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ABSTRACT. We prove that the level curves of some differentiable func-
tions of two variables with unique critical point are diffeomorphic to the
circle T, and show how this result can be used in the study of local
stability of dynamical systems in dimension 2 with invariant function,
without using the Hessian. We extend the results to the level sets of an
invariant function of dynamical systems, with a synthesis exposition of
examples of improvements of previously studied order ¢ difference equa-
tions with invariant. In fine we present some differential tools for the
study of the topological nature of invariant level sets in dimension at
least three.

INTRODUCTION

We will highlight the role of level sets and unicity of critical point of
invariant functions in place of the use of Hessian, in the study of local
stability of a large class of dynamical systems, in particular those associated
to difference equations.

First we study the case of dimension 2, where special arguments permit
to identify the topological nature of the level curves. Then we study the
general case of dynamical systems with invariant in connected locally com-
pact topological spaces. We also show how our result can be applied to some
order ¢ difference equations previously studied by several authors. In the
last section, we present some tools of differential geometry which permit us
to study the topological nature of level sets of invariants of order ¢ difference
equations.
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1. THE LEVEL CURVES LEMMA

The following result can be used in the study of some planar dynamical
systems.

Lemma 1 (The level curves lemma). Let Q # () be a connected and simply
connected open subset of R%2, and V : Q — R a C' function satisfying the
two conditions :

(1) The limit V(o0) < +oo of V(x) when x tends to the infinity point of Q
exists, and V < V(o0) in Q;

(2) V has exactly one critical point p in .

Then we have the following properties:

(a) V attains its strict minimum in 0 at the point p;

(b) For every A €V (p),V(o0)], the level set C(A) := {z|V(z) = A} is
not empty and is a C' 1-dimensional compact manifold;

(c) This curve C(X\) is a C' Jordan curve which is diffeomorphic to
the circle (and thus connected); its interior contains the point p, is
exactly the connected set {z |V (z) < A}, and is homeomorphic to
the open unit disk D; its exterior is exactly the set {x |V (x) > A},
and is homeomorphic to C\ D; moreover C(\) is the boundary of
these two sets.

Proof. We will use three well-known but not easy facts.

Fact 1. The Jordan-Schonflies’ theorem: Every homeomorphism of the cir-
cle T into the plane has an extension in a homeomorphism of the plane
onto itself. This contains the classical Jordan’s theorem on a Jordan curve
I': interior homeomorphic to D, exterior homemorphic to C\ D, T is the
boundary of these two sets (see [8]).

Fact 2. The characterisation of T as a manifold: Every C' 1-dimensional
compact and connected manifold (here in the plane) is diffeomorphic to the
circle (see [15]).

Fact 3. A particular case of Riemann’s theorem: Every connected and
simply connected open set in the plane is homeomorphic to the plane (see
[16]).

(a) By (1), V has a minimum in 2, which is strict by (2), and there is no
local extremum to V except the point p.

(b) If A €]V (p), V(o0)[, C(A) is not empty by the connexity of €2, compact
by (1); it is a C! 1-dimensional manifold by (2) and the implicit function
theorem (because p ¢ C())).
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(c) () Since a manifold is locally connected, the connected components of
C(X) are open in C(\) (and of course compact), and by compactness C'())
has only finite number of connected components. Each of these components
is diffeomorphic to the circle, by Fact 2.

(xx) By Facts 1 and 3, each of these components is the boundary of its
connected interior, and the union of these two sets is homeomorphic to D,
and then compact in 2. By (x) there is at least one of these components, say
I, whose interior I contains no other component, and so I C {V # A}. By
the connexity of I, we havein I: V > XA or V < A. The first case is excluded,
by compactness and because V' has no local maximum by the proof of (a).
So V has a local minimum in I which is necessarily p by (2).

(% % x) We will prove that I' = C(A). If not, there exist other connected
components of C'(A). There are two possibilities. First, one of these compo-
nents, say I (diffeomorphic to the circle), has its interior I’ which contains
no other component, is connected, with I’ = I’ UT’ compact, by Facts 1
and 3, and with I’ C E, the exterior of I' (Fact 1 and choice of T'). By
the same reasoning than in (xx), I’ C {V < A}. So V would have a critical
point in F, and this is impossible. In the other possibility, all the other
components surround I', and there is one, say I"", which surrounds I', and no
other component by the impossibility of the first case. So in the non-empty
“annulus” between IV and T" (use Fact 1) the function V' must have a local
extremum and so a critical point different from p, and this is impossible. In
fine, one has T' = C'(\).

