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ABSTRACT. In this paper, we investigate metric properties and disper-
sive effects of strongly mixing transformations on general metric spaces
endowed with a finite measure; in particular, we investigate their con-
nections with the theory of generalized (geometric) diameters on general
metric spaces. We first show that the known result by Rice [17,Theorem
2] (motivated by some physical phenomena and offer some clarifications
of these phenomena), which is a substantial improvement of Theorems
1 and 2 due to Erber, Schweizer and Sklar [4], can be generalized in
such a way that this result remains valid when “ordinary diameter” is
replaced by “geometric diameter of any finite order”. Next we show
that “ordinary essential diameter” in the mentioned Rice’s result can be
replaced by “essential geometric diameter of any finite order”. These
results also complement the previous results of Fatki¢ [ 6,8,10], Saff [18]
and Sempi [20].

1. INTRODUCTION AND PRELIMINARIES

In the broadest sense abstract dynamical systems and ergodic theory is
the study of the qualitative properties of actions of groups on spaces (e.g.
measure spaces, or topological spaces, or smooth manifolds). In this work we
shall study actions of the group Z of integers on a measure space X, i.e., we
study a transformation 7T : X — X and its iterates 7™, n € Z.

It is customary in abstract dynamical systems and ergodic theory to as-
sume that the underlying space is either a finite or o-finite measure space.
We shall assume that the measure is finite. Specifically, we shall investigate
metric properties and dispersive effects of strongly mixing transformations
on general metric spaces endowed with a finite measure; in particular, we
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investigate some connections between the theory of mizing dynamical sys-
tems with discrete time and the theory of generalized (geometric) diameters
on metric spaces. We shall generally refer to Billingsley [1], Cornfeld, Fomin
and Sinai [3], Fatki¢ [7], Hille [14], Schweizer and Sklar [19] and Walters [22].

We use N to denote the set of natural numbers, Ny to denote the set of
nonnegative integers, Z to denote the set of integers, R to denote the set
of real numbers (the reals) and R to denote the extended reals, i.e., the
set of real numbers with the symbols —oo, +00 adjoinded, and ordered via
—00 < z < 400 for all real . Thus R is a closed interval. The empty set
will be denoted by @.

Suppose (X, .o/, ) is a finite measure space. As usual, a transformation
T:X — X is called:

(i) measurable (pu - measurable) if, for any A in 7, the inverse image
T71(A) is in o
(ii) measure-preserving if T is measurable and u(T-1(A4)) = u(A) for
any A in & (or, equivalently, measure p is said to be invariant
under 7');
(iii) ergodic if the only members A of &7 with T~1(A) = A satisfy p(A) =
0or pu(X\A)=0;
(iv) weakly mizing (or weak-mixing) (with respect to p ) if T is p-
measurable and
1 n—1
Jim 2

1=0

p(Au(B)|
pu(X)
for any two u- measurable subsets A, B of X;
(v) strongly mizing (or mizing, strong-mizing) (with respect to p ) if T
is p-measurable and

W(T™(4)N B) -

Jim p(T(4) 0 B) = W

for any two p - measurable subsets A, B of X.

(1.1)

We say that the transformation T : X — X is invertible if T is one-to-one
(monic) and such that T'(A) is p - measurable whenever A is p - measurable
subset of X.

A transformation 7' on a finite measure space (X,.o/,u) is said to be
measurability - preserving if T(</) C o (i.e., if T(A) is p - measurable
whenever A is p - measurable ([9, Definition 1]). In this case we also say
that the transformation 71" preserves p - measurability.

