SLIGHTLY GENERALIZED β -CONTINUOUS FUNCTIONS

S. C. ARORA AND SANJAY TAHILIANI

ABSTRACT. A new class of functions, called slightly generalized β -continuous functions is introduced. Basic properties of slightly generalized β -continuous functions are studied. The class of slightly generalized β -continuous functions properly includes the class of slightly β -continuous functions and generalized β -continuous functions. Also, by using slightly generalized β -continuous functions, some properties of domain/range of functions are characterized.

1. INTRODUCTION AND PRELIMINARIES

Slightly β -continuous functions were introduced by Noiri [9] in 2000 and next have been developed by Tahiliani [13]. Dontchev [4] introduced the notion of generalized β -continuous functions and investigated some of their basic properties and further Tahiliani [12] introduced the notion of β -generalized β -continuous functions. In this paper, we defined slightly generalized β -continuous functions and show that the class of slightly generalized β -continuous functions properly includes the class of slightly β -continuous functions and generalized β -continuous functions. Second we obtain some new results on $g\beta$ -closed sets and investigate basic properties of slightly generalized β -continuous functions concerning composition and restriction.

Finally, we study the behaviour of some separation axioms, related properties and $G\beta O$ -compactness, $G\beta O$ -connectedness under slightly generalized β -continuous functions. Relationship between generalized β -continuous functions and $G\beta O$ -connected spaces are investigated. In particularly, it is shown that slightly generalized β -continuous image of $G\beta O$ -connected spaces is connected.

Throughout this paper, (X, τ) and (Y, σ) (or X and Y) represents a non empty topological space on which no separation axioms are assumed, unless

²⁰¹⁰ Mathematics Subject Classification. 54C08.

Key words and phrases. Slightly continuous, slightly $g\beta$ -continuous, $g\beta$

otherwise mentioned. The closure and interior of $A \subseteq X$ will be denoted by Cl(A) and Int(A) respectively.

Definition 1.1.

- (i) A subset A of a space X is called β-open [1] if A ⊆ Cl(Int(Cl(A))). The complement of β-open set is β-closed [1]. The intersection of all β-closed sets containing A is called β-closure of A and is denoted by β Cl(A). Also A is said to be β-clopen [9] if it is β-open and βclosed. The largest β-open set contained in A (denoted by β Int(A)) is called β-interior [2] of A.
- (ii) A subset A of a space X is said to be generalized closed [6] (briefly g-closed) if $Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (iii) A subset A of a space X is said to be generalized semi preclosed [4] (briefly gsp-closed) or $g\beta$ -closed [4] if $\beta \operatorname{Cl}(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (iv) Generalized semi-preopen [4] (briefly $g\beta$ -open) if $F \subseteq \beta$ Int(A) whenever $F \subseteq A$ and F is closed in X. Also it is a complement of $g\beta$ closed set. If A is both $g\beta$ -closed and $g\beta$ -open, then it is said to be $g\beta$ -clopen.

In this note, the family of all open (resp. g-open, g β -open, clopen) sets of a space X is denoted by O(X) (resp. GO(X), $G\beta O(X)$, CO(X)) and the family of $g\beta$ -open(resp. clopen) sets of X containing x is denoted by $G\beta O(X, x)$ (resp. CO(X, x)).

Definition 1.2. A function $f : X \to Y$ is called:

- (i) gsp-continuous [4] or gβ-continuous (resp. gsp-irresolute [4] or gβirresolute) if f⁻¹(F) is gβ-closed in X for every closed (resp. gβclosed) set F of Y.
- (ii) Slightly continuous [10] (resp. slightly β-continuous [9]) if for each x ∈ X and each clopen set V of Y containing f(x), there exists a open(resp. β-open) set U such that f(U) ⊆ V.
- (iii) gsp-irresolute [4] or $g\beta$ -irresolute [12] if $f^{-1}(F)$ is $g\beta$ -closed in X for every $g\beta$ -closed set F of Y.
- (iv) $Pre-\beta$ -closed [7] if the image of each β -closed set in X is β -closed in Y.
- (v) $g\beta$ -homeomorphism if it is bijective, $g\beta$ -irresolute and its inverse f^{-1} is $g\beta$ -irresolute.
 - 2. Slightly generalized β -continuous functions

Definition 2.1. A function $f : X \to Y$ is called slightly generalized β -continuous (briefly sl.g β -continuous) if the inverse image of every clopen set in Y is $g\beta$ -open in X.