Now, Fact 1 implies the end of the point (c) of the lemma. O

Remark. The proof does not work if the hypothesis “) is connected and
simply connected” is omitted: in this case, some steps of the proof do not
work; for example, the arguments of compactness in points (%) and (x * )
of step (c) of the proof fail. But in fact one can prove that the hypoth-
esis (1) and (2) on the function V imply that Q is connected and simply
connected (see the Fact 4 below). In practice, this result is often unuseful,
because the open sets which tipically appear in the use of the lemma for
studying dynamical systems are naturally connected and simply connected.
Nevertheless we give a sketch of proof of this property.

Fact 4. Let be Q # () an open subset of C. Then the following assertions
are equivalent:
(1) € is connected and simply connected ;
(2) There exist a C! function V :  — R satisfying
(a) lim V(z):=V(oc0) < 400 exists, and V < V(o0) in €;
z—o00 in 2

(b) V has only one critical point in .
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Hint for the proof. The implication (1) = (2) is easy: it is obvious if @ = C
(take V (z,y) := 22 + 4?), and if not take V (z,y) := |¢(z + iy)|* where ¢ is
the conformal map of Q2 onto D (and use Cauchy-Riemann equations).

For the converse, it is first easy to see that ) is connected: if not, V'
would have a critical point in every connected component and so at least
two critical points, contrary to the hypothesis.

For the second part of the converse, we will see that if {2 is connected but
not simply connected, then every C! function V :  +— R satisfying (a) has
at least 2 critical points.

We know that 99 (in C* a2 S?) is not connected (see [16], Theorem 13.11),
and so if A is near V(co) the level set {V = A} is not connected (if OS2 splits
into two disjoint compact sets H; and Hs, and if we choose two open sets
Uy and Us such that Hy C Uy, Hy C Uy and U; N Uy = @, then {V = A}
cuts Uy and Us). But if m := minV = V(p), then p is a critical point, and
one can suppose that it is isolated. One can see, by the same method as in
point (c) of the proof of Lemma 1, that if A is near m, then the level set
{V = A} is homeomorphic to the circle, and so is connected. Now, if there
were no other critical point than p, a classical result of differential geometry
(see Section IV, Fact 6, and [15], Ch.3, Theorem 50) asserts that all the level
sets {V = p} would be homeomorphic, and this is a contradiction. U

2. APPLICATIONS OF THE LEVEL CURVES LEMMA TO DIMENSION 2
DYNAMICAL SYSTEMS

First we give a general result on dynamical systems in dimension 2. Then
we give examples of previously studied difference equations were the general
result can be used.

2.1. The general result in dimension 2.
Notations. We look at an order 2 difference equation

Up+2 = ¢(un+17un)7 (1)

where ¢ is such that the map F' : (z,y) — (¢(z,y),x) acts continuously on
an open set 2 C R2. More generally, we look at a system of two order 1
difference equations

Tp+l = f(xm Yn), Ynil = g(mn, yn), (2)

where the map F = (f, g) acts continuously on an open set Q C R2.
If My, = (up41,un), or My, = (xy,,ypn), then F(M,) = M1, and (Q, F)
is the dynamical system associated to equation (1) or to system (2).

Proposition. Consider equation (1) or system (2).
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We suppose that there is a C' function G : Q — R which is invariant,
that is Go F = G in Q, and that ), G and F satisfy three hypothesis:

(i) v lim QG(M) = G(00) < 400 exists, and G < G(o0) in Q;
— 00 In
(ii) G has at most one critical point L in  (so its minimum is G(L) :=

Gm);
(iii) F has at most one fixed point.
Then the following properties happen:

(a) The point L is the (unique) fized point of F';

(b) For K €]G,,,G(00) the level set Cx := {G = K} is non-empty and
is a C' Jordan curve which is diffeomorphic to the circle T, and
surrounds the equilibrium L;

(c) The orbit (M, = F"(My)), is included in Cq(ng), and if Mo # L
then the sequence M, does not converge;

(d) The equilibrium L is locally stable;

(e) If  C R}, then the solutions of equation (1) or of system (2) are
permanent.

Hint for the proof. First, by Fact 4, Q is connected and simply connected.
Then G(F(L)) = G(L) = Gy, and so G is minimum at F(L), so F(L) is
a critical point, and thus is the point L. Point (b) follows from the level
curves lemma. Point (c) follows from the invariant nature of G and thus
of the Cx. From the level curves lemma, for K €]G,,,G(0)[, the sets
{G < K} are open, their closures are the compact sets {G < K}, and
the intersection of these sets reduces to {L}; so the sets {G < K} form a
fundamental system of neighborhoods of L. which are stable under the action
of F'. So L is locally stable. In fine if (2 C RjQ, by the compactness of the

Cx, m = ming ec, ¥y > 0 and M 1= max(, yec, ¥y < +00, and so the

solutions of (1) or (2) are permanent. Of course, if Q is not included in R} %,
the conclusion is only that each solution is bounded. O

Notice that the local stability does not use the Hessian. In some pa-
pers the hypothesis of the previous proposition are proved, but unnecessary
tedious calculations for study the Hessian are made.

