A UNIFIED THEORY OF WEAKLY g-CLOSED SETS AND WEAKLY g-CONTINUOUS FUNCTIONS

DOI: 10.5644/SJM.09.1.12

TAKASHI NOIRI AND VALERIU POPA

ABSTRACT. We introduce the notion of weakly mng-closed sets as a unified form of weakly ω -closed sets [38], weakly rg-closed sets [23], weakly πg -closed sets [40] and weakly mg^* -closed sets [29]. Moreover, we introduce and study the notion of weakly mng-continuous functions to unify some modifications of weakly g-continuous functions.

1. Introduction

The concept of generalized closed (briefly g-closed) sets in a topological space was introduced by Levine [16]. These sets were further considered by Dunham and Levine [13]. In 1981, Munshi and Bassan [21] introduced the notion of g-continuous functions. The notion of g-continuity is also studied in [5], [8], [9], [10] and other papers. Various forms of g-continuity are studied in [12], [31], [38], [41], [43] and other papers. A unified form of g-closed sets is obtained in [26].

A weak form of g-closed sets is introduced in [42]. Some forms of weakly g-closed sets and weak g-continuity are introduced and studied in [29], [31], [38] and [40].

In [32] and [33], the present authors introduced and studied the notions of m-structures, m-spaces and m-continuity. A set with two minimal structures is used in Theorems 4.1 and 4.2 of [36], Theorems 4.2 and 4.3 of [37], and Theorems 7.4 and 7.5 of [27]. The notion of bi-m-spaces is introduced in [25]. A similar notion was recently introduced in [7].

In the present paper, we introduce the notion of weakly mng-closed sets as a unified form of weakly g-closed sets [42], weakly ω -closed sets [38], weakly rg-closed sets [23], weakly πg -closed sets [40] and weakly mg^* -closed sets [29]. Moreover, we introduce and study the notion of weakly mng-continuous functions to obtain a unified form of some modifications of weakly

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54C08.

Key words and phrases. m-structure, weakly g-closed, weakly ω -closed, weakly rg-closed, weakly πg -closed, wmng-closed set, wmng-continuous.

g-continuous functions. By using m-continuity, we obtain several characterizations and properties of weakly mng-continuous functions.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be *regular open* if A = Int(Cl(A)). We recall some generalized open sets in a topological space.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) α -open [24] if $A \subset Int(Cl(Int(A)))$,
- (2) semi-open [15] if $A \subset Cl(Int(A))$,
- (3) preopen [18] if $A \subset Int(Cl(A))$,
- (4) β -open [1] or semi-preopen [3] if $A \subset Cl(Int(Cl(A)))$,
- (5) b-open [4] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$,
- (6) π -open [45] if A is the finite union of regular open sets.

The family of all α -open (resp. semi-open, preopen, b-open, β -open, π -open, regular open) sets in (X, τ) is denoted by $\alpha(X)$ (resp. SO(X), PO(X), BO(X), $\beta(X)$, $\pi(X)$, RO(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to be α -closed [19] (resp. semi-closed [11], preclosed [18], b-closed [4], β -closed [1], π -closed) if the complement of A is α -open (resp. semi-open, preopen, β -open, β -open, π -open).

Definition 2.3. Let (X, τ) be a topological space and A a subset of X. The intersection of all α -closed (resp. semi-closed, preclosed, β -closed, β -closed, α -closed) sets of X containing A is called the α -closure [19] (resp. semi-closure [11], preclosure [14], β -closure [4], β -closure [2], α -closure) of A and is denoted by α Cl(A) (resp. sCl(A), pCl(A), bCl(A), α Cl(A), α Cl(A)).

Definition 2.4. Let (X, τ) be a topological space and A a subset of X. The union of all α -open (resp. semi-open, preopen, b-open, β -open, π -open) sets of X contained in A is called the α -interior [19] (resp. semi-interior [11], preinterior [14], b-interior [4], β -interior [2], π -interior) of A and is denoted by $\alpha \operatorname{Int}(A)$ (resp. $\operatorname{sInt}(A)$, $\operatorname{pInt}(A)$, $\operatorname{bInt}(A)$, $\beta \operatorname{Int}(A)$, $\pi \operatorname{Int}(A)$).

3. Minimal structures and m-continuity

Definition 3.1. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a *minimal structure* (briefly m-structure) on X [32], [33] if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) , we denote a nonempty set X with an m-structure m_X on X and call it an m-space. Each member of m_X is said to be m_X -open (briefly m-open) and the complement of an m_X -open set is said to be m_X -closed (briefly m-closed).

Remark 3.1. Let (X, τ) be a topological space. Then the family $\alpha(X)$ is a topology which is finer than τ . The families SO(X), PO(X), BO(X), $\beta(X)$, $\pi(X)$ and RO(X) are all m-structures on X.