The proof of the following theorem is straightforward and hence omitted.

Theorem 2.1. For a function $f : X \to Y$, the following statements are equivalent:

- (i) f is slightly $g\beta$ -continuous.
- (ii) Inverse image of every clopen subset of Y is $g\beta$ -open in X.
- (iii) Inverse image of every clopen subset of Y is $q\beta$ -clopen in X.

Obviously, slight β -continuity implies $sl.g\beta$ -continuity and $g\beta$ -continuity implies $sl.g\beta$ -continuity. The following example shows that the implications are not reversible.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $Y = \{p, q\}, \sigma = \{\emptyset, Y, \{p\}, \{q\}\}$ be the topologies on X and Y respectively. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = f(c) = q and f(b) = p. Then f is slightly $g\beta$ -continuous but not slightly β -continuous.

Example 2.2. Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{c\}\}$ be the topologies on X respectively. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is slightly $g\beta$ -continuous but not $g\beta$ -continuous.

A space is called locally discrete if every open subset is closed [3]. Also, a space is called as semi-pre- $T_{1/2}$ [4] if every $g\beta$ -closed subset of it is β closed.

The next two theorems are immediate of the definitions of a locally discrete and semi-pre- $T_{1/2}$ space.

Theorem 2.2. If $f : X \to Y$ is slightly $g\beta$ -continuous and Y is locally discrete, then f is $g\beta$ -continuous.

Theorem 2.3. If $f : X \to Y$ is slightly $g\beta$ -continuous and X is semi-pre- $T_{1/2}$ space, then f is slightly β -continuous.

3. Basic properties of slightly generalized β -continuous functions

Definition 3.1. The intersection of all $g\beta$ -closed sets containing a set A is called $g\beta$ -closure of A and is denoted by $g\beta \operatorname{Cl}(A)$.

Remark 3.1. It is obvious that $g\beta \operatorname{Cl}(A)$ is $g\beta$ -closed and A is $g\beta$ -closed if and only if $g\beta \operatorname{Cl}(A) = A$.

Lemma 3.1. Let A be a $g\beta$ -open set and B be any set in X. If $A \cap B = \emptyset$, then $A \cap g\beta \operatorname{Cl}(B) = \emptyset$.

Proof. Suppose that $A \cap g\beta \operatorname{Cl}(B) \neq \emptyset$ and $x \in A \cap g\beta \operatorname{Cl}(B)$. Then $x \in A$ and $x \in g\beta \operatorname{Cl}(B)$ and from the definition of $g\beta \operatorname{Cl}(B), A \cap B \neq \emptyset$. (Same as Theorem 2.3 [2] by replacing β -open set by $g\beta$ -open). This is contrary to hypothesis.

For a subset A of space X, the kernel of A [8], denoted by $\ker(A)$, is the intersection of all open supersets of A.

Proposition 3.1. A subset A of X is $g\beta$ -closed if and only if $\beta \operatorname{Cl}(A) \subseteq \ker(A)$.

Proof. Since A is $g\beta$ -closed, $\beta \operatorname{Cl}(A) \subseteq U$ for any open set U with $A \subseteq U$ and hence $\beta \operatorname{Cl}(A) \subseteq \ker(A)$. Conversely, let U be any open set such that $A \subseteq U$. By hypothesis, $\beta \operatorname{Cl}(A) \subseteq \ker(A) \subseteq U$ and hence A is $g\beta$ -closed. \Box

Dontchev [4] has proved that the intersection of two $g\beta$ -closed sets is generally not a $g\beta$ -closed set and the union of two $g\beta$ -open sets is generally not a $g\beta$ -open set.