The objects of interest are not really measure-preserving transforma-
tions, as is well-known, but equivalence classes of such transformations; two
transformations are equivalent if they differ only on a set of measure zero.
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Measure-preserving transformations arise, e.g., in the investigation of clas-
sical dynamical systems. In this case T is first obtained as a continuous
transformation of some compact topological space, and the existence of an
invariant measure p is proved. The system (X, .o/, u,T) is then abstracted
from the topological setting. Therefore, if (X, .o/, 1) is a finite measure space,
and T': X — X is a measure-preserving transformation (with respect to
), then we say that ® := (X, .o, u, T) is an abstract dynamical system. An
abstract dynamical system is often called a dynamical system with discrete
time or a measure-theoretic dynamical system or an endomorphism. We shall
say that the abstract dynamical system @ is: (i) invertible if T is invert-
ible; (ii) ergodic if T is ergodic; (iii) weakly (resp. strongly) mizing if T is
weakly (resp. strongly) mixing (see [3, pp. 6 - 26]; but see also [2], [5], [6-8],
[10], [15-17] and [19-22]). For example, in [2], the global invariant properties
of a class of exactly solvable area-preserving mixing transformations of the
two-dimensional torus are carefully analyzed. Starting from the closed-form
solution of the expanding subbundle, a nonuniform stationary measure fi,, is
derived analytically, providing a concrete example for which the connections
between geometric and measure-theoretic approaches to chaotic dynamics
can be worked out explicitly. The implications of the results for physically
realizable mixing systems are also considered.

If T is a strongly mixing transformation of a finite measure space (X,
o/, i), then, as is well-known, T' is both measure-preserving and ergodic.
Furthermore, if T : X — X, in addition (to being strongly mixing on X
with respect to u), is invertible, then (1.1) is equivalent to (the well-known
result):

. n _ n(A)p(B)
nh_{f)lo,u(T (A)NB) = (X
for any p- measurable subsets A, B of X.
Let us now give an example of a strongly mixing transformation which is
not invertible.

(1.2)

Example 1.1. (see [8, p. 50]) Let A consist of the Borel subsets of the
half-open unit interval X := [0,1), with Lebesgue measure for p and let
T(x) = 2z(mod 1) on [0,1). T is called a dyadic transformation (or a (angle)
doubling map, Bernoulli map, bit shift map, dyadic map, 2z (mod 1) map
or sawtooth map). An application of the well-known criterion which is useful
when checking whether or not examples have the strongly mixing properties
(see [10, Example 2.1, p.163]) and, e.g., [22, Theorem 1.17]) shows that the
dyadic transformation 7' is strongly mixing. Since T obviously is not one-
to-one, it follows that the dyadic transformation is strongly mixing but not
invertible.
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In this work we consider a metric space/( extended metric spaces) (X, d)
on which a finite measure p is defined. The domain of i, a o-algebra & of
subsets of X, is assumed to include all Borel sets in (X, d); in particular,
therefore, all open balls in (X, d) are p-measurable.

The (ordinary) diameter of a subset A of X | i.e., the supremum of the set
{d(z,y)|x,y € A}, will be denoted by diam(A). We can define the diameter
of the empty set (the case A = &) as 0 or —c0, as we like. But, like many
other authors, we prefer to treat the empty set as a special case, assigning
it a diameter equal to 0, i.e., diam(@) = 0, which corresponds to taking the
codomain of d to be the set of all nonnegative real numbers.

If A is p-measurable, then the (ordinary) essential diameter of A, denoted
by ess diam(A), is the infimum of the set of diameters of all p-measurable
sets B such that B C A and u(B) = u(A), ie.,

ess diam(A) := inf{diam(B)|B is p-measurable, B C A, u(B) = u(A)}.

Both diam(A) and ess diam(A) may be infinite. Note that ess diam(A)
< diam(A) for all g-measurable subsets A of X. If B C A and both are
p-measurable then ess diam(B) < ess diam(A).

Place k points on a compact set A in the complex plane so that they are
“as far apart” as possible in the sense of the geometric mean of the pairwise
distances between the points. Since the number of different pairs of k points
is k(k — 1)/2, we consider the quantity d;(A), for each integer k > 2,

0k(A) ;= max (5 H |2zi — zj] c 21,220, ...,z €A

1<i<j<k

which is called the geometric diameter of order k of the set A (or the k-
diameter of A).

In 1923, M. Fekete (see, e.g.,[14]) showed that the limit limy_,~ 05 (A)
exists, and he called it the transfinite diameter of A. In 1931, G. Pélya and
G. Szego extended the concept to compact sets in three - dimensional space
R? and showed that the transfinite diameter coincides with the logarithmic
capacity. Further generalizations of this concept were made by them and by
F. Leja. Finally E. Hille summarized and unified the previous generalizations
(see [14]; but for some recent related result, see, e.g., [7], [13] and [18]).

