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ON THE CATEGORIES OF PARAGRADED GROUPS AND

MODULES OF TYPE ∆

EMIL ILIĆ-GEORGIJEVIĆ

Abstract. In this paper we observe the categories of paragraded groups
and R-modules with respect to the same set of grades ∆, where R is the
paragraded ring with the set of grades ∆. We turn our attention to con-
structing new objects in those categories using the sets of morphisms
of grade δ ∈ ∆. This process defines bifunctors which happen to be left
exact. Thus we may construct the right derived functor and it turns
out that it behaves the same as in the case of the category of abstract
modules.

1. Introduction

Paragraded groups were introduced by M. Krasner and M. Vuković ([7])
in order to solve a problem of graded groups: they are not closed with
respect to the direct product in sense that the homogeneous part of the
direct product is not the direct product of the homogeneous parts of its
components. Actually, from the homogeneous point of view, a multigroupoid
does not have to be a homogroupoid ([7]). Paragraded groups are defined
in [7] by the six-axiom system as follows.

Definition 1.1. The map π : ∆ → Sg(G), π(δ) = Gδ (δ ∈ ∆), of a partially
ordered set (∆, <), which is from bellow a complete semi-lattice and from
above inductively ordered, to the set Sg(G) of subgroups of the group G, is
called a paragraduation if it satisfies the following six-axiom system:

i) π(0) = G0 = {e}, where 0 = inf ∆; δ < δ′ ⇒ Gδ ⊆ Gδ′ ;

Remark 1.2. H =
∪

δ∈∆Gδ is called the homogeneous part of G
with respect to π, and elements from H are called the homogeneous
elements of G.
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Remark 1.3. If x ∈ H, we say that δ(x) = inf{ δ ∈ ∆ | x ∈ Gδ } is
a grade of x. We have δ(x) = 0 iff x = e. The elements δ(x), x ∈ H,
are called the principal grades and they form a set which we will
denote by ∆p.

ii) θ ⊆ ∆ ⇒
∩

δ∈θ Gδ = Ginf θ;
iii) If x, y ∈ H and yx = zxy, then z ∈ H and δ(z) ≤ inf(δ(x), δ(y));
iv) The homogeneous part H is a generating set of G;
v) Let A ⊆ H be a subset such that for all x, y ∈ A there exists an

upper bound for δ(x), δ(y). Then there exists an upper bound for all
δ(x), x ∈ A;

vi) G is generated by H with the set of H-internal and left commutation
relations (see [7]).

The group is called paragraded if it has a paragraduation.

If we replace the sixth axiom with the following axiom:

vi’) Let δ1, . . . , δs ∈ ∆p be pairwise incomparable and let xi, x
′
i ∈ H

(i = 1, . . . , s) be such that x1 · · · · · xs = x′1 · · · · · x′s and xi, x
′
i ∈ Gδi

for all i = 1, . . . , s. Then δ(x−1
i x′i) < δi,

we get the notion of an extragraded group.

Theorem 1.4 ([7]). Every extragraded group is a paragraded group.

We shall consider maps between paragraded groups as well.
Let G1 and G2 be two paragraded groups with sets of grades ∆1 and ∆2,

paragraduations π1 and π2, and homogeneous parts H1 and H2 respectively.

Definition 1.5. ([7]) We say that a homomorphism f : G1 → G2 is a
quasihomogeneous if

(∀x ∈ H1) f(x) ∈ H2.

As we will see, we shall confine ourselves to the case ∆1 = ∆2.

Definition 1.6. ([7]) The ring (R,+, ·) is called paragraded if its additive
group (R,+) is a paragraded group, with paragraduation π and set of grades
∆, and if

(∀ξ, η ∈ ∆)(∃ζ ∈ ∆) RξRη ⊆ Rζ .

Definition 1.7. ([7]) If R is a paragraded ring with paragraduation π, then
the map (ξ, η) → ξη from ∆ ×∆ to ∆ is called ∆-multiplication of grades
if the following holds:

a) RξRη ⊆ Rξη;
b) (∀ξ, ξ′, η, η′ ∈ ∆) ξ ≤ ξ′ ∧ η ≤ η′ ⇒ ξη ≤ ξ′η′.
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If R is a paragraded ring with paragraduation π, then there exists ζ =
sup( δ(z) | z ∈ RξRη ). If we put ζ = ξη, we will get ∆-multiplication and
we call it minimal multiplication ([7]).