Proposition 3.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. If f is slightly $g\beta$ -continuous, then for each point $x \in X$ and each clopen set V containing f(x), there exists a $g\beta$ -open set U containing x such that $f(U) \subseteq V$.

Proof. Let $x \in X$ and V be a clopen set such that $f(x) \in V$. Since f is slightly $g\beta$ -continuous, $f^{-1}(V)$ is $g\beta$ -open set in X. If we put $U = f^{-1}(V)$, we have $x \in U$ and $f(U) \subseteq V$.

Let (X, τ) be a topological space. The quasi-topology on X is the topology having as base all clopen subsets of (X, τ) . The open (resp. closed) subsets of the quasi-topology are said to be quasi-open (resp. quasi-closed). A point x of a space X is said to be quasi closure of a subset A of X, denoted by $\operatorname{Cl}_q A$, if $A \cap U \neq \emptyset$ for every clopen set U containing x. A subset A is said to be quasi closed if and only if $A = \operatorname{Cl}_q A$ [11]. If the closure of A in topological space coincides with $g\beta \operatorname{Cl}(A)$, then it is denoted by (X, c).

Proposition 3.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (i) For each point $x \in X$ and each clopen set V containing f(x), there exists a $g\beta$ -open set U containing x such that $f(U) \subseteq V$.
- (ii) For every subset A of X, $f(q\beta \operatorname{Cl}(A)) \subseteq \operatorname{Cl}_{a}(f(A))$.
- (iii) The map $f: (X, c) \to (Y, \sigma)$ is slightly-continuous.

Proof. (i) \Rightarrow (ii). Let $y \in f(g\beta \operatorname{Cl}(A))$ and V be any clopen nbd of y. Then there exists a point $x \in X$ and a $g\beta$ -open set U containing x such that $f(x) = y, x \in g\beta \operatorname{Cl}(A)$ and $f(U) \subseteq V$. Since $x \in g\beta \operatorname{Cl}(A), U \cap A \neq \emptyset$ holds and hence $V \cap f(A) \neq \emptyset$. Therefore we have $y = f(x) \in \operatorname{Cl}_q(f(A))$.

(ii) \Rightarrow (i). Let $x \in X$ and let V be a clopen set with $f(x) \in V$. Let $A = f^{-1}(Y \setminus V)$, then $x \notin A$. Since $f(g\beta \operatorname{Cl}(A)) \subseteq \operatorname{Cl}_q(f(A)) \subseteq \operatorname{Cl}_q(Y \setminus V) = Y \setminus V$, it is shown that $g\beta \operatorname{Cl}(A) = A$. Then since $x \notin g\beta \operatorname{Cl}(A)$, there exists $g\beta$ -open set U containing x such that $U \cap A = \emptyset$ and hence $f(U) \subseteq f(X \setminus A) \subseteq V$.

(ii) \Rightarrow (iii). Suppose that (ii) holds and let V be any clopen subset of Y. Since $f(g\beta \operatorname{Cl}(f^{-1}(V))) \subseteq \operatorname{Cl}_q(f(f^{-1}(V))) \subseteq \operatorname{Cl}_q(V) = V$, it is shown that $\beta \operatorname{Cl}(f^{-1}(V)) = f^{-1}(V)$ and hence we have $f^{-1}(V)$ is $g\beta$ -closed in (X, τ) and hence $f^{-1}(V)$ is closed in (X, c).

(iii) \Rightarrow (ii). Conversely, let $y \in f(g\beta \operatorname{Cl}(A))$ and V be any clopen nbd of y. Then there exists a point $x \in X$ such that f(x) = y and $x \in g\beta \operatorname{Cl}(A)$. Since f is slightly continuous, $f^{-1}(V)$ is open in (X, c) and so $g\beta$ -open set containing x. Since $x \in g\beta \operatorname{Cl}(A)$, $f^{-1}(V) \cap A \neq \emptyset$ holds and hence $V \cap f(A) \neq \emptyset$. Therefore, we have $y = f(x) \in \operatorname{Cl}_q(f(A))$. \Box

Now we investigate some basic properties of slightly $g\beta$ -continuous functions concerning composition and restriction. The proofs of first three results are straightforward and hence omitted.