The concepts of geometric diameters and transfinite diameter make sense
in a fairly general context. These notions for arbitrary sets in general met-
ric spaces are introduced (as corresponding generalizations of the concept
introduced by Fekete) in the following way:

Let (X,d) be a metric space/(extended metric space), and let A be a
subset of X. For any positive integer k > 2, we define the the geometric
diameter of order k of A (kth diameter of A), denoted by dx(A), to be the
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quantity

k(A) ==sup ¢ (% H d(zi, zj)|z1,..., 2, €A ). (1.3)
1<i<j<k

Note that d2(A) is the (ordinary) diameter of the set A. The sequence
(0x(A)) can be shown to be decreasing (see, e.g., [14] and [18]), and therefore
has a limit as k tends to infinity. By definition, the (geometric) transfinite
diameter of A is

r(4) = lim 34(A). (1.4)

Note that 0 < 7(A) < 0x(A) < diam(A), and that B C A implies 7(B) C
T(A).

Example 1.2. (see [18, p. 167]) Let A be the closed unit disk (or the unit
circle). Then

ok(A) = "VE, 7(A) =1

Example 1.3 (see 18, p. 169). The closed set {0} U{1/k : k =1,2,...}
has transfinite diameter zero.

If A is p-measurable subset of X, then, for any positive integer k > 2, the
essential geometric diameter of order k of A, denoted by ess d;(A), is the
infimum of the set of geometric diameters of all y-measurable sets B such
that B C A and u(B) = u(A), ie.,

ess 0k (A) = inf{0x(B)|B is p-measurable, B C A, u(B) = p(A)}.  (1.5)

Both 0;(A) and ess Jx(A) may be infinite. Note that ess dx(A) < 0x(A)
for all y-measurable subsets A of X and for any positive integer k > 2. If
B C A and both are p-measurable, then dx(B) < 0;(A), ess 0x(B) < ess
0k(A) < ess diam(A), for any positive integer k > 2. Also, for any positive
integer k > 2, we have §;, (@) = 0, ess 6;(@) = 0.

The general theory of geometric diameters and transfinite diameters plays
an important role in complex analysis. It is related to the logarithmic po-
tential theory with applications to approximation theory and the Cebysev
constant (see, e.g., [18]).

Remark 1.1 (see 18, p. 169). The transfinite diameter 7 (considered as
a set function) has some of the properties of Lebesgue measure on compact
subsets in the complex plane; in fact, the transfinite diameter of a line
segment of length L is L/4. However, 7 fails to be subadditive; 7(A U B)
may exceed the sum 7(A) + 7(B).

Investigations in [4 - 12], [16], [17] and [19 - 23] have shown, however, that
many important consequences of (1.2) persist in the absence of invertibility
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and/or the strongly mixing property. The following results (the most useful
results of these investigations for the goals of this paper) is due to R.E. Rice
[17, Theorems 1 and 2]:

Theorem 1.1. (Rice, 1978) Let T be a strongly mizing transformation on
the normalized measure space (probability space) (X, o7, p). If T is measur-
ability - preserving, then for any p-measurable subsets A, B of X,

lim p(T"(A) N B) = u(B) lim (T (A)). (L6)

Theorem 1.2. (Rice, 1978) Let (X,d) be a metric space, let </ be a o-
algebra of subsets of X and p a normalized (probability) measure on < .
Suppose further that every open ball in (X, d) is pu-measurable and has pos-
itive measure. Let T be a transformation on X that is strongly mixing with
respect to p and suppose that A is u-measurable subset of X with positive
measure. Then
(i)
lim diam(7"(A)) = diam(X). (1.7)
n—oo
(ii) If in addition, T is forward measurable, i.e., if T(B) is p-measurable
whenever B is pu-measurable, then

nl;rgo ess diam (7" (A)) = diam(X). (1.8)

Theorems 1.1. and 1.2 have many consequences which are of interest
because of the extreme simplicity of both their mathematical and physical
realizations. Among others, these consequences have great relevance in the
discussion of the recurrence paradox of Statistical Mechanics (see the previ-
ous results of T. Erber, B. Schweizer and A. Sklar [4], B. Schweizer and A.
Sklar [19, pp. 181 - 190 and (in Dover Edition) 295 - 297], T. Erber and A.
Sklar [5], C. Sempi [20] and H. Fatkié¢ [6 - 8]). It is therefore interesting to
investigate how the conclusions of Theorem 1.2 must be modified when the
the ordinary diameter is replaced by the geometric diameter of any finite
order.

