SLIGHTLY GENERALIZED *β***-CONTINUOUS FUNCTIONS**

S. C. ARORA AND SANJAY TAHILIANI

Abstract. A new class of functions, called slightly generalized *β*-continuous functions is introduced. Basic properties of slightly generalized *β*-continuous functions are studied. The class of slightly generalized *β*continuous functions properly includes the class of slightly *β*-continuous functions and generalized β -continuous functions. Also, by using slightly generalized *β*-continuous functions, some properties of domain/range of functions are characterized.

1. Introduction and preliminaries

Slightly *β*-continuous functions were introduced by Noiri [9] in 2000 and next have been developed by Tahiliani [13]. Dontchev [4] introduced the notion of generalized *β*-continuous functions and investigated some of their basic properties and further Tahiliani [12] introduced the notion of *β*-generalized β -continuous functions. In this paper, we defined slightly generalized *β*-continuous functions and show that the class of slightly generalized *β*-continuous functions properly includes the class of slightly *β*-continuous functions and generalized *β*-continuous functions. Second we obtain some new results on *gβ*-closed sets and investigate basic properties of slightly generalized *β*-continuous functions concerning composition and restriction.

Finally, we study the behaviour of some separation axioms, related properties and *GβO*-compactness, *GβO*-connectedness under slightly generalized *β*-continuous functions. Relationship between generalized *β*-continuous functions and *GβO*-connected spaces are investigated. In particularly, it is shown that slightly generalized *β*-continuous image of *GβO*-connected spaces is connected.

Throughout this paper, (X, τ) and (Y, σ) (or *X* and *Y*) represents a non empty topological space on which no separation axioms are assumed, unless

²⁰¹⁰ *Mathematics Subject Classification.* 54C08.

Key words and phrases. Slightly continuous, slightly *gβ*-continuous, *gβ*-continuous, *gβ*closed set, *GβO*-connectedness.

otherwise mentioned. The closure and interior of $A \subseteq X$ will be denoted by $Cl(A)$ and $Int(A)$ respectively.

Definition 1.1.

- (i) *A subset A of a space X is called* β -open [1] *if* $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))$ *. The complement of β-open set is β-closed* [1]*. The intersection of all β-closed sets containing A is called β-closure of A and is denoted by β* Cl(*A*)*. Also A is said to be β-clopen* [9] *if it is β-open and βclosed. The largest β-open set contained in A (denoted by β* Int(*A*)*) is called* β *-interior* [2] *of* A .
- (ii) *A subset A of a space X is said to be generalized closed* [6] *(briefly g*-closed) if $Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X .
- (iii) *A subset A of a space X is said to be generalized semi preclosed* [4] *(briefly gsp-closed) or gβ-closed* [4] *if* β Cl(*A*) $\subseteq U$ *, whenever* $A \subseteq U$ *and U is open in X.*
- (iv) *Generalized semi-preopen* [4] *(briefly qβ-open) if* $F \subseteq \beta$ Int(*A*) *when* e^{i} *F* \subseteq *A and F is closed in X. Also it is a complement of* $q\beta$ *closed set. If A is both gβ-closed and gβ-open, then it is said to be gβ-clopen.*

In this note, the family of all open (resp. *g*-open, g β -open, clopen) sets of a space *X* is denoted by $O(X)$ (resp. $GO(X)$, $G\beta O(X)$, $CO(X)$) and the family of $q\beta$ -open(resp. clopen) sets of X containing x is denoted by $G\beta O(X, x)$ (resp. $CO(X, x)$).

Definition 1.2. *A function* $f: X \rightarrow Y$ *is called:*

- (i) *gsp-continuous* [4] *or gβ-continuous (resp. gsp-irresolute* [4] *or gβirresolute) if* $f^{-1}(F)$ *is* $g\beta$ -closed *in X for every closed (resp.* $g\beta$ *closed) set* F *of* Y *.*
- (ii) *Slightly continuous* [10] *(resp. slightly β-continuous* [9]*) if for each* $x \in X$ *and each clopen set V of Y containing* $f(x)$ *, there exists a open(resp.* β -*open) set U such that* $f(U) \subseteq V$.
- (iii) *gsp*-irresolute [4] *or gβ*-irresolute [12] if $f^{-1}(F)$ is g*β*-closed in *X for every* $q\beta$ -closed set F of Y .
- (iv) *Pre-β-closed* [7] *if the image of each β-closed set in X is β-closed in Y .*
- (v) *gβ-homeomorphism if it is bijective, gβ-irresolute and its inverse f −*1 *is gβ-irresolute.*
	- 2. Slightly generalized *β*-continuous functions

Definition 2.1. *A function* $f: X \to Y$ *is called slightly generalized* β *-continuous (briefly sl.gβ-continuous) if the inverse image of every clopen set in Y is* $q\beta$ -open in *X*.

