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SLIGHTLY GENERALIZED β-CONTINUOUS FUNCTIONS

S. C. ARORA AND SANJAY TAHILIANI

Abstract. A new class of functions, called slightly generalized β-conti-
nuous functions is introduced. Basic properties of slightly generalized
β-continuous functions are studied. The class of slightly generalized β-
continuous functions properly includes the class of slightly β-continuous
functions and generalized β-continuous functions. Also, by using slightly
generalized β-continuous functions, some properties of domain/range of
functions are characterized.

1. Introduction and preliminaries

Slightly β-continuous functions were introduced by Noiri [9] in 2000 and
next have been developed by Tahiliani [13]. Dontchev [4] introduced the
notion of generalized β-continuous functions and investigated some of their
basic properties and further Tahiliani [12] introduced the notion of β-gene-
ralized β-continuous functions. In this paper, we defined slightly general-
ized β-continuous functions and show that the class of slightly generalized
β-continuous functions properly includes the class of slightly β-continuous
functions and generalized β-continuous functions. Second we obtain some
new results on gβ-closed sets and investigate basic properties of slightly
generalized β-continuous functions concerning composition and restriction.

Finally, we study the behaviour of some separation axioms, related prop-
erties and GβO-compactness, GβO-connectedness under slightly generalized
β-continuous functions. Relationship between generalized β-continuous func-
tions and GβO-connected spaces are investigated. In particularly, it is shown
that slightly generalized β-continuous image of GβO-connected spaces is
connected.

Throughout this paper, (X, τ) and (Y, σ) (or X and Y ) represents a non
empty topological space on which no separation axioms are assumed, unless
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otherwise mentioned.The closure and interior of A ⊆ X will be denoted by
Cl(A) and Int(A) respectively.

Definition 1.1.

(i) A subset A of a space X is called β-open [1] if A ⊆ Cl(Int(Cl(A))).
The complement of β-open set is β-closed [1]. The intersection of
all β-closed sets containing A is called β-closure of A and is denoted
by β Cl(A). Also A is said to be β-clopen [9] if it is β-open and β-
closed. The largest β-open set contained in A (denoted by β Int(A))
is called β-interior [2] of A.

(ii) A subset A of a space X is said to be generalized closed [6] (briefly
g-closed) if Cl(A) ⊆ U , whenever A ⊆ U and U is open in X.

(iii) A subset A of a space X is said to be generalized semi preclosed [4]
(briefly gsp-closed) or gβ-closed [4] if β Cl(A) ⊆ U , whenever A ⊆ U
and U is open in X.

(iv) Generalized semi-preopen [4] (briefly gβ-open) if F ⊆ β Int(A) when-
ever F ⊆ A and F is closed in X. Also it is a complement of gβ-
closed set. If A is both gβ-closed and gβ-open, then it is said to be
gβ-clopen.

In this note, the family of all open (resp. g-open, g β-open, clopen) sets
of a space X is denoted by O(X) (resp. GO(X), GβO(X), CO(X)) and
the family of gβ-open(resp. clopen) sets of X containing x is denoted by
GβO(X,x) (resp. CO(X,x)).

Definition 1.2. A function f : X → Y is called:

(i) gsp-continuous [4] or gβ-continuous (resp. gsp-irresolute [4] or gβ-
irresolute) if f−1(F ) is gβ-closed in X for every closed (resp. gβ-
closed) set F of Y .

(ii) Slightly continuous [10] (resp. slightly β-continuous [9]) if for each
x ∈ X and each clopen set V of Y containing f(x), there exists a
open(resp. β-open) set U such that f(U) ⊆ V .

(iii) gsp-irresolute [4] or gβ-irresolute [12] if f−1(F ) is gβ-closed in X
for every gβ-closed set F of Y .

(iv) Pre-β-closed [7] if the image of each β-closed set in X is β-closed in
Y .

(v) gβ-homeomorphism if it is bijective, gβ-irresolute and its inverse
f−1 is gβ-irresolute.