Theorem 3.1. If $f : X \to Y$ is $g\beta$ -irresolute and $g : Y \to Z$ is slightly $g\beta$ -continuous, then $g \circ f : X \to Z$ is slightly $g\beta$ -continuous.

Theorem 3.2. If $f : X \to Y$ is slightly $g\beta$ -continuous and $g : Y \to Z$ is continuous, then $g \circ f : X \to Z$ is slightly $g\beta$ -continuous.

Corollary 3.1. Let $\{X_i : i \in I\}$ be any family of topological spaces. If $f : X \to \prod X_i$ is $sl.g\beta$ -continuous mapping, then $P_i \circ f : X \to X_i$ is $sl.g\beta$ continuous for each $i \in I$, where P_i is the projection of $\prod X_i$ onto X_i .

Lemma 3.2. Let $f : X \to Y$ be bijective, continuous and pre- β -closed. Then for every $g\beta$ -open set A of X, f(A) is $g\beta$ -open in Y.

Theorem 3.3. Let $f : X \to Y$ and $g : Y \to Z$ be functions. If f is bijective, continuous and pre- β -closed and if $g \circ f : X \to Z$ is $sl.g\beta$ continuous, then g is $sl.g\beta$ -continuous.

Proof. Let V be a clopen subset of Z. Then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $g\beta$ -open in X. Then by above Lemma, $g^{-1}(V) = f(f^{-1}(g^{-1}(V)))$ is $g\beta$ -open in Y.

Combining Theorem 3.1 and 3.3, we obtain the following result.

Corollary 3.2. Let $f : X \to Y$ be a bijective $g\beta$ -homeomorphism and let $g : Y \to Z$ be a function. Then $gof : X \to Z$ is $sl.g\beta$ -continuous if and only if g is $sl.g\beta$ -continuous.

We know that for a $g\beta$ -closed set A and open set F, the intersection $A \cap F$ is $g\beta$ -closed set relative to F ([4, Theorem 3.17(ii)]). Thus we have the following result.

Theorem 3.4. If $f : X \to Y$ is slightly. $g\beta$ -continuous and A is open subset of X, then $f|_A : A \to Y$ is slightly $g\beta$ -continuous.

Proof. Let V be a clopen subset of Y. Then $(f|_A)^{-1}(V) = f^{-1}(V) \cap A$. Since $f^{-1}(V)$ is $g\beta$ -closed and A is open, $(f|_A)^{-1}(V)$ is $g\beta$ -closed in the relative topology of A.

4. Some application theorems

Definition 4.1. A space is called

- (i) gβ-T₂ (resp. ultra Hausdorff or UT2 [10]) if every two distinct points of X can be separated by disjoint gβ-open(resp. clopen) sets.
- (ii) GβO-compact [12] (resp. mildly compact [11]) if every gβ-open (resp. clopen) cover has a finite subcover.

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$ be the topology on X. Then (X, τ) is $g\beta$ - T_2 but, if we take $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$, then (X, τ) is not $g\beta$ - T_2 .

The following theorem gives a characterization of $g\beta$ - T_2 spaces and is an analogous to that in general topology, hence its proof is omitted.

Theorem 4.1. A space X is $g\beta$ - T_2 if and only if for every point x in X, $\{x\} = \cap\{F : F \text{ is } g\beta\text{-closed nbd of } x\}.$

Theorem 4.2. If $f : X \to Y$ is $sl.g\beta$ -continuous injection and Y is UT_2 , then X is $g\beta$ - T_2 .

Proof. Let $x_1, x_2 \in X$ and $x_1 \neq x_2$. Then since f is injective and Y is UT_2 , $f(x_1) \neq f(x_2)$ and there exist $V_1, V_2 \in CO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since f is $sl.g\beta$ -continuous, $x_i \in f^{-1}(V_i) \in G\beta O(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is $g\beta$ - T_2 . \Box

Theorem 4.3. If $f : X \to Y$ is $sl.g\beta$ -continuous surjection, and X is $G\beta O$ -compact, then Y is mildly compact.

