0),
the following properties are equivalent:

(1) fis m-continuous;

(2) f71(Cly(B)) is m-closed for every subset B of Y;

(3) f7YK) is m-closed in X for every -closed set K of Y;
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(4) f~Y(V) is m-open in X for every 0-open set V of Y.

Theorem 5.4. Let (Y, 0) be a regular space, (X, mx,nx) a bi-m-space and
wmnGO(X ) a wmng-structure. For a function f : (X,mx,nx) — (Y,0),
the following properties are equivalent:

(1) fis wmng-continuous;

(2) fH(Clp(B)) = wmnCl,(f~1(Cly(B))) for every subset B of Y;
(3) fHK) = wmnCly,(f~1(K)) for every O-closed set K of Y;

(4) f7Y(V) = wmnlnt,(f~1(V)) for every 0-open set V of Y.

Proof. The proof follows from Lemma 5.2. U

Corollary 5.3. Let (Y,0) be a regular space, (X,mx,nx) a bi-m-space
and wmnGO(X) a wmng-structure with property B on X. For a function
f:(X,mx,nx) — (Y,0), the following properties are equivalent:

(1) fis wmng-continuous;

(2) f~1(Cly(B)) is wmng-closed in X for every subset B of Y;
(3) f7UK) is wmng-closed in X for every -closed set K of Y;
(4) f~Y(V) is wmng-open in X for every 0-open set V of Y.

Proof. The proof follows from Corollary 5.2. U

Remark 5.2. Let (X, 7) be a topological space. If nx = 7 and mx is an m-
structure on X, then by Theorem 5.2 and Corollary 5.3 we obtain Theorem
5.7 and Corollary 5.3 in [29], respectively.

6. SOME PROPERTIES OF wmmng-CONTINUOUS FUNCTIONS

Definition 6.1. A function f: (X, mx) — (Y, 0) is said to have a strongly
m-closed graph (resp. m-closed graph) [33] if for each (z,y) € (X xY)—G(f),
there exist U € mx containing x and an open set V' of Y containing y such
that [U x CL(V)]NG(f) =0 (resp. [U x VING(f) =0).

Definition 6.2. Let (X, mx,nx) be a bi-m-space and wmnGO(X) a wmng-
structure on X. A function f : (X,mx,nx) — (Y,0) is said to have a
strongly wmng-closed graph (resp. wmng-closed graph) if a function f :
(X, wmnGO(X)) — (Y, 0) has a strongly m-closed (resp. m-closed) graph,
equivalently if for each (z,y) € (X xY)—G(f), there exist U € wmnGO(X)
containing = and an open set V of Y containing y such that [U x Cl(V')] N
G(f) =0 (resp. [U x V]ING(f) =0).

Remark 6.1. Let (X, 7) be a topological space and mx,nx minimal struc-
tures on X. If nx = 7, then by Definition 6.2 we obtain the definition of
strongly wmg*-closed graphs and wmg*-closed graphs in [29].
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Lemma 6.1. (Popa and Noiri [33]). A function f : (X,mx) — (Y,0) is
m-continuous and (Y, o) is a Hausdorff space, then f has a strongly m-closed
graph.

Theorem 6.1. Let (X, mx,nx) be a bi-m-space and wnmnGO(X) a wmng-
structure on X. If a function f : (X,mx,nx) — (Y, 0) is wmng-continuous
and (Y, 0) is a Hausdorff space, then f has a strongly wmng-closed graph.

Proof. The proof follows from Lemma 6.1. (|

Remark 6.2. Let (X, 7) be a topological space, nxy = 7 and mx an m-
structure on X. Then, by Theorem 6.1 we obtain Theorem 6.4 in [29)].

Lemma 6.2. (Popa and Noiri [33]). Let (X, mx) be an m-space and (Y, o)
a topological space. If f : (X,mx) — (Y,0) is a surjective function with a
strongly m-closed graph, then (Y, o) is Hausdorff.

Theorem 6.2. Let (X, mx,nx) be a bi-m-space and wnmnGO(X) a wmng-

structure on X. If f: (X,mx,nx) — (Y,0) is a surjective function with a
strongly wmng-closed graph, then (Y, o) is Hausdorff.

Proof. The proof follows from Lemma 6.2. (]

Remark 6.3. Let (X,7) be a topological space, nx = 7 and mx an m-
structure on X. Then, by Theorem 6.2 we obtain Theorem 6.5 in [29)].

Lemma 6.3. (Popa and Noiri [33]). Let (X, mx) be an m-space, where mx
has property B. If f : (X,mx) — (Y,0) is an m-continuous injection with
an m-closed graph, then X is m-T5.

Theorem 6.3. Let (X, mx,nx) be a bi-m-space and wmnGO(X) a wmng-
structure on X satisfying property B. If f : (X,mx,nx) — (Y,0) is a
wmng-continuous injection with a wmng-closed graph, then X is wmng-T5.

Proof. The proof follows from Lemma 6.3. O

Remark 6.4. Let (X,7) be a topological space, nx = 7 and mx an m-
structure on X. Then, by Theorem 6.3 we obtain Theorem 6.6 in [29)].

Remark 6.5. By using the results in [33] and [28], we obtain Theorem 6.1
of [29], Theorem 4.14 of [38], Theorem 4.14 of [40], Theorem 6.2 of [29],
Theorem 6.3 of [38] and Theorem 4.15 of [40].
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