Definition 3.2. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [17] as follows:

- $(1) \operatorname{mCl}(A) = \bigcap \{ F : A \subset F, X F \in m_X \},\$
- (2) $\operatorname{mInt}(A) = \bigcup \{U : U \subset A, U \in m_X\}.$

Remark 3.2. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$, BO(X), $\pi(X)$), then we have

- (1) $\mathrm{mCl}(A) = \mathrm{Cl}(A)$ (resp. $\mathrm{sCl}(A)$, $\mathrm{pCl}(A)$, $\alpha \mathrm{Cl}(A)$, $\beta \mathrm{Cl}(A)$, $\mathrm{bCl}(A)$, $\pi \mathrm{Cl}(A)$),
- (2) $\operatorname{mInt}(A) = \operatorname{Int}(A)$ (resp. $\operatorname{sInt}(A)$, $\operatorname{pInt}(A)$, $\alpha \operatorname{Int}(A)$, $\beta \operatorname{Int}(A)$, $\operatorname{bInt}(A)$, $\pi \operatorname{Int}(A)$).

Lemma 3.1 (Maki et al. [17]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) $\operatorname{mCl}(X A) = X \operatorname{mInt}(A)$ and $\operatorname{mInt}(X A) = X \operatorname{mCl}(A)$,
- (2) If $(X A) \in m_X$, then mCl(A) = A and if $A \in m_X$, then mInt(A) = A,
- (3) $\mathrm{mCl}(\emptyset) = \emptyset$, $\mathrm{mCl}(X) = X$, $\mathrm{mInt}(\emptyset) = \emptyset$ and $\mathrm{mInt}(X) = X$,
- (4) If $A \subset B$, then $\mathrm{mCl}(A) \subset \mathrm{mCl}(B)$ and $\mathrm{mInt}(A) \subset \mathrm{mInt}(B)$,
- (5) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mInt}(A) \subset A$,
- (6) $\operatorname{mCl}(\operatorname{mCl}(A)) = \operatorname{mCl}(A)$ and $\operatorname{mInt}(\operatorname{mInt}(A)) = \operatorname{mInt}(A)$.

Definition 3.3. A minimal structure m_X on a nonempty set X is said to have *property* \mathcal{B} [17] if the union of any family of subsets belonging to m_X belongs to m_X .

Remark 3.3. If (X, τ) is a topological space, then SO(X), PO(X), $\alpha(X)$, $\beta(X)$ and BO(X) have property \mathcal{B} .

Lemma 3.2. (Popa and Noiri [35]). Let X be a nonempty set and m_X an m-structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if mInt(A) = A,
- (2) A is m_X -closed if and only if mCl(A) = A,
- (3) $mInt(A) \in m_X$ and mCl(A) is m_X -closed.

Definition 3.4. Let (Y, σ) be a topological space. A function $f: (X, m_X) \to$ (Y,σ) is said to be m-continuous [33] at $x \in X$ if for each open set V containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$. The function f is said to be m-continuous if it has this property at each point $x \in X$.

Theorem 3.1. (Popa and Noiri [33]). For a function $f:(X,m_X)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is m-continuous;

- (1) f is in continuous;
 (2) f⁻¹(V) = mInt(f⁻¹(V)) for every open set V of Y;
 (3) f⁻¹(F) = mCl(f⁻¹(F)) for every closed set F of Y;
 (4) mCl(f⁻¹(B)) ⊂ f⁻¹(Cl(B)) for every subset B of Y;
- (5) $f(\mathrm{mCl}(A)) \subset \mathrm{Cl}(f(A))$ for every subset A of X;
- (6) $f^{-1}(\operatorname{Int}(B)) \subset \operatorname{mInt}(f^{-1}(B))$ for every subset B of Y.

Corollary 3.1. (Popa and Noiri [33]). For a function $f:(X, m_X) \to (Y, \sigma)$, where m_X has property \mathcal{B} , the following properties are equivalent:

- (1) f is m-continuous;
- (2) $f^{-1}(V)$ is m_X -open in X for every open set V of Y;
- (3) $f^{-1}(F)$ is m_X -closed in X for every closed set F of Y.

Definition 3.5. A function $f:(X,m_X)\to (Y,\sigma)$ is said to be m^* -continuous [20] if $f^{-1}(V)$ is m_X -open in X for each open set V of Y.

Remark 3.4.

- (1) If $f:(X,m_X)\to (Y,\sigma)$ is m^* -continuous, then it is m-continuous. By Example 3.4 of [20], every m-continuous function may not be m^* -continuous.
- (2) Let m_X have property \mathcal{B} , then it follows from Corollary 3.1 that fis m-continuous if and only if f is m^* -continuous.