Proof. Let $\{V_{\alpha} : V_{\alpha} \in CO(Y), \alpha \in I\}$ be a cover of Y. Since f is $sl.g\beta$ continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ be $g\beta$ -cover of X so there is a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Therefore, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ since f is surjective. Thus Y is mildly compact. \Box

Theorem 4.4. If $f : X \to Y$ is a $sl.g\beta$ -continuous injection and Y is UT_2 , then the graph G(f) of f is $g\beta$ -closed in the product space $X \times Y$.

Proof. Let $(x, y) \notin G(f)$, then $y \neq f(x)$. Since Y is UT_2 , there exist $V_1, V_2 \in$ CO(Y) such that $y \in V_1$ and $f(x) \in V_2$ such that $V_1 \cap V_2 = \emptyset$. Since f is slightly. $g\beta$ -continuous, by Proposition 3.2, there exists $U \in G\beta O(X, x)$ such that $f(U) \subseteq V_2$. Therefore, $f(U) \cap V_1 = \emptyset$ and hence $(U \times V_1) \cap G(f) =$ \varnothing . Since $U \in G\beta O(X, x)$ and $V_1 \in CO(Y, y)$, $(x, y) \in (U \times V_1) \in G\beta O(X \times Y_1)$ Y) ([12, Lemma 4.3]). Thus we obtain $(x, y) \notin g\beta \operatorname{Cl}(G(f))$ (Remark 3.1).

Theorem 4.5. If $f : X \to Y$ is a sl.g β -continuous injection and Y is UT_2 , then $A = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ is $g\beta$ -closed in the product space $X \times X$.

Proof. Let $(x_1, x_2) \notin A$, then $f(x_1) \neq f(x_2)$. Since Y is UT_2 , there exist $V_1, V_2 \in CO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since f is sl.g β continuous, $x_i \in f^{-1}(V_i) \in G\beta O(X)$ for i = 1, 2. Therefore, $(f^{-1}(V_1) \times f^{-1}(V_2)) \cap A = \emptyset$. Since $(x_1, x_2) \in (f^{-1}(V_1) \times f^{-1}(V_2)) \in$ $G\beta O(X \times X)$ ([12, Lemma 4.3]). We obtain $(x_1, x_2) \notin g\beta \operatorname{Cl}(A)$ (Remark 3.1).

We shall continue to work by generalizing the well known theorems in general topology.

Recall that a space X is submaximal if every dense set is open and it is said to be extremally disconnected if the closure of every open set is open.

Lemma 4.1. If X is submaximal and extremally disconnected, then every β -open set in X is open [5].

Remark 4.1. By Lemma 4.1, we can say that every $q\beta$ -open set in X is g-open as every β -open set is $g\beta$ -open and every open set is g-open.

Theorem 4.6. If $f, g : X \to Y$ is a $sl.g\beta$ -continuous, Y is UT_2 , X is submaximal and extremally disconnected, then $A = \{x \in X : f(x) = g(x)\}$ is $g\beta$ -closed.

Proof. Let $x \notin A$, then $f(x) \neq g(x)$. Since Y is UT_2 , there exist $V_1, V_2 \in$ CO(Y) such that $f(x) \in V_1$ and $g(x) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since f and g are sl. $g\beta$ -continuous, $f^{-1}(V_1)$ and $g^{-1}(V_2)$ are $g\beta$ -open and hence gopen since X is submaximal and extremally disconnected (Remark 4.1) with $x \in f^{-1}(V_1) \cap g^{-1}(V_2).$ Let $U = f^{-1}(V_1) \cap g^{-1}(V_2)$. Then U is a g-open set ([6, Theorem 2.4])

and $U \cap A = \emptyset$ and so $x \notin g\beta \operatorname{Cl}(A)$.

Definition 4.2. A subset of a space X is said to be $g\beta$ -dense if its $g\beta$ -closure equals X.

The next corollary is a generalization of the well known principle of extension of the identity.