The proof of the following theorem is straightforward and hence omitted.

Theorem 2.1. For a function $f: X \rightarrow Y$, the following statements are *equivalent*:

- (i) *f is slightly gβ-continuous.*
- (ii) *Inverse image of every clopen subset of* Y *is gβ*-open *in* X *.*
- (iii) *Inverse image of every clopen subset of* Y *is qβ-clopen in* X *.*

Obviously, slight *β*-continuity implies *sl.gβ*-continuity and *gβ*-continuity implies $sl.g\beta$ -continuity. The following example shows that the implications are not reversible.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}\$ and $Y = \{p, q\}, \sigma =$ $\{\emptyset, Y, \{p\}, \{q\}\}\$ be the topologies on *X* and *Y* respectively. Let $f : (X, \tau) \to$ (Y, σ) defined by $f(a) = f(c) = q$ and $f(b) = p$. Then *f* is slightly $g\beta$ continuous but not slightly *β*-continuous.

Example 2.2. Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$ and $\sigma = {\emptyset, X, \{c\}}$ be the topologies on *X* respectively. Let $f : (X, \tau) \to$ (X, σ) be the identity function. Then *f* is slightly *gβ*-continuous but not *gβ*-continuous.

A space is called locally discrete if every open subset is closed [3]. Also, a space is called as semi-pre- $T_{1/2}$ [4] if every $g\beta$ -closed subset of it is β closed.

The next two theorems are immediate of the definitions of a locally discrete and semi-pre- $T_{1/2}$ space.

Theorem 2.2. *If* $f : X \to Y$ *is slightly qβ*-continuous and *Y is locally discrete, then f is gβ-continuous.*

Theorem 2.3. If $f: X \to Y$ is slightly q β -continuous and X is semi-pre- $T_{1/2}$ *space, then f is slightly β-continuous.*

3. Basic properties of slightly generalized *β*-continuous **FUNCTIONS**

Definition 3.1. *The intersection of all gβ-closed sets containing a set A is called* $q\beta$ -*closure* of *A and is denoted by* $q\beta$ Cl(*A*)*.*

Remark 3.1. It is obvious that $g\beta$ Cl(*A*) is $g\beta$ -closed and *A* is $g\beta$ -closed if and only if $g\beta$ Cl(*A*) = *A*.

Lemma 3.1. *Let A be a qβ*-*open set and B be any set in X. If* $A \cap B = \emptyset$ *, then* $A \cap g\beta$ Cl(B) = \varnothing *.*

Proof. Suppose that $A \cap g\beta$ Cl(B) $\neq \emptyset$ and $x \in A \cap g\beta$ Cl(B). Then $x \in A$ and $x \in g\beta$ Cl(*B*) and from the definition of $g\beta$ Cl(*B*)*, A* \cap *B* $\neq \emptyset$. (Same as Theorem 2.3 [2] by replacing *β*-open set by g*β*-open). This is contrary to hypothesis.

For a subset *A* of space *X*, the kernel of *A* [8], denoted by $\text{ker}(A)$, is the intersection of all open supersets of *A*.

Proposition 3.1. *A subset A of X is* $g\beta$ -closed *if and only if* β Cl(*A*) \subseteq $ker(A)$.

Proof. Since *A* is *gβ*-closed, β Cl(*A*) $\subseteq U$ for any open set *U* with $A \subseteq U$ and hence β Cl(*A*) \subseteq ker(*A*). Conversely, let *U* be any open set such that $A \subseteq U$. By hypothesis, $\beta \text{Cl}(A) \subseteq \text{ker}(A) \subseteq U$ and hence *A* is $g\beta$ -closed. \square

Dontchev [4] has proved that the intersection of two $g\beta$ -closed sets is generally not a $q\beta$ -closed set and the union of two $q\beta$ -open sets is generally not a *gβ*-open set.