For a function $f:(X,m_X)\to (Y,\sigma)$, we define $D_m(f)$ as follows:

$$D_m(f) = \{x \in X : f \text{ is not } m\text{-continuous at } x\}.$$

Theorem 3.2. (Popa and Noiri [34]). For a function $f:(X, m_X) \to (Y, \sigma)$, the following properties hold:

the following properties hold:

$$D_m(f) = \bigcup_{G \in \sigma} \{f^{-1}(G) - \operatorname{mInt}(f^{-1}(G))\}$$

$$= \bigcup_{B \in \mathcal{P}(Y)} \{f^{-1}(\operatorname{Int}(B)) - \operatorname{mInt}(f^{-1}(B))\}$$

$$= \bigcup_{B \in \mathcal{P}(Y)} \{\operatorname{mCl}(f^{-1}(B)) - f^{-1}(\operatorname{Cl}(B))\}$$

$$= \bigcup_{A \in \mathcal{P}(X)} \{\operatorname{mCl}(A) - f^{-1}(\operatorname{Cl}(f(A)))\}$$

$$= \bigcup_{F \in \mathcal{F}} \{\operatorname{mCl}(f^{-1}(F)) - f^{-1}(F)\},$$
where \mathcal{F} is the family of closed sets of (Y, σ) .

4. Weakly mng-closed sets

Definition 4.1. Let (X, τ) be a topological space. A subset A of X is said to be g-closed [16] (resp. ω -closed [41], rg-closed [30], πg -closed [12]) if $Cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. semi-open, regular open, π -open) in X.

Remark 4.1. An ω -closed set is said to be sg^* -closed [22], \hat{g} -closed [43] or semi-star generalized closed [39].

Definition 4.2. Let (X, τ) be a topological space and m_X an m-structure on X. A subset A of X is said to be mg^* -closed [26] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in m_X$.

Remark 4.2. Let (X, τ) be a topological space and m_X an m-structure on X. If $m_X = \tau$ (resp. SO(X), RO(X), $\pi(X)$), then we obtain Definition 4.1.

Definition 4.3. Let (X, τ) be a topological space. A subset A of X is said to be weakly g-closed [42] (resp. weakly ω -closed [38], weakly rg-closed [23], weakly πg -closed [40]) if $\mathrm{Cl}(\mathrm{Int}(A)) \subset U$ whenever $A \subset U$ and U is open (resp. semi-open, regular open, π -open) in X.

The following definition is a generalization of Definition 4.3.

Definition 4.4. Let (X, τ) be a topological space and m_X an m-structure on X. A subset A is said to be weakly mg^* -closed (briefly wmg^* -closed) [29] if $Cl(Int(A)) \subset U$ whenever $A \subset U$ and $U \in m_X$.

Remark 4.3. Let (X, τ) be a topological space and m_X an m-structure on X. If $m_X = \tau$ (resp. SO(X), RO(X), $\pi(X)$), then we obtain Definition 4.3.

Recently, a new generalization of weakly g-closed sets is introduced as follows:

Definition 4.5. Let (X, m_X) be an m-space. A subset A of X is said to be m-weakly g-closed [31] if mCl(mInt $(A)) \subset U$ whenever $A \subset U$ and $U \in m_X$.

Definition 4.6. Let X be a nonempty set and m_X , n_X minimal structures on X. A set X with two minimal structures is called a bi-m-space [25] or a biminimal structure space [7] and is denoted by (X, m_X, n_X) .

A subset A of a bi-m-space (X, m_X, n_X) is said to be mng-closed [25] if $nCl(A) \subset U$ whenever $A \subset U$ and $U \in m_X$. Now, we introduce the notion of weakly g-closed sets in a bi-m-space (X, m_X, n_X) as follows:

Definition 4.7. Let (X, m_X, n_X) be a bi-m-space. A subset A of X is said to be weakly mng-closed (briefly wmng-closed) if $\operatorname{nCl}(\operatorname{nInt}(A)) \subset U$ whenever $A \subset U$ and $U \in m_X$.

Remark 4.4. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X.

- (1) If $n_X = \tau$ and $m_X = \tau$ (resp. SO(X), RO(X), $\pi(X)$), then we obtain the definition of weakly g-closed sets [42] (resp. weakly ω -closed sets [38], weakly πg -closed sets [40]).
- (2) If $n_X = \tau$, then we obtain the definition of weakly mg^* -closed sets [29].
- (3) If $n_X = m_X$, then we obtain the definition of m-weakly g-closed sets [31].

Theorem 4.1. Let (X, m_X, n_X) be a bi-m-space and A a subset of X. If A is mng-closed, then A is wmng-closed.

Proof. Since A is mng-closed, we have $\mathrm{nCl}(A) \subset U$ whenever $A \subset U$ and $U \in m_X$ and hence $\mathrm{nCl}(\mathrm{nInt}(A)) \subset \mathrm{nCl}(A) \subset U$. Therefore, A is wmng-closed.

Remark 4.5. The converse of Theorem 4.1 is not true as shown by Example 3.3 of [31], Example 3.5 of [40] and Example 3.6 of [38].

A subset A of an m-space (X, m_X) is said to be m_X -regular closed [6] if $A = \mathrm{mCl}(\mathrm{mInt}(A))$.

Theorem 4.2. Let (X, m_X, n_X) be a bi-m-space. Then every n_X -regular closed set is wmng-closed.

Proof. Let A be n_X -regular closed, $A \subset U$ and $U \in m_X$. Then $\operatorname{nCl}(\operatorname{nInt}(A)) = A \subset U$. Therefore, A is wmng-closed.

Remark 4.6. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X.