2. Slightly generalized β-continuous functions

Definition 2.1. A function f : X → Y is called slightly generalized β-conti-
nuous (briefly sl.gβ-continuous) if the inverse image of every clopen set in
Y is gβ-open in X.
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The proof of the following theorem is straightforward and hence omitted.

Theorem 2.1. For a function f : X → Y , the following statements are
equivalent :

(i) f is slightly gβ-continuous.

(ii) Inverse image of every clopen subset of Y is gβ-open in X.

(iii) Inverse image of every clopen subset of Y is gβ-clopen in X.

Obviously, slight β-continuity implies sl.gβ-continuity and gβ-continuity
implies sl.gβ-continuity. The following example shows that the implications
are not reversible.

Example 2.1. Let X = {a, b, c}, τ = {∅, X, {a}} and Y = {p, q}, σ =
{∅, Y, {p}, {q}} be the topologies on X and Y respectively. Let f : (X, τ) →
(Y, σ) defined by f(a) = f(c) = q and f(b) = p. Then f is slightly gβ-
continuous but not slightly β-continuous.

Example 2.2. Let X = {a, b, c} and let τ = {∅, X, {a}, {b}, {a, b}} and
σ = {∅, X, {c}} be the topologies on X respectively. Let f : (X, τ) →
(X,σ) be the identity function. Then f is slightly gβ-continuous but not
gβ-continuous.

A space is called locally discrete if every open subset is closed [3]. Also, a
space is called as semi-pre-T1/2 [4] if every gβ-closed subset of it is β closed.

The next two theorems are immediate of the definitions of a locally dis-
crete and semi-pre-T1/2 space.

Theorem 2.2. If f : X → Y is slightly gβ-continuous and Y is locally
discrete, then f is gβ-continuous.

Theorem 2.3. If f : X → Y is slightly gβ-continuous and X is semi-pre-
T1/2 space, then f is slightly β-continuous.

3. Basic properties of slightly generalized β-continuous
functions

Definition 3.1. The intersection of all gβ-closed sets containing a set A is
called gβ-closure of A and is denoted by gβ Cl(A).

Remark 3.1. It is obvious that gβ Cl(A) is gβ-closed and A is gβ-closed if
and only if gβ Cl(A) = A.

Lemma 3.1. Let A be a gβ-open set and B be any set in X. If A∩B = ∅,
then A ∩ gβ Cl(B) = ∅.
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Proof. Suppose that A ∩ gβ Cl(B) ̸= ∅ and x ∈ A ∩ gβ Cl(B). Then x ∈ A
and x ∈ gβ Cl(B) and from the definition of gβ Cl(B), A ∩ B ̸= ∅. (Same
as Theorem 2.3 [2] by replacing β-open set by gβ-open). This is contrary to
hypothesis.

For a subset A of space X, the kernel of A [8], denoted by ker(A), is the
intersection of all open supersets of A. �
Proposition 3.1. A subset A of X is gβ-closed if and only if β Cl(A) ⊆
ker(A).

Proof. Since A is gβ-closed, β Cl(A) ⊆ U for any open set U with A ⊆ U
and hence β Cl(A) ⊆ ker(A). Conversely, let U be any open set such that
A ⊆ U . By hypothesis, β Cl(A) ⊆ ker(A) ⊆ U and hence A is gβ-closed. �

Dontchev [4] has proved that the intersection of two gβ-closed sets is
generally not a gβ-closed set and the union of two gβ-open sets is generally
not a gβ-open set.

Proposition 3.2. Let f : (X, τ) → (Y, σ) be a function. If f is slightly
gβ-continuous, then for each point x ∈ X and each clopen set V containing
f(x), there exists a gβ-open set U containing x such that f(U) ⊆ V .