Proposition 3.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. If f is slightly $g\beta$ *-continuous, then for each point* $x \in X$ *and each clopen set V containing f*(*x*)*, there exists a <i>q* β -open set *U* containing *x* such that $f(U) \subseteq V$.

Proof. Let $x \in X$ and V be a clopen set such that $f(x) \in V$. Since f is slightly *gβ*-continuous, $f^{-1}(V)$ is *gβ*-open set in *X*. If we put $U = f^{-1}(V)$, we have $x \in U$ and $f(U) \subseteq V$.

Let (X, τ) be a topological space. The quasi-topology on X is the topology having as base all clopen subsets of (X, τ) . The open (resp. closed) subsets of the quasi-topology are said to be quasi-open (resp. quasi-closed). A point *x* of a space *X* is said to be quasi closure of a subset *A* of *X*, denoted by $Cl_q A$, if $A \cap U \neq \emptyset$ for every clopen set *U* containing *x*. A subset *A* is said to be quasi closed if and only if $A = \text{Cl}_q A$ [11]. If the closure of *A* in topological space coincides with $g\beta$ Cl(*A*), then it is denoted by (X, c) .

Proposition 3.3. *Let* $f : (X, \tau) \to (Y, \sigma)$ *be a function. Then the following are equivalent*:

- (i) *For each point* $x \in X$ *and each clopen set V containing* $f(x)$ *, there exists a gβ*-*open set U containing x such that* $f(U) \subseteq V$.
- (ii) *For every subset A of* X , $f(g\beta \text{Cl}(A)) \subseteq \text{Cl}_q(f(A))$ *.*
- (iii) *The map* $f : (X, c) \to (Y, \sigma)$ *is slightly-continuous.*

Proof. (i) \Rightarrow (ii). Let $y \in f(g \beta \text{Cl}(A))$ and *V* be any clopen nbd of *y*. Then there exists a point $x \in X$ and a *gβ*-open set *U* containing *x* such that $f(x) = y, x \in g\beta \text{Cl}(A)$ and $f(U) \subseteq V$. Since $x \in g\beta \text{Cl}(A), U \cap A \neq \emptyset$ holds and hence $V \cap f(A) \neq \emptyset$. Therefore we have $y = f(x) \in \mathrm{Cl}_q(f(A))$.

(ii)*⇒***(i).** Let *x ∈ X* and let *V* be a clopen set with *f*(*x*) *∈ V* . Let $A = f^{-1}(Y \setminus V)$, then $x \notin A$. Since $f(g\beta \text{Cl}(A)) \subseteq \text{Cl}_q(f(A)) \subseteq \text{Cl}_q(Y \setminus V)$ V = *Y \ V*, it is shown that $q\beta$ Cl(*A*) = *A*. Then since $x \notin q\beta$ Cl(*A*), there exists *gβ*-open set *U* containing *x* such that $U \cap A = \emptyset$ and hence *f*(*U*) \subseteq *f*(*X* \setminus *A*) \subseteq *V*.

(ii)*⇒***(iii).** Suppose that (ii) holds and let *V* be any clopen subset of *Y* . Since $f(g\beta \text{Cl}(f^{-1}(V))) \subseteq \text{Cl}_q(f(f^{-1}(V))) \subseteq \text{Cl}_q(V) = V$, it is shown that β Cl($f^{-1}(V)$) = $f^{-1}(V)$ and hence we have $f^{-1}(V)$ is g β -closed in (X, τ) and hence $f^{-1}(V)$ is closed in (X, c) .

(iii) \Rightarrow (ii). Conversely, let *y* ∈ *f*(*gβ* Cl(*A*)) and *V* be any clopen nbd of *y*. Then there exists a point $x \in X$ such that $f(x) = y$ and $x \in g\beta \text{Cl}(A)$. Since *f* is slightly continuous, $f^{-1}(V)$ is open in (X, c) and so $g\beta$ -open set containing *x*. Since $x \in g\beta \text{Cl}(A)$, $f^{-1}(V) \cap A \neq \emptyset$ holds and hence *V* ∩ *f*(*A*) $\neq \emptyset$. Therefore, we have $y = f(x) \in \mathrm{Cl}_q(f(A))$.

Now we investigate some basic properties of slightly *gβ*-continuous functions concerning composition and restriction. The proofs of first three results are straightforward and hence omitted.