- (1) If $n_X = \tau$ and $m_X = SO(X)$ (resp. $\pi(X)$), then by Theorem 4.2 we obtain Proposition 3.3 of [38] (resp. Theorem 3.6 of [40]).
- (2) The converse of Theorem 4.2 is not true as shown by Example 3.7 of [40] and Example 3.6 of [38].

Theorem 4.3. Let (X, m_X, n_X) be a bi-m-space. If A is an n_X -closed set, then A is wmng-closed.

Proof. Let A be an n_X -closed set. Then, by Lemma 3.1, $A = \mathrm{nCl}(A)$. Let $A \subset U$ and $U \in m_X$, then $\mathrm{nCl}(\mathrm{nInt}(A)) \subset \mathrm{nCl}(A) = A \subset U$. Hence A is wmng-closed.

Remark 4.7. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X.

- (1) If $n_X = \tau$ and $m_X = SO(X)$ (resp. $\pi(X)$), then by Theorem 4.3 we obtain Corollary 3.4 of [38] (resp. Theorem 3.4 of [40]).
- (2) If $n_X = m_X$, then by Theorem 4.3 we obtain Lemma 3.4 of [31].
- (3) The converse of Theorem 4.3 is not true as shown by Example 3.3 of [40] and Example 3.6 of [38].

Theorem 4.4. Let (X, m_X, n_X) be a bi-m-space. If A is a wmng-closed set and $A \subset B \subset \mathrm{nCl}(\mathrm{nInt}(A))$, then B is wmng-closed.

Proof. Let $B \subset U$ and $U \in m_X$. Since A is wmng-closed and $A \subset U$, $\mathrm{nCl}(\mathrm{nInt}(A)) \subset U$. By Lemma 3.1, $\mathrm{nCl}(\mathrm{nInt}(B)) \subset \mathrm{nCl}(\mathrm{nInt}(\mathrm{nCl}(\mathrm{nInt}(A)))) \subset \mathrm{nCl}(\mathrm{nInt}(A)) \subset U$. Hence B is wmng-closed.

Remark 4.8. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X. By Theorem 4.4, the following hold:

- (1) If $n_X = \tau$ and $m_X = SO(X)$ (resp. $\pi(X)$), then we obtain Theorem 3.15 of [38] (resp. Theorem 3.23 of [40]).
- (2) If $n_X = \tau$, then we obtain Theorem 5.2 of [29].
- (3) If $m_X = n_X$, then we obtain Lemma 3.4(iii) of [31].

Theorem 4.5. Let (X, m_X, n_X) be a bi-m-space and n_X have property \mathcal{B} . If A is wmng-closed, n_X -open and m_X -open, then A is n_X -closed.

Proof. Since A is wmng-closed and m_X -open, $nCl(nInt(A)) \subset A$. Since A is n_X -open, $nCl(A) \subset A$ and hence by Lemma 3.1 nCl(A) = A. Since n_X has property \mathcal{B} , A is n_X -closed.

Remark 4.9. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X.

- (1) If $n_X = \tau$ and $m_X = \pi(X)$, then by Theorem 4.5 we obtain Theorem 3.17 of [40].
- (2) If $m_X = n_X$, then by Theorem 4.5 we obtain Lemma 3.4(ii) of [31].

Theorem 4.6. Let (X, m_X, n_X) be a bi-m-space. A subset A of X is wmng-closed if and only if $nCl(nInt(A)) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is m_X -closed.

Proof. Necessity. Suppose that A is wmng-closed. Let $A \cap F = \emptyset$ for any m_X -closed set F. Then $A \subset X - F \in m_X$ and $\operatorname{nCl}(\operatorname{nInt}(A)) \subset X - F$. Therefore, $\operatorname{nCl}(\operatorname{nInt}(A)) \cap F = \emptyset$.

Sufficiency. Let $A \subset U$ and $U \in m_X$. Then $A \cap (X - U) = \emptyset$ and X - U is m_X -closed. By hypothesis $\operatorname{nCl}(\operatorname{nInt}(A)) \cap (X - U) = \emptyset$ and hence $\operatorname{nCl}(\operatorname{nInt}(A)) \subset U$. Therefore, A is wmng-closed.

Remark 4.10. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X. If $n_X = \tau$ (resp. $m_X = n_X$), then by Theorem 4.6 we obtain Theorem 5.3 of [29] (resp. Theorem 3.9 of [31]).

Theorem 4.7. Let (X, m_X, n_X) be a bi-m-space. If a subset A of X is wmng-closed, then $\operatorname{nCl}(\operatorname{nInt}(A)) - A$ does not contain any nonempty m_X -closed set. Moreover, the converse holds if $n_X \subset m_X$ and both n_X and m_X have property \mathcal{B} .

Proof. Suppose that A is a wmng-closed set. Let F be an m_X -closed set and $F \subset \mathrm{nCl}(\mathrm{nInt}(A)) - A$. Then $A \subset X - F$ and $X - F \in m_X$ and hence $\mathrm{nCl}(\mathrm{nInt}(A)) \subset X - F$. Therefore, we have $F \subset X - \mathrm{nCl}(\mathrm{nInt}(A))$. However, $F \subset \mathrm{nCl}(\mathrm{nInt}(A))$ and $F \subset \mathrm{nCl}(\mathrm{nInt}(A)) \cap (X - \mathrm{nCl}(\mathrm{nInt}(A))) = \emptyset$.