Definition 1.8. ([7]) Let R1 and R2 be two paragraded rings and f : R1 →
R2 a homomorphism. We say that this homomorphism is a quasihomoge-
neous if it is a quasihomogeneous homomorphism from a paragraded group
(R1,+) to a paragraded group (R2,+).

Now, we will give the definition of a paragraded module.

Definition 1.9. ([7]) Let R be a paragraded ring with paragraduation E and
set of grades ∆, M a commutative paragraded group with paragraduation F
and set of grades D and suppose M is an R-module. Denote E(δ) by Rδ and
F (d) by Md, where δ ∈ ∆, d ∈ D. The R-module M is called paragraded if

(∀δ ∈ ∆)(∀d ∈ D)(∃t ∈ D) RδMd ⊆ Mt.

Definition 1.10. ([7]) The map ∆×D → D : (δ, d) → δd is called (∆, D)-
multiplication if:

1. RδMd ⊆ Mδd;
2. (∀δ, δ′ ∈ ∆)(∀d, d′ ∈ D) δ ≤ δ′ ∧ d ≤ d′ ⇒ δd ≤ δ′d′.

It is always possible to construct (∆, D)-multiplication by putting δd =
supz∈RδMd

d(z) ([7]). This multiplication is called minimal multiplication.

The main feature of paragraded structures is described in the following
theorem.

Theorem 1.11 ([7]). The direct product of paragraded structures (groups,
rings and modules) is also a paragraded structure and the homogeneous part
of direct product is the direct product of the homogeneous parts of the com-
ponents.

2. The categories GP
∆ and MP

∆

Let us observe the category of paragraded groups whose set of grades is
∆ and denote it by GP

∆. We call it the category of paragraded groups of type
∆. Objects of such a category are paragraded groups, and morphisms are
the elements of the set

homGP
∆
(G,G′) = { f ∈ hom(G,G′) | f(Gδ) ⊆ G′

δ, δ ∈ ∆ },

where G,G′ are paragraded groups.
Let us observe the paragraded R-modules M, where R is a paragraded

ring with set of grades ∆ and M is a commutative paragraded group of type
∆. These modules together with the set of morphisms

{ f ∈ hom(M,M ′) | f(Mδ) ⊆ M ′
δ, δ ∈ ∆ }
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form a category which we will denote by MP
∆ . We call it the category of

paragraded R-modules of type ∆.
If ∆′ ⊆ ∆ and if π is the paragraduation of G, then π′ = π|∆′ is also

a paragraduation if ∆′ is as ordered as ∆. So, if that is the case, we may
observe the category GP

∆′ . Next, we examine the nature of the functor F :

GP
∆ → GP

∆′ .

Proposition 2.1. The functor F : GP
∆ → GP

∆′ has a right adjoint.

Proof. Let G′ ∈ GP
∆′ and let G and G′ be equal as abstract groups, π(δ) =

π′(δ) for δ ∈ ∆′ and π(δ) = {e} for δ /∈ ∆′. Thus, we defined the functor U on
objects. Now, we define it on morphisms. If φ′ ∈ homGP

∆′
(G′

1, G
′
2), then let

U(φ′) = φ be a quasihomogeneous homomorphism defined via φ(x) = φ′(x)
if x ∈ H ′ and φ(x) = e otherwise, where H ′ =

∪
δ∈∆′ Gδ. This functor is the

right adjoint. Indeed, for G ∈ GP
∆ and G′ ∈ GP

∆′ , define a map

f : homGP
∆′
(F (G), G′) → homGP

∆
(G,U(G′))

by f(φ)(x) = φ(x) if x ∈ H ′, and f(φ)(x) = e if x /∈ H ′, for any φ ∈
homGP

∆′
(F (G), G′). One easily verifies that for all g : (G,G′) → (G1, G

′
1) the

following diagram commutes

homGP
∆′
(F (G), G′) −−−−→ homGP

∆
(G,U(G′))y y

homGP
∆′
(F (G1), G

′
1) −−−−→ homGP

∆
(G1, U(G′

1))

and that f is a bijection, i.e. f is a natural isomorphism. �

Proposition 2.2. The category MP
∆ is abelian.