Theorem 1.1 has been applied by H. Fatkié¢ [7, 8] obtaining a very general
and subtle characterization of measurability-preserving ergodic transforma-
tions, and Theorem 1.2 has been extended by C. Sempi [20], H. Fatkié¢
[6,7,9,10], and H. Fatki¢ and S. Sekulovi¢ [11] from strongly mixing trans-
formations to weakly mixing transformations (see also [19 (Dover Edition),
p. 297)).

2. MAIN RESULTS

Our aim in this work is to show that the known R. E. Rice’s Theorem1.2
[17, Theorem 2| (motivated by some physical phenomena and offer some
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clarifications of these phenomena), which is a substantial improvement of
Theorems 1 and 2 due to T. Erber, B. Schweizer and A. Sklar [4], can be
generalized in such a way that (1.7) remains valid when “(ordinary) diam-
eter” is replaced by “geometric diameter of any finite order” and that (1.8)
remains valid when ” (ordinary) essential diameter” is replaced by “essential
geometric diameter of any finite order”. These results also complement the
previous results of H. Fatkié¢ [6 - 10], E. B. Saff [18], C. Sempi [20], H. Fatki¢
and S. Sekulovi¢ [11], and H. Fatki¢, S. Sekulovi¢ and Hana Fatkié¢ [12].

We first show that (1.7) holds, not only for the diameter, but also for
the geometric diameter 0x(A) of order k£ which is defined for any positive
integer k > 2 and any A C X by (1.3). Next we show that essential diameter
in (1.8) can be replaced by the essential geometric diameter ess d;(A) of
order k which is defined for any positive integer £k > 2 and any A C X by
(1.5). But here the requirement that transformation 7" be measurability-
preserving is necessary because the essential geometric diameter is defined
only for measurable sets. All of these results have some importance, not
only in Mathematics, but also in Statistical Mechanics.

We introduce the following definitions.

Definition 2.1. A strongly mizing transformation on a finite measure space
(X, o, u) with the property T(o/) C o is called a measurability-preserving
strongly mizing transformation (with respect to invariant measure ).

Note that measurability-preserving strongly mixing transformations on
a finite measure space are generalizations of the invertible strongly mixing
transformations (they are not necessarily one-to-one).

Definition 2.2. Suppose that (X, .o, ) is a finite measure space and ® :=
(X, o, u, T) is an abstract dynamical system. Then ® is called measurabili-
ty-preserving strongly mizing if ® is strongly mizing and T'(</) C <.

Lemma 2.1. Let (X, o/, ) be a finite measure space. Let T be a trans-
formation on X that is strongly mizing with respect to u and suppose that
Bi1,Ba,...,Bi(k € N) are u-measurable subsets of X. If u(A) > 0 and
w(B;) >0(i=1,...,k), then there is a positive integer ng = no(k) such that
TV (A)NB; # @ (2.1)
fori=1,2,...,k and all n > ng.
Proof. Since T is strongly mixing and pu(A)u(B;) > 0 for all i € {1,...,k},
it follows that there is a positive integer ng = ng(k) such that
w(ANT™(B;)) >0
fori=1,2,...,k and all n > ng, whence
ANT™(B;) # @ (2.2)
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fori=1,2,...,k and all n > ng. Since
T"(T"(A)NB;)=(T"™"(T"A)NT™(B;)) 2 ANT "B, (2.3)

for all i = 1,2,...,k and every n in N,n > nyg, it follows, by (2.2), that
T=™(T"(A)N B;) # @ and therefore (2.1) holds and the proof of Lemma 2.1
is complete. O

An induction argument yields the following:

Lemma 2.2. If 0<ap <a, fork=1,2,...,X and b > 0, then

A
H ak+b
k=

Theorem 2.1. Let (X, d) be a metric space, let <7 be a o - algebra of subsets
of X and u a finite measure on /. Suppose further that every open ball in
(X, d) is p-measurable and has positive measure. Let T' be a transformation
on X that is strongly mizing with respect to . Then, for any p-measurable
subset A of X of positive measure, and any positive integer k > 2,

Jim 5,(T"(4)) = 6(X). (2:5)

(a+b) —a. (2.4)

||;:]>/

where O is the geometric diameter of order k given by (1.3).