Proof. Let x ∈ X and V be a clopen set such that f(x) ∈ V . Since f is
slightly gβ-continuous, f−1(V ) is gβ-open set in X. If we put U = f−1(V ),
we have x ∈ U and f(U) ⊆ V . �

Let (X, τ) be a topological space. The quasi-topology onX is the topology
having as base all clopen subsets of (X, τ). The open (resp. closed) subsets
of the quasi-topology are said to be quasi-open (resp. quasi-closed). A point
x of a space X is said to be quasi closure of a subset A of X, denoted by
Clq A, if A ∩ U ̸= ∅ for every clopen set U containing x. A subset A is
said to be quasi closed if and only if A = Clq A [11]. If the closure of A in
topological space coincides with gβ Cl(A), then it is denoted by (X, c).

Proposition 3.3. Let f : (X, τ) → (Y, σ) be a function. Then the following
are equivalent :

(i) For each point x ∈ X and each clopen set V containing f(x), there
exists a gβ-open set U containing x such that f(U) ⊆ V .

(ii) For every subset A of X, f(gβ Cl(A)) ⊆ Clq(f(A)).

(iii) The map f : (X, c) → (Y, σ) is slightly-continuous.

Proof. (i)⇒(ii). Let y ∈ f(gβ Cl(A)) and V be any clopen nbd of y. Then
there exists a point x ∈ X and a gβ-open set U containing x such that
f(x) = y, x ∈ gβ Cl(A) and f(U) ⊆ V . Since x ∈ gβ Cl(A), U ∩ A ̸= ∅
holds and hence V ∩ f(A) ̸= ∅. Therefore we have y = f(x) ∈ Clq(f(A)).
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(ii)⇒(i). Let x ∈ X and let V be a clopen set with f(x) ∈ V . Let
A = f−1(Y \ V ), then x ̸∈ A. Since f(gβ Cl(A)) ⊆ Clq(f(A)) ⊆ Clq(Y \
V ) = Y \ V , it is shown that gβ Cl(A) = A. Then since x ̸∈ gβ Cl(A),
there exists gβ-open set U containing x such that U ∩ A = ∅ and hence
f(U) ⊆ f(X \A) ⊆ V .

(ii)⇒(iii). Suppose that (ii) holds and let V be any clopen subset of Y .
Since f(gβ Cl(f−1(V ))) ⊆ Clq(f(f

−1(V ))) ⊆ Clq(V ) = V , it is shown that
β Cl(f−1(V )) = f−1(V ) and hence we have f−1(V ) is gβ-closed in (X, τ)
and hence f−1(V ) is closed in (X, c).

(iii)⇒(ii). Conversely, let y ∈ f(gβ Cl(A)) and V be any clopen nbd of
y. Then there exists a point x ∈ X such that f(x) = y and x ∈ gβ Cl(A).
Since f is slightly continuous, f−1(V ) is open in (X, c) and so gβ-open
set containing x. Since x ∈ gβ Cl(A), f−1(V ) ∩ A ̸= ∅ holds and hence
V ∩ f(A) ̸= ∅. Therefore, we have y = f(x) ∈ Clq(f(A)). �

Now we investigate some basic properties of slightly gβ-continuous func-
tions concerning composition and restriction. The proofs of first three results
are straightforward and hence omitted.

Theorem 3.1. If f : X → Y is gβ-irresolute and g : Y → Z is slightly
gβ-continuous, then g ◦ f : X → Z is slightly gβ-continuous.

Theorem 3.2. If f : X → Y is slightly gβ-continuous and g : Y → Z is
continuous, then g ◦ f : X → Z is slightly gβ-continuous.

Corollary 3.1. Let {Xi : i ∈ I} be any family of topological spaces. If
f : X →

∏
Xi is sl.gβ-continuous mapping, then Pi ◦ f : X → Xi is sl.gβ

continuous for each i ∈ I, where Pi is the projection of ΠXi onto Xi.

Lemma 3.2. Let f : X → Y be bijective, continuous and pre-β-closed.
Then for every gβ-open set A of X, f(A) is gβ-open in Y .

Theorem 3.3. Let f : X → Y and g : Y → Z be functions. If f is bijective,
continuous and pre-β-closed and if g ◦ f : X → Z is sl.gβ continuous, then
g is sl.gβ-continuous.