Conversely, suppose that A is not wmng-closed. Then $\emptyset \neq \operatorname{nCl}(\operatorname{nInt}(A)) - U$ for some $U \in m_X$ containing A. Since $n_X \subset m_X$ and both n_X and m_X have property \mathcal{B} , $\operatorname{nCl}(\operatorname{nInt}(A)) - U$ is m_X -closed. Moreover, we have $\emptyset \neq \operatorname{nCl}(\operatorname{nInt}(A)) - U \subset \operatorname{nCl}(\operatorname{nInt}(A)) - A$. Therefore, $\operatorname{nCl}(\operatorname{nInt}(A)) - A$ contains a nonempty m_X -closed set.

Remark 4.11. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X. Then, by Theorem 4.7, the following hold:

- (1) If $n_X = \tau$ and $m_X = SO(X)$ (resp. $\pi(X)$), then we obtain Theorem 3.12 of [38] (resp. Theorem 3.19 of [40]).
- (2) If $n_X = \tau$, then we obtain Theorem 5.5 of [29].
- (3) If $n_X = m_X$, then we obtain Theorem 2.8(ii) of [31].

Definition 4.8. Let (X, m_X, n_X) be a bi-m-space. A subset A of X is said to be weakly mng-open (briefly wmng-open) if X - A is weakly mng-closed. The family of all wmng-open sets in (X, m_X, n_X) is denoted by wmnGO(X).

Remark 4.12. Let (X, m_X, n_X) be a bi-m-space and τ a topology for X.

- (1) If $n_X = \tau$ and $m_X = \tau$ (resp. SO(X), $\pi(X)$, RO(X)), then a wmngopen set is weakly g-open (resp. weakly ω -open [38], weakly πg -open [40], weakly rg-open [23]).
- (2) If $n_X = \tau$, then a wmng-open set is wmg*-open [29].
- (3) If $n_X = m_X$, then a wmng-open set is mwg-open [31].

The family of weakly g-open (resp. weakly ω -open, weakly πg -open, weakly rg-open, wmg^* -open) sets is denoted by wGO(X) (resp. $w\omega(X)$, $w\pi GO(X)$, $w\pi GO(X)$, $w\pi GO(X)$). These families are obviously minimal structures on X and they are called wmng-structures on X. In general, wmng-structures do not have property \mathcal{B} .

Definition 4.9. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X. For a subset A of X, the wmng-closure and the wmng-interior of A are defined as follows:

- (1) $wmnCl_q(A) = \bigcap \{F : A \subset F, X F \in wmnGO(X)\},\$
- (2) $wmn\operatorname{Int}_{q}(A) = \bigcup \{U : U \subset A, U \in wmnGO(X)\}.$
 - 5. Weakly mnq-continuous functions

Definition 5.1. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X. A function $f: (X, m_X, n_X) \to (Y, \sigma)$ is said to be

- (1) wmng-continuous at $x \in X$ if $f: (X, wmnGO(X)) \to (Y, \sigma)$ is mcontinuous at x, equivalently if for each open set V containing f(x)there exists a wmng-open set U containing x such that $f(U) \subset V$. The function f is said to be wmng-continuous if it has this property at each point $x \in X$.
- (2) $w(mn)^*g$ -continuous if $f:(X, wmnGO(X)) \to (Y, \sigma)$ is m^* -continuous, equivalently if $f^{-1}(K)$ is wmng-closed in X for each closed set $K ext{ of } Y.$

Remark 5.1. Let (X,τ) be a topological space and m_X, n_X m-structures on X.

- (1) If $n_X = \tau$ and $m_X = SO(X)$ (resp. $\pi(X)$), then a $w(mn)^*g$ -continuous function is weakly ω -continuous [38] (resp. weakly πg -continuous
- (2) If $n_X = \tau$, then a $w(mn)^*g$ -continuous function is wm^*g^* -continuous [29].

Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X. For a function $f:(X,m_X,n_X)\to (Y,\sigma)$, we denote the set of all points of X at which the function f is not wmng-continuous by $D_{wmng}(f)$.

Theorem 5.1. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmngstructure on X. For a function $f:(X,m_X,n_X)\to (Y,\sigma)$, the following properties hold:

```
D_{wmnq}(f) = \bigcup_{G \in \sigma} \{ f^{-1}(G) - wmn \operatorname{Int}_q(f^{-1}(G)) \}
                                      = \bigcup_{B \in \mathcal{P}(Y)} \left\{ f^{-1}(\operatorname{Int}(B)) - wmn\operatorname{Int}_g(f^{-1}(B)) \right\}
                                      = \bigcup_{B \in \mathcal{P}(Y)} \left\{ wmn \operatorname{Cl}_q(f^{-1}(B)) - f^{-1}(\operatorname{Cl}(B)) \right\}
=\bigcup_{A\in\ \mathcal{P}(X)} \left\{wmn\operatorname{Cl}_g(A) - f^{-1}(\operatorname{Cl}(f(A)))\right\}
=\bigcup_{F\in\ \mathcal{F}} \left\{wmn\operatorname{Cl}_g(f^{-1}(F)) - f^{-1}(F)\right\},
where \mathcal{F} is the family of closed sets of (Y,\sigma).
```

Proof. The proof follows immediately from Theorem 3.2.