Proof. Throughout this proof we will denote d2(X), the (ordinary) diameter
of X, by 4.
Let k be an arbitrary positive integer > 1. Since J; is a monotone nonde-
creasing set function (see [14]), it is clear that (2.5) holds when d;(X) = 0.
Suppose next that 0 < 6x(X) < +oo , whence also 0 < § < 400, and let
e > 0 be given. Then, by (1.3), there exist points x1,zg,...,z; in X such
that

[T diz) > 8(x) - g (2.6)

1<i<j<k

Let m(= m(k,¢)) be a positive integer such that

<1 + nis) ©_ 1] e < g (2.7)

and let By, Ba, ..., By be open balls of radius 1/2m centered at x1, zo, ...,
T, respectively.

Next, since T : X — X is strongly mixing with respect to p and since
w(A) > 0 and pu(B;) > 0 for all i = 1,2,...,k, it follows from Lemma 2.1
that there is a positive integer ng = no(k, m) such that 7"(A) N B; # & for
1=1,2,...,k and all n > nyg.

0 -
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Given n > ng, for each i = 1,2,...,k, choose a point y; in T"(A) N B;.

Then, for all 4,5 =1,...k,

1
d(xi, xj) < d(wg, yi) + d(ys, yj) + d(y;, ;) < d(yi, ;) + -

whence, using (2.6), we have

6k<X>—§<(g T d@iz)< & 1 [d(yi,yw;} (2.8)

1<i<j<k 1<i<j<k

. n k(k—1)
Since H1§i<j§kd(yiayj) < (k(TT(A4))) =

i,j = 1,2,...,k, using Lemma 2.2, with a;; = d(y;,y;) and b =
obtain

11 [d(yi,yj)-i-:n:|: 11 d(yi,yj>+{ 11 [d(yi’yﬂ')ﬁl]

1<i<j<k 1<i<j<k 1<i<j<k

- 11 d(yi,yj)}

1<i<j<k

" G
[5:(T™(A))) =) + { <5 + ;) - 5(2)} .

Va+b< a+ Vb

foralla>0,b>0,and n=1,2,..., it follows that

<1 + 1> ®_ 1] e L (29

and d(y;,y;) < ¢ for all

1
E,We

IN

Using the fact that

51(X) = 5 < 0(T"(A)) +5-

Hence, by (2.7),

mo

5k(Tn(A)) > 5k(X) — €&,
for every n > N, and every € > 0, whence

Jim inf 6;(T"(A)) > 0(X). (2.10)

But, clearly, lim;,,—,oc sup 0x(T"™(A)) < (X ) whence we obtain (2.5).
Finally, the case §;(X) = 400 can be treated by choosing for each positive

integer r a k-tuple of points x1,xs,..., 2 in X such that
(5 H d(zi,zj) >
1<i<j<k

and then repeating the previous argument. This completes the proof of
Theorem 2.1. O
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Corollary 2.1. Under the hypotheses of Theorem 2.1, for any pu-measurable
subset A of X of positive measure,

Jim (lim 6(T"(4)) = (%), (2.11)

where Oy, is the geometric diameter of order k given by (1.3), and T is the
(geometric) transfinite diameter given by (1.4).

Proof. The property (2.11) follows immediately from (2.5) and the fact that
lim n — ook (X) = 7(X). O

Theorem 2.2. Let (X, d) be a metric space and (X, </, 1) a finite measure
space with the property that every open ball in (X,d) is p-measurable and
has positive measure. Let (X, 7, u,T) be a measurability-preserving strongly
mixing dynamical system with discrete time. Then, for any u-measurable
subset A of X of positive measure, and any positive integer k > 2,

nh—>Holo ess 0p(T™(A)) = 0 (X), (2.12)

where Jy, is the geometric diameter of order k given by (5), and ess 0y is the
essential geometric diameter of order k which is defined for any any positive
integer k > 2 and any p-measurable subset A of X by (1.4).