Theorem 3.1. If $f: X \to Y$ is g β -irresolute and $g: Y \to Z$ is slightly $g\beta$ -continuous, then $g \circ f : X \to Z$ is slightly $g\beta$ -continuous.

Theorem 3.2. If $f: X \to Y$ is slightly $g\beta$ -continuous and $g: Y \to Z$ is *continuous, then* $g \circ f : X \to Z$ *is slightly* $g\beta$ *-continuous.*

Corollary 3.1. *Let* $\{X_i : i \in I\}$ *be any family of topological spaces.* If $f: X \to \prod X_i$ *is sl.gβ*-continuous mapping, then $P_i \circ f: X \to X_i$ *is sl.gβ continuous for each* $i \in I$ *, where* P_i *is the projection of* $\prod X_i$ *onto* X_i *.*

Lemma 3.2. *Let* $f : X \rightarrow Y$ *be bijective, continuous and pre-* β *-closed. Then for every* $q\beta$ -open set *A* of *X*, $f(A)$ *is* $q\beta$ -open *in Y*.

Theorem 3.3. Let $f: X \to Y$ and $g: Y \to Z$ be functions. If f is bijective, *continuous and pre-* β *-closed and if* $g \circ f : X \to Z$ *is sl.g* β *continuous, then g is sl.gβ-continuous.*

Proof. Let *V* be a clopen subset of *Z*. Then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $g\beta$ -open in *X*. Then by above Lemma, $g^{-1}(V) = f(f^{-1}(g^{-1}(V)))$ is $g\beta$ -open in Y .

Combining Theorem 3.1 and 3.3, we obtain the following result.

Corollary 3.2. Let $f: X \to Y$ be a bijective g β -homeomorphism and let $g: Y \to Z$ *be a function. Then* $g \circ f: X \to Z$ *is sl.g* β *-continuous if and only if g is sl.gβ-continuous.*

We know that for a $q\beta$ -closed set *A* and open set *F*, the intersection $A \cap F$ is g β -closed set relative to *F* ([4, Theorem 3.17(ii)]). Thus we have the following result.

Theorem 3.4. *If* $f: X \to Y$ *is slightly.gβ-continuous and A is open subset of X, then* $f|_A: A \to Y$ *is slightly qβ-continuous.*

Proof. Let *V* be a clopen subset of *Y*. Then $(f|_A)^{-1}(V) = f^{-1}(V) \cap A$. Since $f^{-1}(V)$ is g β -closed and *A* is open, $(f|_A)^{-1}(V)$ is g β -closed in the relative topology of *A*.

4. Some application theorems

Definition 4.1. *A space is called*

- (i) *gβ-T*² *(resp. ultra Hausdorff or UT2* [10]*) if every two distinct points of X can be separated by disjoint gβ-open(resp. clopen) sets.*
- (ii) *GβO-compact* [12] *(resp. mildly compact* [11]*) if every gβ-open (resp. clopen) cover has a finite subcover.*

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}\$ be the topology on *X*. Then (X, τ) is *g* β -*T*₂ but, if we take *X* = {*a, b, c*} and τ = { \emptyset , *X,* {*a*}, {*a, b*}}, then (*X,* τ) is not $q\beta$ - T_2 .

The following theorem gives a characterization of $q\beta$ - T_2 spaces and is an analogous to that in general topology, hence its proof is omitted.

Theorem 4.1. *A space* X *is* $g\beta$ - T_2 *if and only if for every point* x *in* X *, {x}* = *∩{F* : *F is gβ-closed nbd of x}.*

Theorem 4.2. *If* $f: X \to Y$ *is* $sl.g\beta$ *-continuous injection and* Y *is* UT_2 *, then* X *is* $g\beta$ *-T*₂*.*

Proof. Let $x_1, x_2 \in X$ and $x_1 \neq x_2$. Then since f is injective and Y is UT_2 , $f(x_1) \neq f(x_2)$ and there exist $V_1, V_2 \in CO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since *f* is $sl.g\beta$ -continuous, $x_i \in f^{-1}(V_i) \in$ *GβO*(*X*) for $i = 1, 2$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus *X* is $g\beta$ -*T*₂. □

Theorem 4.3. If $f: X \rightarrow Y$ is $sl.q\beta$ -continuous surjection, and X is *GβO-compact, then Y is mildly compact.*

Proof. Let $\{V_a : V_\alpha \in CO(Y), \alpha \in I\}$ be a cover of *Y*. Since *f* is $sl.g\beta$ continuous, $\{f^{-1}(V_\alpha): \alpha \in I\}$ be *gβ*-cover of *X* so there is a finite subset *I*⁰ of *I* such that $X = \bigcup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \}$. Therefore, $Y = \bigcup \{ V_\alpha : \alpha \in I_0 \}$ since *f* is surjective. Thus *Y* is mildly compact.