Proof. We will only check whether the category MP
∆ has products and co-

products, since all other axioms are trivial.
LetM andM ′ be paragraded modules of type ∆.We claim thatM⊕M ′ is

their coproduct in the category MP
∆ . For δ ∈ ∆ define π : ∆ → Sg(M ⊕M ′)

by

π(δ) = Mδ ⊕M ′
δ.

Since in our case we have the same set of grades ∆ of paragraduations,
it is the special case of the Theorem 1.11 and so, π is the paragraduation
of M ⊕ M ′. Now, observe the maps α : M → M ⊕ M ′ and β : M ′ →
M ⊕ M ′ defined by α(m) = (m, 0) and β(m′) = (0,m′) for all m ∈ M
and m′ ∈ M ′. One can easily verify that the maps α and β belong to
homMP

∆
(M,M ⊕M ′) and homMP

∆
(M ′,M ⊕M ′), respectively. Let X ∈ MP

∆
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and f ∈ homMP
∆
(M,X), g ∈ homMP

∆
(M ′, X). Define θ : M ⊕ M ′ → X by

θ(m,m′) = f(m) + g(m′). If δ ∈ ∆, then we have

θ(π(δ)) = θ(Mδ ⊕M ′
δ) = f(Mδ) + g(M ′

δ) ⊆ Xδ +Xδ = Xδ.

Hence,

θ ∈ homMP
∆
(M ⊕M ′, X).

We have θα(m) = θ(m, 0) = f(m) and θβ(m′) = θ(0,m′) = g(m′). If
τ : M ⊕ M ′ → X is a morphism such that τα = f and τβ = g, then
τ(m, 0) = f(m) for all m ∈ M and τ(0,m′) = g(m′) for all m′ ∈ M ′. One
can easily prove that τ(m,m′) = f(m) + g(m′) and therefore, τ = θ.
Analogously, we can prove that the category MP

∆ has products. �

Corollary 2.3. The category of abelian paragraded groups of type ∆ is
abelian.

Let G, G′ ∈ GP
∆ and M,M ′ ∈ MP

∆ .

Definition 2.4. For a homomorphism f : G → G′ we say that it is a
morphism of grade δ if

(∀δ′ ∈ ∆) f(Gδ′) ⊆ G′
δ. (2.1)

For a homomorphism f : M → M ′ we say that it is a morphism of grade δ
if

(∀δ′ ∈ ∆) f(Mδ′) ⊆ M ′
δ′δ, (2.2)

where δ′δ is minimal multiplication.

Let us denote the set of all the morphisms of grade δ by hom(G,G′)δ and
by hom(M,M ′)δ, respectively.

Lemma 2.5. Let G,G′ be commutative paragraded groups of type ∆ and let
M,M ′ be paragraded R-modules of type ∆. Then:

a) The set hom(G,G′)δ is the subgroup of hom(G,G′);
b) The set hom(M,M ′)δ is the subgroup of hom(M,M ′).

Proof. a) Let f, g ∈ hom(G,G′)δ. Then,

(∀δ′ ∈ ∆) f(Gδ′) ⊆ G′
δ ∧ g(Gδ′) ⊆ G′

δ,

and hence, f · g(Gδ′) = f(Gδ′)g(Gδ′) ⊆ G′
δG

′
δ = G′

δ and f−1(Gδ′) =
(f(Gδ′))

−1 ⊆ (G′
δ)

−1 = G′
δ. So, fg and f−1 belong to hom(G,G′)δ, hence,

hom(G,G′)δ < hom(G,G′).

b) Let f, g ∈ hom(M,M ′)δ. Then,

(∀δ′ ∈ ∆) f(Mδ′) ⊆ M ′
δ′δ ∧ g(Mδ′) ⊆ M ′

δ′δ,
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and hence, f + g(Mδ′) = f(Mδ′) + g(Mδ′) ⊆ M ′
δ′δ + M ′

δ′δ = M ′
δ′δ and

−f(Mδ′) ⊆ (−M ′
δ′δ) = M ′

δ′δ. So, f + g and −f belong to hom(M,M ′)δ,
hence, hom(M,M ′)δ < hom(M,M ′). �

Now, consider the sets

HOM(G,G′) =

⟨ ∪
δ∈∆

hom(G,G′)δ

⟩
and

HOM(M,M ′) =

⟨ ∪
δ∈∆

hom(M,M ′)δ

⟩
.