Theorem 5.2. Let (X, m_X, n_X) be a bi-m-space. Then for a function f: $(X, m_X, n_X) \rightarrow (Y, \sigma)$, the following properties are equivalent:

- (1) f is wmng-continuous;
- (2) $f^{-1}(V) = wmn \operatorname{Int}_g(f^{-1}(V))$ for every open set V of Y;
- (3) $f^{-1}(F) = wmn\operatorname{Cl}_g(f^{-1}(F))$ for every closed set F of Y; (4) $wmn\operatorname{Cl}_g(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$ for every subset B of Y;
- (5) $f(wmnCl_q(A)) \subset Cl(f(A))$ for every subset A of X;
- (6) $f^{-1}(\operatorname{Int}(B)) \subset wmn\operatorname{Int}_{a}(f^{-1}(B))$ for every subset B of Y.

Proof. The proof follows immediately from Theorem 3.1.

Corollary 5.1. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X with property \mathcal{B} . For a function $f:(X, m_X, n_X) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is wmng-continuous;
- (2) $f^{-1}(V)$ is wmng-open in X for every open set V of Y;
- (3) $f^{-1}(F)$ is wmng-closed in X for every closed set F of Y.

Proof. The proof follows from Corollary 3.1.

Definition 5.2. Let (X, m_X) be an m-space and A a subset of X. The m_X -frontier of A, mFr(A), [33] is defined by mFr $(A) = \text{mCl}(A) \cap \text{mCl}(X - A) = \text{mCl}(A) - \text{mInt}(A)$.

If (X, m_X, n_X) is a bi-m-space and wmnGO(X) a wmng-structure, then $wmn\operatorname{Fr}_q(A) = wmn\operatorname{Cl}_q(A) \cap wmn\operatorname{Cl}_q(X-A) = wmn\operatorname{Cl}_q(A) - wmn\operatorname{Int}_q(A)$.

Lemma 5.1. (Popa and Noiri [33]). The set of all points of X at which a function $f:(X,m_X) \to (Y,\sigma)$ is not m-continuous is identical with the union of the m-frontiers of the inverse images of open sets containing f(x).

Theorem 5.3. Let (X, m_X, n_X) is a bi-m-space and wmnGO(X) a wmng-structure. Then, the set of all points of X at which a function $f:(X, m_X, n_X) \to (Y, \sigma)$ is not wmng-continuous is identical with the union of the wmng-frontiers of the inverse images of open sets containing f(x).

Proof. The proof follows from Lemma 5.1.

Let (X, τ) be a topological space and A a subset of X. A point $x \in X$ is called a θ -cluster point of A if $\mathrm{Cl}(V) \cap A \neq \emptyset$ for every open set V containing x. The set of all θ -cluster points of A is called the θ -closure of A and is denoted by $\mathrm{Cl}_{\theta}(A)$ [44]. If $A = \mathrm{Cl}_{\theta}(A)$, then A is said to be θ -closed. The complement of a θ -closed set is said to be θ -open.

Lemma 5.2. (Noiri and Popa [28]). Let (Y, σ) be a regular space. For a function $f: (X, m_X) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is m-continuous;
- (2) $f^{-1}(\operatorname{Cl}_{\theta}(B)) = \operatorname{mCl}(f^{-1}(\operatorname{Cl}_{\theta}(B)))$ for every subset B of Y;
- (3) $f^{-1}(K) = \text{mCl}(f^{-1}(K))$ for every θ -closed set K of Y;
- (4) $f^{-1}(V) = \text{mInt}(f^{-1}(V))$ for every θ -open set V of Y.

Corollary 5.2. (Noiri and Popa [28]). Let (Y, σ) be a regular space and m_X an m-structure on X with property \mathcal{B} . For a function $f:(X, m_X) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is m-continuous;
- (2) $f^{-1}(Cl_{\theta}(B))$ is m-closed for every subset B of Y;
- (3) $f^{-1}(K)$ is m-closed in X for every θ -closed set K of Y;

(4) $f^{-1}(V)$ is m-open in X for every θ -open set V of Y.

Theorem 5.4. Let (Y, σ) be a regular space, (X, m_X, n_X) a bi-m-space and wmnGO(X) a wmng-structure. For a function $f:(X, m_X, n_X) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is wmng-continuous;
- (2) $f^{-1}(\operatorname{Cl}_{\theta}(B)) = wmn\operatorname{Cl}_{g}(f^{-1}(\operatorname{Cl}_{\theta}(B)))$ for every subset B of Y; (3) $f^{-1}(K) = wmn\operatorname{Cl}_{g}(f^{-1}(K))$ for every θ -closed set K of Y; (4) $f^{-1}(V) = wmn\operatorname{Int}_{g}(f^{-1}(V))$ for every θ -open set V of Y.