Theorem 4.4. *If* $f: X \to Y$ *is a sl.gβ*-continuous injection and *Y is* UT_2 *, then the graph* $G(f)$ *of* f *is* $g\beta$ -*closed in the product space* $X \times Y$ *.*

Proof. Let $(x, y) \notin G(f)$, then $y \neq f(x)$. Since *Y* is UT_2 , there exist $V_1, V_2 \in$ $CO(Y)$ such that $y \in V_1$ and $f(x) \in V_2$ such that $V_1 \cap V_2 = \emptyset$. Since f is slightly. *gβ*-continuous, by Proposition 3.2, there exists $U \in G\beta O(X, x)$ such that $f(U) \subseteq V_2$. Therefore, $f(U) \cap V_1 = \emptyset$ and hence $(U \times V_1) \cap G(f) =$ \emptyset . Since $U \in G\beta O(X, x)$ and $V_1 \in CO(Y, y)$, $(x, y) \in (U \times V_1) \in G\beta O(X \times Y_1)$ *Y*) ([12, Lemma 4.3]). Thus we obtain $(x, y) \notin g\beta$ Cl($G(f)$) (Remark 3.1).

Theorem 4.5. *If* $f: X \to Y$ *is a sl.gβ*-continuous injection and *Y is* UT_2 *, then* $A = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ *is gβ*-closed *in the product space* $X \times X$ *.*

Proof. Let $(x_1, x_2) \notin A$, then $f(x_1) \neq f(x_2)$. Since *Y* is UT_2 , there exist *V*₁*, V*₂ \in *CO*(*Y*) such that *f*(*x*₁) \in *V*₁ and *f*(*x*₂) \in *V*₂ and *V*₁ \cap *V*₂ = ∅. Since *f* is sl.*g* β continuous, $x_i \in f^{-1}(V_i) \in G\beta O(X)$ for $i = 1, 2$. Therefore, $(f^{-1}(V_1) \times f^{-1}(V_2)) \cap A = \emptyset$. Since $(x_1, x_2) \in (f^{-1}(V_1) \times f^{-1}(V_2)) \in$ $G\beta O(X \times X)$ ([12, Lemma 4.3]). We obtain $(x_1, x_2) \notin g\beta Cl(A)$ (Remark 3.1).

We shall continue to work by generalizing the well known theorems in general topology.

Recall that a space *X* is submaximal if every dense set is open and it is said to be extremally disconnected if the closure of every open set is open.

Lemma 4.1. *If X is submaximal and extremally disconnected, then every β-open set in X is open* [5]*.*

Remark 4.1. By Lemma 4.1, we can say that every $q\beta$ -open set in *X* is *g*-open as every *β*-open set is *gβ*-open and every open set is *g*-open.

Theorem 4.6. *If* $f, g: X \to Y$ *is a sl.gβ*-continuous, *Y is* UT_2 , *X is submaximal and extremally disconnected, then* $A = \{x \in X : f(x) = g(x)\}$ *is gβ-closed.*

Proof. Let $x \notin A$, then $f(x) \neq g(x)$. Since *Y* is UT_2 , there exist $V_1, V_2 \in$ $CO(Y)$ such that $f(x) \in V_1$ and $g(x) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since *f* and *g* are sl.*g* β -continuous, $f^{-1}(V_1)$ and $g^{-1}(V_2)$ are $g\beta$ -open and hence *g*open since X is submaximal and extremally disconnected (Remark 4.1) with *x* ∈ $f^{-1}(V_1) ∩ g^{-1}(V_2)$.

Let $U = f^{-1}(V_1) \cap g^{-1}(V_2)$. Then *U* is a *g*-open set ([6, Theorem 2.4]) and $U \cap A = \emptyset$ and so $x \notin g\beta$ Cl(*A*).

Definition 4.2. *A subset of a space X is said to be gβ-dense if its gβ-closure equals X.*

The next corollary is a generalization of the well known principle of extension of the identity.