Corollary 4.1. Let f, g be $sl-g\beta$ -continuous from a space X into a UT_2 -space Y. If f and g agree on $g\beta$ -dense set of X, then f = g everywhere.

Definition 4.3. Let A be a subset of X.A mapping $r : X \to A$ is called $sl.g\beta$ -continuous retraction if X is $sl.g\beta$ -continuous and the restriction $r|_A$ is the identity mapping on A.

Theorem 4.7. Let A be a subset of X and $r : X \to A$ be a $sl.g\beta$ -continuous retraction. If X is UT_2 , then A is $g\beta$ -closed set of X.

Proof. Suppose that A is not $g\beta$ -closed. Then there exists a point x in X such that $x \in g\beta \operatorname{Cl}(A)$ but $x \notin A$. It follows that $r(x) \neq x$ because r is $sl.g\beta$ -continuous retraction. Since X is UT_2 , there exist disjoint clopen sets U and V such that $x \in U$ and $r(x) \in V$. Since $r(x) \in A$, $r(x) \in V \cap A$ and $V \cap A$ is clopen set in A. Now let W be arbitrary $g\beta$ -nbhd of x. Then $W \cap U$ is a $g\beta$ -nbhd of x. Since $x \in g\beta \operatorname{Cl}(A), (W \cap U) \cap A \neq \emptyset$. Therefore, there exists a point y in $W \cap U \cap A$. Since $y \in A$, we have $r(y) = y \in U$ and hence $r(y) \notin V \cap A$. This implies $r(W) \notin V \cap A$ because $y \in W$. This is contrary to $sl.g\beta$ -continuity of r from Proposition 3.2. Hence A is $g\beta$ -closed. \Box

Definition 4.4. A space X is called $G\beta O$ -connected provided X is not the union of two disjoint, non-empty $g\beta$ -open sets.

Theorem 4.8. If $f : X \to Y$ is $sl.g\beta$ -continuous surjection, and X is $G\beta O$ -connected, then Y is connected.

Proof. Assume that Y is disconnected. Then there exist disjoint, non-empty clopen sets U and V for which $Y = U \cup V$. Therefore, $X = f^{-1}(U) \cup f^{-1}(V)$ is the union of two disjoint, $g\beta$ -open nonempty sets and hence is not $G\beta O$ -connected.

Slightly $g\beta$ -continuity turns out to be a very natural tool for relating $G\beta O$ connected spaces to connected spaces. Much of the theory developed by Tahiliani [13] on β -connected sets and slightly β -continuous functions can be modified and extended to $G\beta O$ -connected sets and slightly generalized β -continuous functions. In Theorem 4.8, we have seen that the $sl.g\beta$ continuous image of a $G\beta O$ -connected space is connected but that a $sl.g\beta$ continuous function is not necessarily a $G\beta O$ -connected function which is defined below.

Definition 4.5. A function $f : X \to Y$ is called $G\beta O$ -connected if the image of every $G\beta O$ -connected subset of X is a connected subset of Y.

The following example shows that a $sl.g\beta$ -continuous function is not necessarily $G\beta O$ -connected.

Example 4.1. Let X be a set containing three distinct elements p, q, r. For each $x \in X$, let $\sigma_x = \{U \subseteq X : U = \emptyset \text{ or } x \in U\}$ be the corresponding particular point topology. Let $f : (X, \sigma_p) \to (X, \sigma_q)$ be the identity map. Since (X, σ_q) is connected, f is slightly $g\beta$ -continuous. The set $\{p, r\}$ is $G\beta O$ -connected in (X, σ_p) as the $g\beta$ -open sets of (X, σ_x) are precisely the open sets. However $f(\{p, r\}) = \{p, r\}$ is not connected in (X, σ_q) . It follows that f is not $G\beta O$ -connected.

Next we show by the example that a $G\beta O$ -connected function need not be sl. $g\beta$ -continuous.