Proof. Let V be a clopen subset of Z. Then (g ◦ f)−1(V ) = f−1(g−1(V )) is
gβ-open inX. Then by above Lemma, g−1(V ) = f(f−1(g−1(V ))) is gβ-open
in Y . �

Combining Theorem 3.1 and 3.3, we obtain the following result.

Corollary 3.2. Let f : X → Y be a bijective gβ-homeomorphism and let
g : Y → Z be a function.Then gof : X → Z is sl.gβ-continuous if and only
if g is sl.gβ-continuous.
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We know that for a gβ-closed set A and open set F , the intersection
A∩F is gβ-closed set relative to F ([4, Theorem 3.17(ii)]).Thus we have the
following result.

Theorem 3.4. If f : X → Y is slightly.gβ-continuous and A is open subset
of X, then f |A : A → Y is slightly gβ-continuous.

Proof. Let V be a clopen subset of Y . Then (f |A)−1(V ) = f−1(V ) ∩ A.
Since f−1(V ) is gβ-closed and A is open, (f |A)−1(V ) is gβ-closed in the
relative topology of A.

4. Some application theorems

Definition 4.1. A space is called

(i) gβ-T2 (resp. ultra Hausdorff or UT2 [10]) if every two distinct points
of X can be separated by disjoint gβ-open(resp. clopen) sets.

(ii) GβO-compact [12] (resp. mildly compact [11]) if every gβ-open (resp.
clopen) cover has a finite subcover.

Let X = {a, b, c} and τ = {∅, X, {a}} be the topology on X. Then (X, τ)
is gβ-T2 but, if we take X = {a, b, c} and τ = {∅, X, {a}, {a, b}}, then (X, τ)
is not gβ-T2.

The following theorem gives a characterization of gβ-T2 spaces and is an
analogous to that in general topology, hence its proof is omitted.

Theorem 4.1. A space X is gβ-T2 if and only if for every point x in X,
{x} = ∩{F : F is gβ-closed nbd of x}.

Theorem 4.2. If f : X → Y is sl.gβ-continuous injection and Y is UT2,
then X is gβ-T2.

Proof. Let x1, x2 ∈ X and x1 ̸= x2. Then since f is injective and Y is UT2,
f(x1) ̸= f(x2) and there exist V1, V2 ∈ CO(Y ) such that f(x1) ∈ V1 and
f(x2) ∈ V2 and V1 ∩ V2 = ∅. Since f is sl.gβ-continuous, xi ∈ f−1(Vi) ∈
GβO(X) for i = 1, 2 and f−1(V1) ∩ f−1(V2) = ∅. Thus X is gβ-T2. �
Theorem 4.3. If f : X → Y is sl.gβ-continuous surjection, and X is
GβO-compact, then Y is mildly compact.

Proof. Let {Va : Vα ∈ CO(Y ), α ∈ I} be a cover of Y . Since f is sl.gβ-
continuous, {f−1(Vα) : α ∈ I} be gβ-cover of X so there is a finite subset
I0 of I such that X = ∪{f−1(Vα) : α ∈ I0}. Therefore, Y = ∪{Vα : α ∈ I0}
since f is surjective. Thus Y is mildly compact. �
Theorem 4.4. If f : X → Y is a sl.gβ-continuous injection and Y is UT2,
then the graph G(f) of f is gβ-closed in the product space X × Y .
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Proof. Let (x, y) ̸∈ G(f), then y ̸= f(x). Since Y is UT2, there exist V1, V2 ∈
CO(Y ) such that y ∈ V1 and f(x) ∈ V2 such that V1 ∩ V2 = ∅. Since f
is slightly. gβ-continuous, by Proposition 3.2, there exists U ∈ GβO(X,x)
such that f(U) ⊆ V2. Therefore, f(U)∩V1 = ∅ and hence (U×V1)∩G(f) =
∅. Since U ∈ GβO(X,x) and V1 ∈ CO(Y, y), (x, y) ∈ (U × V1) ∈ GβO(X ×
Y ) ([12, Lemma 4.3]). Thus we obtain (x, y) ̸∈ gβ Cl(G(f)) (Remark 3.1).