Corollary 4.1. Let f, g be $sl-q\beta$ -continuous from a space X into a UT_2 *space Y*. If *f* and *g* agree on *gβ*-dense set of *X*, then $f = g$ everywhere.

Definition 4.3. Let A be a subset of X.A mapping $r: X \rightarrow A$ is called s *l.gβ*-continuous retraction if X is s *l.gβ*-continuous and the restriction $r \mid A$ *is the identity mapping on A.*

Theorem 4.7. Let A be a subset of X and $r : X \to A$ be a sl.gβ-continuous *retraction. If* X *is* UT_2 *, then* A *is* $g\beta$ -closed set of X *.*

Proof. Suppose that *A* is not *gβ*-closed. Then there exists a point *x* in *X* such that $x \in g\beta$ Cl(*A*) but $x \notin A$. It follows that $r(x) \neq x$ because *r* is $sl.g\beta$ -continuous retraction. Since *X* is UT_2 , there exist disjoint clopen sets *U* and *V* such that $x \in U$ and $r(x) \in V$. Since $r(x) \in A$, $r(x) \in V \cap A$ and $V \cap A$ is clopen set in *A*. Now let *W* be arbitrary *qβ*-nbhd of *x*. Then $W \cap U$ is a *q* β -nbhd of *x*. Since $x \in q\beta$ Cl(*A*)*,*($W \cap U$) $\cap A \neq \emptyset$. Therefore, there exists a point *y* in $W \cap U \cap A$. Since $y \in A$, we have $r(y) = y \in U$ and hence *r*(*y*) $\notin V$ ∩ *A*. This implies $r(W) \not\subset V$ ∩ *A* because $y \in W$. This is contrary to *sl.gβ*-continuity of *r* from Proposition 3.2. Hence *A* is *gβ*-closed.

Definition 4.4. *A space X is called GβO-connected provided X is not the union of two disjoint, non-empty gβ-open sets.*

Theorem 4.8. *If* $f : X \rightarrow Y$ *is* $sl.q\beta$ -continuous surjection, and X is *GβO-connected, then Y is connected.*

Proof. Assume that *Y* is disconnected. Then there exist disjoint, non-empty clopen sets *U* and *V* for which $Y = U \cup V$. Therefore, $X = f^{-1}(U) \cup f^{-1}(V)$ is the union of two disjoint, *gβ*-open nonempty sets and hence is not *GβO*connected.

Slightly *gβ*-continuity turns out to be a very natural tool for relating *GβO*connected spaces to connected spaces. Much of the theory developed by Tahiliani [13] on *β*-connected sets and slightly *β*-continuous functions can be modified and extended to *GβO*-connected sets and slightly generalized *β*-continuous functions. In Theorem 4.8, we have seen that the *sl.gβ*continuous image of a *GβO*-connected space is connected but that a *sl.gβ*continuous function is not necessarily a *GβO*-connected function which is defined below.

Definition 4.5. *A function* $f : X \rightarrow Y$ *is called GβO-connected if the image of every* $G\beta O$ *-connected subset of* X *is a connected subset of* Y *.*

The following example shows that a $sl.g\beta$ -continuous function is not necessarily *GβO*-connected.

Example 4.1. Let *X* be a set containing three distinct elements *p, q, r*. For each $x \in X$, let $\sigma_x = \{U \subset X : U = \emptyset \text{ or } x \in U\}$ be the corresponding particular point topology. Let $f : (X, \sigma_p) \to (X, \sigma_q)$ be the identity map. Since (X, σ_q) is connected, *f* is slightly *gβ*-continuous. The set $\{p, r\}$ is *GβO*-connected in $(X, σ_p)$ as the *gβ*-open sets of $(X, σ_x)$ are precisely the open sets. However $f(\lbrace p, r \rbrace) = \lbrace p, r \rbrace$ is not connected in (X, σ_q) . It follows that *f* is not *GβO*-connected.

Next we show by the example that a *GβO*-connected function need not be sl.*gβ*-continuous.

Example 4.2. Let $X = \{1/n : n \in N\} \cup \{0\}$ and let σ be the usual relative topology on *X*. Let $Y = \{0, 1\}$ and let τ be the discrete topology on *Y*. Define $f: (X, \sigma) \to (Y, \tau)$ as $f(1/n) = 0$ for every $n \in N$ and $f(0) = 1$. It can be seen that the $g\beta$ -open sets in (X, σ) are the precisely the open sets. Then follows that *f* is *GβO*-connected but not slightly *gβ*-continuous.