Proof. Note that the hypotheses of Theorem 2.2 are such that d;(X) = ess
0, (X) for any positive integer k > 2. Let k be an arbitrary positive integer
> 2. Since ess §; is a monotone nondecreasing set function it is clear that
(2.12) holds when 6;(X) = 0. To obtain the result it suffices to prove that
(2.12) holds for 0 < 0x(X) < 4o0.

Suppose next that 0 < 0x(X) < 400, whence also 0 < § < +o0, and
let € > 0 be given. Then, by (1.3), there exist points tuple of points
r1,%2,...,TE in X such that

w11 d(:vi,xj)>5k(X)—g.

1<i<j<k

Let m(= m(k,¢e)) be a positive integer such that

B
1+— ] -1 -
(+m5> ] <3

and let By, Ba,..., By be disjoint open balls of radius 1/2m centered at
r1,T9,...,T, respectively.

Since T : X — X is measurability-preserving strongly mixing transforma-
tions with respect to p , it follows from (1.6) that there is a positive integer
N = N(k,m) such that

J -

u(T"(A) N Bi) >0
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fori=1,2,...,k and all n > N. Let n(n > N) be given.

Let
k

B=T"A)n(|JB).
i=1
For every measurable set C' C B such that u(C) = u(B) we have u(C' N
B;) > 0 for i = 1,2,...,k, whence CN B; # @ for i = 1,2,...,k, and,
arguing as in the proof of Theorem 2.1, we obtain

0k(C) > 0p(X) —e.
It follows that
ess 0 (T"(A)) > ess 0x(B) = inf {0x(C) : C C B, u(C) = u(B)} > 0(X)—¢
for every € > 0, and for all positive integers n > N, whence

nh_}n(r)lo inf [ess 0 (T"(A))] > 0 (X).

But, clearly,
le sup [ess 0 (T"(A))] < 6 (X)

for every positive integer n, whence we obtain (2.12).
This proves Theorem 2.2. O

3. FINAL COMMENTS, CONJECTURES, AND CONCLUSIONS

There is considerable evidence (see the proof of Theorem 2.2) to support
a conjecture that our results (for strongly mixing dynamical systems with
discrete time) which are contained in Theorems 2.1 and 2.2 can be extended
to strongly mixing dynamical systems with continuous time (see [3, pp. 6-
26)).

The ordinary diameter of a set need not be a good measure of its size
and shape. A better measure is furnished by the geometric (of order k > 2,
transfinite) diameters (see [19, pp. 181-190 and (in Dover Edition) pp. 295-
297] and also [6], [7], [13], [14] and [17-20]).

B. Schweizer and A. Sklar have been concluded that comparison of (11.
6.1) with (11.3.5) in [19] and the proof of the Rice’s Theorem 1.2 quickly
leads to the following conjecture [19, Problem 11.6.5]:

Problem 3.1. (Schweizer and Sklar, 1983) Does Theorem 1.2. remain valid
when “diameter” is replaced by “transfinite diameter”?

Note that our Theorem 2.1 in this paper is a first step toward the res-
olution of the above Problem 3.1. Also note that this problem could be
formulated in a more general setting, i.e., not only for the compact set, but
also for any set (with positive measure ) in a general metric space.
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The (geometric) transfinite diameter of a compact subset A of a metric
space is closely related, and often equal, to the the capacity, and also to
the Cebysev constant. By the Fundamental Theorem of Classical Potential
Theory, we have that, for any compact set A in the complex plane,

cap (A) = 7(A) = ¢eb (A)
(see, e. g., [14] and [18]]).Thus we may also pose the following conjecture
(open problem).

Problem 3.2. Does Rice’s Theorem 1.2 remain valid when “diameter” is
replaced by “Cebysev constant”?

Acknowledgement. The authors are very grateful to the referee for his
comments which improved the presentation of this paper.
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