Theorem 4.5. If f : X → Y is a sl.gβ-continuous injection and Y is UT2,
then A = {(x1, x2) : f(x1) = f(x2)} is gβ-closed in the product space X×X.

Proof. Let (x1, x2) ̸∈ A, then f(x1) ̸= f(x2). Since Y is UT2, there exist
V1, V2 ∈ CO(Y ) such that f(x1) ∈ V1 and f(x2) ∈ V2 and V1 ∩ V2 = ∅.
Since f is sl.gβ continuous, xi ∈ f−1(Vi) ∈ GβO(X) for i = 1, 2. Therefore,
(f−1(V1) × f−1(V2)) ∩ A = ∅. Since (x1, x2) ∈ (f−1(V1) × f−1(V2)) ∈
GβO(X × X) ([12, Lemma 4.3]). We obtain (x1, x2) ̸∈ gβ Cl(A) (Remark
3.1). �

We shall continue to work by generalizing the well known theorems in
general topology.

Recall that a space X is submaximal if every dense set is open and it is
said to be extremally disconnected if the closure of every open set is open.

Lemma 4.1. If X is submaximal and extremally disconnected, then every
β-open set in X is open [5].

Remark 4.1. By Lemma 4.1, we can say that every gβ-open set in X is
g-open as every β-open set is gβ-open and every open set is g-open.

Theorem 4.6. If f, g : X → Y is a sl.gβ-continuous, Y is UT2, X is
submaximal and extremally disconnected, then A = {x ∈ X : f(x) = g(x)}
is gβ-closed.

Proof. Let x ̸∈ A, then f(x) ̸= g(x). Since Y is UT2, there exist V1, V2 ∈
CO(Y ) such that f(x) ∈ V1 and g(x) ∈ V2 and V1 ∩ V2 = ∅. Since f
and g are sl.gβ-continuous, f−1(V1) and g−1(V2) are gβ-open and hence g-
open since X is submaximal and extremally disconnected (Remark 4.1) with
x ∈ f−1(V1) ∩ g−1(V2).

Let U = f−1(V1) ∩ g−1(V2). Then U is a g-open set ([6, Theorem 2.4])
and U ∩A = ∅ and so x ̸∈ gβ Cl(A). �

Definition 4.2. A subset of a space X is said to be gβ-dense if its gβ-closure
equals X.

The next corollary is a generalization of the well known principle of ex-
tension of the identity.
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Corollary 4.1. Let f, g be sl-gβ-continuous from a space X into a UT2-
space Y . If f and g agree on gβ-dense set of X, then f = g everywhere.

Definition 4.3. Let A be a subset of X.A mapping r : X → A is called
sl.gβ-continuous retraction if X is sl.gβ-continuous and the restriction r|A
is the identity mapping on A.

Theorem 4.7. Let A be a subset of X and r : X → A be a sl.gβ-continuous
retraction. If X is UT2, then A is gβ-closed set of X.

Proof. Suppose that A is not gβ-closed. Then there exists a point x in X
such that x ∈ gβ Cl(A) but x ̸∈ A. It follows that r(x) ̸= x because r is
sl.gβ-continuous retraction. Since X is UT2, there exist disjoint clopen sets
U and V such that x ∈ U and r(x) ∈ V . Since r(x) ∈ A, r(x) ∈ V ∩ A and
V ∩A is clopen set in A. Now let W be arbitrary gβ-nbhd of x. Then W ∩U
is a gβ-nbhd of x. Since x ∈ gβ Cl(A), (W ∩ U) ∩ A ̸= ∅. Therefore, there
exists a point y in W ∩U ∩A. Since y ∈ A, we have r(y) = y ∈ U and hence
r(y) /∈ V ∩A. This implies r(W ) ̸⊂ V ∩A because y ∈ W . This is contrary
to sl.gβ-continuity of r from Proposition 3.2. Hence A is gβ-closed. �

Definition 4.4. A space X is called GβO-connected provided X is not the
union of two disjoint, non-empty gβ-open sets.