Theorem 2.6. Let G and M,M ′ be a commutative paragraded group and
paragraded R-modules of type ∆, respectively, and let G′ be a commutative
extragraded group of type ∆. Then

a) HOM(G,G′) is the commutative paragraded group of type ∆;
b) HOM(M,M ′) is the commutative paragraded group of type ∆.

Proof. a) According to the previous Lemma, it is easy to establish that
HOM(G,G′) is a group. Now we set off to prove that it is paragraded.
Define the map

π : ∆ → Sg(HOM(G,G′))

by

π(δ) = hom(G,G′)δ.

We first need to consider π(0) i.e. the set hom(G,G′)0. It is the set of
all morphisms f : G → G′ such that f(Gδ′) ⊆ G′

0 for all δ′ ∈ ∆. We
know (see i)) that G′

0 = {e}, and hence f(Gδ′) = {e} for all δ′ ∈ ∆, i.e.
hom(G,G′)0 = {f0}, where by f0 we denoted the map g → e (g ∈ G).
Now, let δ1 < δ2. Then, π(δ1) = hom(G,G′)δ1 and π(δ2) = hom(G,G′)δ2 .
Take f ∈ hom(G,G′)δ1 . Then, for all δ′ ∈ ∆, we have f(Gδ′) ⊆ G′

δ1
. From

δ1 < δ2 it follows that G′
δ1

⊆ G′
δ2
, according to i). Hence, f(Gδ′) ⊆ G′

δ2
for

all δ′ ∈ ∆, so f ∈ hom(G,G′)δ2 and hom(G,G′)δ1 ⊆ hom(G,G′)δ2 .
Let us now consider the subset θ ⊂ ∆. We wonder what

∩
δ∈θ hom(G,G′)δ

is. If f ∈
∩

δ∈θ hom(G,G′)δ, then f(Gδ′) ⊆ G′
δ for all δ′ ∈ ∆ and for all

δ ∈ θ. Hence, f(Gδ′) ⊆
∩

δ∈θ G
′
δ for all δ′ ∈ ∆ i.e. f(Gδ′) ⊆ G′

inf θ for all
δ′ ∈ ∆ according to ii). Thus,

∩
δ∈θ hom(G,G′)δ = hom(G,G′)inf θ.

Denote byH the set
∪

δ∈∆ hom(G,G′)δ. Take two elements f, g ∈ H. Then
there are δ1 and δ2 from ∆ such that f ∈ hom(G,G′)δ1 and g ∈ hom(G,G′)δ2 .
Let h be gfg−1f−1. We wish to prove that h ∈ H. For all δ′ ∈ ∆ we have

h(Gδ′) = g(Gδ′)f(Gδ′)g
−1(Gδ′)f

−1(Gδ′)

⊆ G′
δ2G

′
δ1(G

′
δ2)

−1(G′
δ1)

−1.
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We will now show how we can avoid the commutativity of G′ in this case.
Since G′

δ1
and G′

δ2
are normal subgroups (see [7]), it follows that

h(Gδ′) ⊆ G′
δ1 ∩G′

δ2

ii)
= G′

inf(δ1,δ2)
(δ′ ∈ ∆). (2.3)

By (2.3), h ∈ hom(G,G′)inf(δ1,δ2) ⊆ H, as we claimed. Now, we prove that
δ(h) ≤ inf(δ(f), δ(g)). But this follows from the fact that δ(h) ≤ inf(δ1, δ2).

The set HOM(G,G′) is generated by H as it can be seen from the con-
struction of the set HOM(G,G′).