Proof. The proof follows from Lemma 5.2.

Corollary 5.3. Let (Y, σ) be a regular space, (X, m_X, n_X) a bi-m-space and wmnGO(X) a wmnq-structure with property \mathcal{B} on X. For a function $f:(X,m_X,n_X)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is wmng-continuous;
- (2) $f^{-1}(Cl_{\theta}(B))$ is wmng-closed in X for every subset B of Y;
- (3) $f^{-1}(K)$ is wmng-closed in X for every θ -closed set K of Y;
- (4) $f^{-1}(V)$ is wmng-open in X for every θ -open set V of Y.

Proof. The proof follows from Corollary 5.2.

Remark 5.2. Let (X,τ) be a topological space. If $n_X = \tau$ and m_X is an mstructure on X, then by Theorem 5.2 and Corollary 5.3 we obtain Theorem 5.7 and Corollary 5.3 in [29], respectively.

6. Some properties of wmnq-continuous functions

Definition 6.1. A function $f:(X,m_X)\to (Y,\sigma)$ is said to have a *strongly* m-closed graph (resp. m-closed graph) [33] if for each $(x,y) \in (X \times Y) - G(f)$, there exist $U \in m_X$ containing x and an open set V of Y containing y such that $[U \times \operatorname{Cl}(V)] \cap \operatorname{G}(f) = \emptyset$ (resp. $[U \times V] \cap \operatorname{G}(f) = \emptyset$).

Definition 6.2. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmngstructure on X. A function $f:(X,m_X,n_X)\to (Y,\sigma)$ is said to have a strongly wmng-closed graph (resp. wmng-closed graph) if a function f: $(X, \operatorname{wmnGO}(X)) \to (Y, \sigma)$ has a strongly m-closed (resp. m-closed) graph, equivalently if for each $(x,y) \in (X \times Y) - G(f)$, there exist $U \in \text{wmnGO}(X)$ containing x and an open set V of Y containing y such that $[U \times Cl(V)] \cap$ $G(f) = \emptyset$ (resp. $[U \times V] \cap G(f) = \emptyset$).

Remark 6.1. Let (X,τ) be a topological space and m_X, n_X minimal structures on X. If $n_X = \tau$, then by Definition 6.2 we obtain the definition of strongly wmg^* -closed graphs and wmg^* -closed graphs in [29].

Lemma 6.1. (Popa and Noiri [33]). A function $f:(X, m_X) \to (Y, \sigma)$ is m-continuous and (Y, σ) is a Hausdorff space, then f has a strongly m-closed graph.

Theorem 6.1. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X. If a function $f: (X, m_X, n_X) \to (Y, \sigma)$ is wmng-continuous and (Y, σ) is a Hausdorff space, then f has a strongly wmng-closed graph.

Proof. The proof follows from Lemma 6.1.

Remark 6.2. Let (X, τ) be a topological space, $n_X = \tau$ and m_X an m-structure on X. Then, by Theorem 6.1 we obtain Theorem 6.4 in [29].

Lemma 6.2. (Popa and Noiri [33]). Let (X, m_X) be an m-space and (Y, σ) a topological space. If $f: (X, m_X) \to (Y, \sigma)$ is a surjective function with a strongly m-closed graph, then (Y, σ) is Hausdorff.

Theorem 6.2. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X. If $f: (X, m_X, n_X) \to (Y, \sigma)$ is a surjective function with a strongly wmng-closed graph, then (Y, σ) is Hausdorff.

Proof. The proof follows from Lemma 6.2.

Remark 6.3. Let (X, τ) be a topological space, $n_X = \tau$ and m_X an m-structure on X. Then, by Theorem 6.2 we obtain Theorem 6.5 in [29].

Lemma 6.3. (Popa and Noiri [33]). Let (X, m_X) be an m-space, where m_X has property \mathcal{B} . If $f:(X, m_X) \to (Y, \sigma)$ is an m-continuous injection with an m-closed graph, then X is m- T_2 .

Theorem 6.3. Let (X, m_X, n_X) be a bi-m-space and wmnGO(X) a wmng-structure on X satisfying property \mathcal{B} . If $f:(X, m_X, n_X) \to (Y, \sigma)$ is a wmng-continuous injection with a wmng-closed graph, then X is wmng-T₂.

Proof. The proof follows from Lemma 6.3.

Remark 6.4. Let (X, τ) be a topological space, $n_X = \tau$ and m_X an m-structure on X. Then, by Theorem 6.3 we obtain Theorem 6.6 in [29].

Remark 6.5. By using the results in [33] and [28], we obtain Theorem 6.1 of [29], Theorem 4.14 of [38], Theorem 4.14 of [40], Theorem 6.2 of [29], Theorem 6.3 of [38] and Theorem 4.15 of [40].

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.