Theorem 4.8. If f : X → Y is sl.gβ-continuous surjection, and X is
GβO-connected, then Y is connected.

Proof. Assume that Y is disconnected. Then there exist disjoint, non-empty
clopen sets U and V for which Y = U ∪V . Therefore, X = f−1(U)∪f−1(V )
is the union of two disjoint, gβ-open nonempty sets and hence is not GβO-
connected.

Slightly gβ-continuity turns out to be a very natural tool for relating GβO-
connected spaces to connected spaces. Much of the theory developed by
Tahiliani [13] on β-connected sets and slightly β-continuous functions can
be modified and extended to GβO-connected sets and slightly generalized
β-continuous functions. In Theorem 4.8, we have seen that the sl.gβ-
continuous image of a GβO-connected space is connected but that a sl.gβ-
continuous function is not necessarily a GβO-connected function which is
defined below.

Definition 4.5. A function f : X → Y is called GβO-connected if the
image of every GβO-connected subset of X is a connected subset of Y .

The following example shows that a sl.gβ-continuous function is not nec-
essarily GβO-connected.
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Example 4.1. Let X be a set containing three distinct elements p, q, r. For
each x ∈ X, let σx = {U⊆X : U = ∅ or x ∈ U} be the corresponding
particular point topology. Let f : (X,σp) → (X,σq) be the identity map.
Since (X,σq) is connected, f is slightly gβ-continuous. The set {p, r} is
GβO-connected in (X,σp) as the gβ-open sets of (X,σx) are precisely the
open sets. However f({p, r}) = {p, r} is not connected in (X,σq). It follows
that f is not GβO-connected.

Next we show by the example that a GβO-connected function need not
be sl.gβ-continuous.

Example 4.2. Let X = {1/n : n ∈ N}∪{0} and let σ be the usual relative
topology on X. Let Y = {0, 1} and let τ be the discrete topology on Y .
Define f : (X,σ) → (Y, τ) as f(1/n) = 0 for every n ∈ N and f(0) = 1. It
can be seen that the gβ-open sets in (X,σ) are the precisely the open sets.
Then follows that f is GβO-connected but not slightly gβ-continuous.

Thus we established that slight.gβ-continuity and GβO-connectedness are
independent.

Definition 4.6. A space X is said to be GβO-connected between the subsets
A and B of X provided there is no gβ-clopen set F for which A ⊆ F and
F ∩B = ∅.

Definition 4.7. A function f : X → Y is said to be set GβO-connected if
whenever X is GβO-connected between subsets A and B of X, then f(X)
is connected between f(A) and f(B) with respect to the relative topology on
f(X).

Theorem 4.9. A function f : X → Y is set GβO-connected if and only if
f−1(F ) is gβ-clopen in X for every clopen set F of f(X) (with respect to
the relative topology on f(X)).

Proof. The proof is obtained by following similar arguments as in ([13, The-
orem 3.4]).

Obviously, every sl.gβ-continuous surjective function is set GβO-connec-
ted. On the other hand, it can be easily shown that every setGβO-connected
function is sl.gβ-continuous. Thus we have seen that in the class of surjec-
tive functions, sl.gβ-continuity and set GβO-connectedness coincide. The
following example shows that in general sl.gβ-continuity is not equivalent to
set GβO-connectedness.

Example 4.3. Let X = {0, 1} and τ = {∅, X, {1}}. Let Y = {a, b, c} and
σ = {∅, Y, {a}, {b}, {a, b}}. Let f : (X, τ) → (Y, σ) be a function defined as
f(0) = a and f(1) = b. Then f is slightly gβ-continuous by Definition 2.1
but not set GβO-connected as {a} is clopen in the relative topology on f(X)
but f−1{a} = {0} which is not gβ-open in (X, τ).
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