Assume now that we have a subset A ⊆ H such that for all f, g ∈ A there
exists δ ∈ ∆ such that fg ∈ hom(G,G′)δ. We wish to prove that there exists
δ1 ∈ ∆ such that A ⊆ hom(G,G′)δ1 . For any δ′ ∈ ∆ choose x ∈ Gδ′ . Then
f(x)g(x) ∈ HG′ and so by v), f(x) ∈ G′

δ1
for some δ1 ∈ ∆. The map f was

arbitrary, so A ⊆ hom(G,G′)δ1 as we wished to prove.
Let δ1, . . . , δs ∈ ∆p be mutually incomparable and f1 . . . fs = f ′

1 . . . f
′
s,

where fi, f
′
i ∈ hom(G,G′)δi (i = 1, s). That means that for arbitrarily

chosen x ∈ HG one has

f1(x) . . . fs(x) = f ′
1(x) . . . f

′
s(x)

and fi(x), f
′
i(x) ∈ G′

δi
(i = 1, s). Since fi(x), f

′
i(x) ∈ G′

δi
⊆ G′ and G′ is

extragraded, by vi) it follows that δ(fi(x)
−1f ′

i(x)) < δi and hence f−1
i f ′

i ∈
hom(G,G′)δi (i = 1, s).

We have proven so far that six axioms of extragraduation are satisfied,
hence HOM(G,G′) is an extragraded group, but since every extragradu-
ation is a paragraduation, as is stated in Theorem 1.4, HOM(G,G′) is a
paragraded group.

b) It is easy to establish that HOM(M,M ′) is a commutative group. This
group is a paragraded group, since HOM(M,M ′) is a homogeneous subgroup
of hom(M,M ′), and hom(M,M ′) is a paragraded group according to [7]. �

Remark 2.7. From the last proof we notice that HOM(G,G′) is a post-
paragraded group if G,G′ ∈ GP

∆.

Remark 2.8. In the same way that we defined the categories GP
∆ and MP

∆ ,
we define the categories of extragraded groups and modules with the set of
grades ∆ and denote it by GE

∆ and ME
∆ , respectively.

In what follows, all objects are assumed to be commutative.
Let us now observe the map HOM(G1,−) : GE

∆ → GP
∆ which sends

each G2 ∈ GE
∆ to HOM(G1, G2) ∈ GP

∆ and each g : G2 → G′
2 from

homGP
∆
(G2, G

′
2), where G2, G

′
2 ∈ GE

∆, to a morphism

HOM(1G1 , g) : HOM(G1, G2) → HOM(G1, G
′
2)
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defined as follows. For each x ∈ HOM(G1, G2) we have

x = ⟨fδ | δ ∈ ∆⟩,

where fδ ∈ hom(G1, G2)δ. So, let

HOM(1G1 , g)(x) = ⟨g ◦ fδ | δ ∈ ∆⟩.

Then HOM(G1,−) represents a covariant functor. First,

HOM(1G1 , 1G2)(x) = ⟨fδ | δ ∈ ∆⟩ = x.

Now, let g1, g2 ∈ homGP
∆
(G2, G

′
2) and let g1, g2 be composable. Then we

have

HOM(1G1 , g1) ◦HOM(1G1 , g2)(x) = HOM(1G1 , g1)⟨g2 ◦ fδ | δ ∈ ∆⟩
= ⟨g1 ◦ g2 ◦ fδ | δ ∈ ∆⟩
= HOM(1G1 , g1 ◦ g2)(x),

for all x ∈ HOM(G1, G2).
Similarly, observe the map HOM(−, G2) : GP

∆
op → GP

∆ which sends

each G1 ∈ GP
∆
op

to HOM(G1, G2) ∈ GP
∆ and each f : G1 → G′

1 from
homGP

∆
(G1, G

′
1) to a morphism

HOM(f, 1G2) : HOM(G1, G2) → HOM(G′
1, G2)

defined by

HOM(f, 1G2)(x) = ⟨fδ ◦ f | δ ∈ ∆⟩,
for all x = ⟨fδ | δ ∈ ∆⟩ ∈ HOM(G1, G2). The proof that HOM(−, G2) is a
contravariant functor is similar to the one that HOM(G1,−) is a covariant
functor and we shall omit it. Also, it is easy to verify that the following
diagram commutes