Thus we established that slight.*gβ*-continuity and *GβO*-connectedness are independent.

Definition 4.6. *A space X is said to be GβO-connected between the subsets A* and *B* of *X* provided there is no $g\beta$ -clopen set *F* for which $A \subseteq F$ and $F \cap B = \varnothing$.

Definition 4.7. *A function* $f: X \to Y$ *is said to be set* $G\beta O$ *-connected if whenever X is* $G\beta O$ *-connected between subsets A* and *B* of *X, then* $f(X)$ *is connected between f*(*A*) *and f*(*B*) *with respect to the relative topology on f*(*X*)*.*

Theorem 4.9. *A function* $f: X \to Y$ *is set* $G\beta O$ *-connected if and only if* $f^{-1}(F)$ *is gβ*-clopen *in X for every clopen set F of* $f(X)$ (*with respect to the relative topology on* $f(X)$ *)*.

Proof. The proof is obtained by following similar arguments as in ([13, Theorem 3.4]).

Obviously, every *sl.gβ*-continuous surjective function is set *GβO*-connected. On the other hand, it can be easily shown that every set *GβO*-connected function is $sl.q\beta$ -continuous. Thus we have seen that in the class of surjective functions, *sl.gβ*-continuity and set *GβO*-connectedness coincide. The following example shows that in general sl.g*β*-continuity is not equivalent to set *GβO*-connectedness.

Example 4.3. Let $X = \{0, 1\}$ and $\tau = \{\emptyset, X, \{1\}\}\$. Let $Y = \{a, b, c\}$ and $\sigma = {\emptyset, Y, \{a\}, \{b\}, \{a, b\}}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined as $f(0) = a$ and $f(1) = b$. Then *f* is slightly *gβ*-continuous by Definition 2.1 but not set *GβO*-connected as $\{a\}$ is clopen in the relative topology on $f(X)$ but $f^{-1}{a} = {0}$ which is not $g\beta$ -open in (X, τ) .

Acknowledgement. We would like to express our sincere gratitude to the Referee for valuable comments and suggestions that improved the paper.

REFERENCES

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, *β-open sets and β-continuous mappings,* Bull. Fac. Sci. Assint Univ., 12 (1983), 77–90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashin, *β-closure and β-interior*, Rep. J. of. Fac. of. Edu. Ain. Shams. Univ., 10 (1986), 235–245.
- [3] J. Cao, M. Ganster and I. Reilly, *On sg-closed sets and ga-closed sets*, Mem. Fac. Sci. Kochi. Univ. Math., 20 (1999), 1–5.
- [4] J. Dontchev, *On generalizing semi-preopen sets*, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 16 (1995), 35–48.
- [5] M. Ganster and D. Andrijevic, *On some questions concerning semi-pre open sets*, J. Inst. Math. Compu. Sci. Math., 1 (1988), 65–75.
- [6] N. Levine, *Generalized closed sets in topology*, Rend. Circ. Mat. Palermo., 19 (2) (1970), 89–96.
- [7] R. A. Mahmoud and M. E. Abd El-Monsef, *β-irresolute and β-topological invariant*, Proc. Pakistan Acad. Sci., 27 (1990), 285–296.
- [8] H. Maki, *The special issue in commemortation of Prof. Jazusada IKEDA's retirement*, 1 October 1986, 139–146.
- [9] T. Noiri, *Slightly β-continuous functions*, Int. J. Math. Math. Sci., 28 (8) (2001), 469–478.
- [10] A. R. Singal and R. C. Jain, *Slightly continuous mappings*, J. Indian. Math. Soc., 64 (1997), 195–203.
- [11] R. Staum, *The algebra of a bounded continuous functions into a nonarchimedian field*, Pacific. J. Math., 50 (1974), 169–185.
- [12] S. Tahiliani, *More on gβ-closed sets and β-gβ-continuous functions*, Bulletin of Allahabad Mathematical Society, 23 (2) (2008), 273–283.
- [13] S. Tahiliani, *More on slightly β-continuous functions*, University of Bacau, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, Vol. 19 (2009), No. 1, 231–238.

(Received: December 4, 2011) Department of Mathematics (Revised: March 24, 2012) Delhi University

Delhi 110007 India E- mail: scarora@maths.du.ac.in sanjaytahiliani@yahoo.com