Example 4.2. Let $X = \{1/n : n \in N\} \cup \{0\}$ and let σ be the usual relative topology on X. Let $Y = \{0, 1\}$ and let τ be the discrete topology on Y. Define $f : (X, \sigma) \to (Y, \tau)$ as f(1/n) = 0 for every $n \in N$ and f(0) = 1. It can be seen that the $g\beta$ -open sets in (X, σ) are the precisely the open sets. Then follows that f is $G\beta O$ -connected but not slightly $g\beta$ -continuous.

Thus we established that slight. $g\beta$ -continuity and $G\beta O$ -connectedness are independent.

Definition 4.6. A space X is said to be $G\beta O$ -connected between the subsets A and B of X provided there is no $g\beta$ -clopen set F for which $A \subseteq F$ and $F \cap B = \emptyset$.

Definition 4.7. A function $f: X \to Y$ is said to be set $G\beta O$ -connected if whenever X is $G\beta O$ -connected between subsets A and B of X, then f(X)is connected between f(A) and f(B) with respect to the relative topology on f(X).

Theorem 4.9. A function $f : X \to Y$ is set $G\beta O$ -connected if and only if $f^{-1}(F)$ is $g\beta$ -clopen in X for every clopen set F of f(X) (with respect to the relative topology on f(X)).

Proof. The proof is obtained by following similar arguments as in ([13, Theorem 3.4]).

Obviously, every $sl.g\beta$ -continuous surjective function is set $G\beta O$ -connected. On the other hand, it can be easily shown that every set $G\beta O$ -connected function is $sl.g\beta$ -continuous. Thus we have seen that in the class of surjective functions, $sl.g\beta$ -continuity and set $G\beta O$ -connectedness coincide. The following example shows that in general $sl.g\beta$ -continuity is not equivalent to set $G\beta O$ -connectedness.

Example 4.3. Let $X = \{0, 1\}$ and $\tau = \{\emptyset, X, \{1\}\}$. Let $Y = \{a, b, c\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined as f(0) = a and f(1) = b. Then f is slightly $g\beta$ -continuous by Definition 2.1 but not set $G\beta O$ -connected as $\{a\}$ is clopen in the relative topology on f(X) but $f^{-1}\{a\} = \{0\}$ which is not $g\beta$ -open in (X, τ) .

Acknowledgement. We would like to express our sincere gratitude to the Referee for valuable comments and suggestions that improved the paper.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assint Univ., 12 (1983), 77–90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashin, β-closure and β-interior, Rep. J. of. Fac. of. Edu. Ain. Shams. Univ., 10 (1986), 235–245.
- [3] J. Cao, M. Ganster and I. Reilly, On sg-closed sets and ga-closed sets, Mem. Fac. Sci. Kochi. Univ. Math., 20 (1999), 1–5.
- [4] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 16 (1995), 35–48.
- [5] M. Ganster and D. Andrijevic, On some questions concerning semi-pre open sets, J. Inst. Math. Compu. Sci. Math., 1 (1988), 65–75.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo., 19 (2) (1970), 89–96.
- [7] R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27 (1990), 285–296.
- [8] H. Maki, The special issue in commemortation of Prof. Jazusada IKEDA's retirement, 1 October 1986, 139–146.
- [9] T. Noiri, Slightly β -continuous functions, Int. J. Math. Math. Sci., 28 (8) (2001), 469–478.
- [10] A. R. Singal and R. C. Jain, Slightly continuous mappings, J. Indian. Math. Soc., 64 (1997), 195–203.
- R. Staum, The algebra of a bounded continuous functions into a nonarchimedian field, Pacific. J. Math., 50 (1974), 169–185.
- [12] S. Tahiliani, More on gβ-closed sets and β-gβ-continuous functions, Bulletin of Allahabad Mathematical Society, 23 (2) (2008), 273–283.
- [13] S. Tahiliani, More on slightly β-continuous functions, University of Bacau, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, Vol. 19 (2009), No. 1, 231–238.

(Received: December 4, 2011) (Revised: March 24, 2012) Department of Mathematics Delhi University Delhi 110007 India E- mail: scarora@maths.du.ac.in sanjaytahiliani@yahoo.com