HOM(G1, G2)
HOM(1G1

,g)
//

HOM(f,1G2
)

��

HOM(f,g)

&&MMMMMMMMM

HOM(G1, G
′
2)

HOM(f,1G′
2
)

��

HOM(G′
1, G2)

HOM(1G′
1
,g)

// HOM(G′
1, G

′
2)

Thus, HOM(−,−) : GP
∆
op×GE

∆ → GP
∆ is a bifunctor. Let us fixG1 ∈ GP

∆ and
observe the functor HOM(G1,−) : GE

∆ → GP
∆. Suppose that the following
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sequence

0 // G2
g // G′

2

g′ // G′′
2

// 0 (2.4)

is exact, where G2, G
′
2, G

′′
2 ∈ GE

∆. If we apply the functor HOM(G1,−) to
the sequence (2.4), we wish to prove that the sequence

0 // HOM(G1, G2)
HOM(1G1

,g)
// HOM(G1, G

′
2)
HOM(1G1

,g′)
// HOM(G1, G

′′
2)

is exact. Let x = ⟨fδ | δ ∈ ∆⟩ ∈ kerHOM(1G1 , g). Then HOM(1G1 , g)(x) =
⟨g◦fδ | δ ∈ ∆⟩. From x ∈ kerHOM(1G1 , g) and the exactness of the sequence
(2.4), it follows that x = f0 which proves the injectivity of HOM(G1,−). If
y ∈ im HOM(1G1 , g), then y = ⟨g ◦ fδ | δ ∈ ∆⟩ for some ⟨fδ | δ ∈ ∆⟩ ∈
HOM(G1, G2). By exactness of (2.4), im g ⊆ ker g′, so

HOM(1G1 , g
′)(y) = ⟨g′ ◦ g ◦ fδ | δ ∈ ∆⟩ = 0.

Hence, y ∈ kerHOM(1G1 , g
′). Now, if y ∈ kerHOM(1G1 , g

′), then if a ∈ G1,
we have y(a) = ⟨f ′

δ(a) | δ ∈ ∆⟩, where f ′
δ ∈ hom(G1, G

′
2)δ. Note that

f ′
δ(a) ∈ ker g′ = im g, for all δ ∈ ∆, so f ′

δ(a) = g(b) for some b = fδ(a) ∈ G2,
where fδ ∈ hom(G1, G2)δ. This proves that y ∈ im HOM(1G1 , g). Thus,
HOM(G1,−) : GP

∆ → GP
∆ is a left exact functor. Similarly, one can prove

that HOM(−, G2) : GP
∆
op → GP

∆ is also a left exact functor. This means
that the following proposition holds.

Proposition 2.9. A bifunctor HOM(−,−) : GP
∆
op ×AbGE

∆ → AbGP
∆ is left

exact.

Analogously, one can prove that the following proposition holds as well.

Proposition 2.10. A bifunctor HOM(−,−) : MP
∆

op ×MP
∆ → AbGP

∆ is left
exact.

Lemma 2.11. Let M be a paragraded R-module with the set of grades ∆.
Then there exists a free paragraded R-module.

Proof. Let M ′ be a free R-module with base M. If we define the map π′ :
∆ → Sg(M ′,+) via π′(δ) = M ′

δ, where M ′
δ denotes the subgroup generated

by the set Mδ, then it can be proven that π′ is paragraduation of M ′. �
Corollary 2.12. The category MP

∆ has enough injective and projective ob-
jects.

The proofs of the following propositions are similar to the proofs in the
case of abstract modules.

Proposition 2.13. Let M be a paragraded left R-module of type ∆. Then:
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a) M is projective iff the functor HOM(M,−) is exact;
b) M is injective iff the functor HOM(−,M) is exact.

Proposition 2.14. Let M ′ be a projective paragraded left R-module of type
∆ and M an injective paragraded left R-module of type ∆. Then:

a) EXTn(M ′,M) = {0}, for all n ≥ 1 and for every paragraded left
R-module M of type ∆;

b) EXTn(M,M) = {0}, for all n ≥ 1 and for every paragraded left
R-module M of type ∆;

where EXT designates the right derived functor of HOM.
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