- M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashin, β-closure and β-interior,
 J. Fac. Ed. Ain Shams Univ., 10 (1986), 235–245.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [4] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- [5] K. Balachandran, P. Sundarm and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 12 (1991), 5–13.
- [6] C. Boonpok, Almost and weakly M-continuous functions in m-spaces, Far East J. Math. Sci., 43 (2010), 29–40.
- [7] C. Boonpok, Biminimal structure spaces, Int. Math. Forum, 5 (15) (2010), 703-707.
- [8] M. Caldas, On g-closed sets and g-continuous mappings, Kyungpook Math. J., 33 (1993), 205–209.
- [9] M. Caldas, Further results on generalized open mappings in topological spaces, Bull. Calcutta Math. Soc., 88 (1996), 37–42.
- [10] M. Caldas, S. Jafari and T. Noiri, Notions via g-open sets, Kochi J. Math., 2 (2007), 43–50.
- [11] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99–112.
- [12] J. Dontchev and T. Noiri, Quasi normal spaces and πg -closed sets, Acta Math. Hungar., 89 (2000), 211–219.
- [13] W. Dunham and N. Levine, Further results of generalized closed sets in topology, Kyungpook Math. J., 20 (1980), 169–175.
- [14] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27 (75) (1983), 311–315.
- [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [16] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.
- [17] H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.
- [18] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [19] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41 (1983), 213–218.
- [20] W. K. Min and Y. K. Kim, M*-continuity and product minimal structure on minimal structures, Int. J. Pure Appl. Math., 69 (3) (2011), 329–339.
- [21] B. M. Munshi and D. S. Bassan, g-continuous mappings, Vidya J. Gujarat Univ. B Sci., 24 (1981), 63–68.
- [22] M. Murugalingam, A Study of Semi-generalized Topology, Ph. D. Thesis, Manonmaniam Sundaranar Univ., Tamil Nadu (India), 2005.
- [23] N. Nagoveni, Studies of Generalizations of Homeomorphisms in Topological Spaces, Ph. D. Thesis, Bharathiar Univ., Coimbatore (India), 1999.
- [24] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [25] T. Noiri, The further unified theory for modifications of g-closed sets, Rend. Circ. Mat. Palermo, 57 (2008), 411-421.
- [26] T. Noiri and V. Popa, Between closed sets and g-closed sets, Rend. Circ. Mat. Palermo (2), 55 (2006), 175–184.
- [27] T. Noiri and V. Popa, A unified theory of weak continuity for multifunctions, Stud. Cerc. St. Ser. Mat., Univ. Bacău, 16 (2006), 167–200.
- [28] T. Noiri and V. Popa, A generalization of ω -continuity, Fasciculi Math., 45 (2010), 71–86.

- [29] T. Noiri and V. Popa, A generalization of ω^* -continuity, Math. Macedonica (to appear).
- [30] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33 (1993), 211–219.
- [31] R. Parimelazhagan, K. Balachandran and N. Nagaveni, Weakly generalized closed sets in minimal structure, Int. J. Contemp. Math. Sci., 4 (27) (2009), 1335–1343.
- [32] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunărea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor. (2), 18 (23) (2000), 31–41.
- [33] V. Popa and T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22 (2001), 9–18.
- [34] V. Popa and T. Noiri, On the points of continuity and discontinuity, Bull. U. P. G. Ploesti, Ser. Mat. Fiz. Inform., 53 (2001), 95–100.
- [35] V. Popa and T. Noiri, A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51 (2002), 439–464.
- [36] V. Popa and T. Noiri, On almost m-continuous functions, Math. Notae, 40 (1999-2002), 75–94.
- [37] V. Popa and T. Noiri, On weakly m-continuous functions, Mathematica (Cluj), 45 (68) (2003), 53-67.
- [38] N. Rajesh, On weakly ω -closed sets in topological spaces, Math. Macedonica, 3 (2005), 15–24.
- [39] K. C. Rao and K. Joseph, Semi-star generalized closed sets, Bull. Pure Appl. Sci., 19 E (2) (2000), 281–290
- [40] O. Ravi, S. Ganesan and S. Chandraseker, On weakly g-closed sets, (submitted).
- [41] P. Sundaram and M. Sheik John, Weakly closed sets and weakly continuous maps in topological spaces, Proc. 82nd Indian Science Congress, Calcutta, 1995, p. 49.
- [42] P. Sundram and N. Nagoveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6 (6) (1998), 903–912.
- [43] M. K. R. S. Veera Kumar, On ĝ-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18 (2003), 99–112.
- [44] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103–118.
- [45] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Acad. Nauk SSSR, 178 (1968), 778–779.

(Received: February 7, 2012) (Revised: June 5, 2012) Takashi Noiri 2949-1 Shiokita-Cho, Hinagu Yatsushiro-Shi, Kumamoto-Ken 869-5142 Japan E-mail: t.noiri@nifty.com

Valeriu Popa
Department of Mathematics
Univ. Vasile Alecsandri of Bacău
600 115 Bacău
Romania
E-mail: vpopa@ub.ro