If equations (1) or (2) satisfy the proposition, some questions are:

Problems. Is the restriction of the map F' to the level curve Cx conjugated
to a rotation on the circle T? If yes, what about the angle §(K) of the
rotation? About periodic orbits or dense orbits in Cx? What are the pos-
sible periods of solutions? Is there a sort of chaotic behavior of the system?

2.2. Example: Lyness’ difference equation and some generaliza-
tions. Here we give some examples of discrete dynamical systems for which
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our result may facilitate the study of the topology of the level sets of the
first integral associated to them.

The classical order 2 Lyness’ difference equation, which is upyou, =
a+uni1, a >0, up, up > 0. Inthis case, @ = R} >, F(z,y) = ((a+x)/y, x),
the invariant function is G(z,y) = (x + 1)(y + 1)(a + = + y)/xy, and each
level set is the positive component of some elliptic cubic curve. From the
level curves lemma, such level set is diffeomorphic to the unit circle. The
behavior of the associated dynamical system was in part conjectured in [1]
and proved first in [17], a non published paper, and discovered again later,
but independently, in [2] and in [11]. In paper [2] there is some new accent on
a form of chaotic behavior of the system. A deep study of rational periodic
solutions (when a is rational) is given recently in [12].

(a) Many examples which generalize Lyness’ case are the equations in R}

a+bupi1+cul 4
c+ dupt +eu,21+1

Un+42 Up = , Uy, ug > 0.

The invariant is
G(x,y) = [ex®y* + dxy(x +y) + c(z® + y*) + b(x +y) + a]/zy,
and the level curves are the quartic curves
ex?y? + dey(x +y) + c(z®> +9°) + bz +y) +a — Kzy = 0.

These equations were introduced in [3], and the complete study is made in
[3] and [4]. The level sets are diffeomorphic to circles by the level curves
lemma; they are conics, or positive component of cubic curves, or positive
component of quartic curves. In the two last cases, the level curves lemma
is more simple than the use of Weierstrass’ function p.

(b) An interesting example where one can use the proposition is given in
[9], which studies the 2-periodic order 2 Lyness’ equation

Up42 Un = Gp + Upy1, With aopy1 = a and a9y, = 0.

The associated map F' is

F i (ugg1, uokr2) — (Uokt3, Uogta) : (2, 9)

HF(ﬂc,y)z(

a+y a+bx+y>
x Ty ’

and the invariant is

G(x,y) = [ax’y + bry® + ba® + ay® + (0* + a)x + (b+ a®)y + ab]/zy.
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(c) Another example is given in [5], where one studies the equation w2 +

% (with conditions on «, 3); the invariant is G(x,y) = 2%y +
n+1

2 +y — Bry — alz +y).
In all examples of this part, answers to the problems evoked in Section I
are given, see the corresponding references.

Up —

3. AN ABSTRACT LEVEL SETS LEMMA, SOME EXAMPLES OF APPLICATIONS

In this section, we give a more or less classic general result for a dynamical
system with invariant. Then we give examples of applications to order ¢
difference equations.

3.1. The general assertion.

Lemma 2 (The level sets lemma). Let be X a connected and locally compact
space. Let be F': X — X and G : X — R two continuous maps. We
suppose that the following conditions hold:

(i) G has a strict minimum G, at a point L, and no other local mini-
mum;

(ii) Vz € X, Go F(z) = G(z) (G is an invariant function);

(iii) F has at most one fized point.

(iv) G(o0) := m_}lgonilnXG(:c) < 400 ezists, and G(x) < G(o0) in X.

Then we have:
(1) the point L is the (unique) fized point of F';
(2) for K €]Gp,,G(c0)[, the level set Cx := {G = K} is compact and
non-empty;
(3) if My € X let be M, 11 = F(M,) the points of the orbit of My under
F; then M, € Cg(my), and if Mo # L, then the sequence (M) does not
converge.
(4) the equilibrium point L is locally stable.
(5) for K €|G,,,G(0)], the set Cx is the boundary of the open set Uy :=
{G < K} which is a connected relatively compact set.

The proof of this lemma is given in [4]. It gives a tool for proving local
stability only with properties of the level sets of the invariant, in the spirit
of the use of Lyapunov functions (see [14]): the key is the existence of
fundamental neighborhoods of L which are invariant.

3.2. Applications to dynamical systems in RY, linked to difference
equations. In the applications, hypothesis (i) of Lemma 2 follows often
from the following property:

(UCP) The invariant function G is of class C! and has a unique critical
point in X.
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(a) The order ¢ Lyness’ difference equation

Un+t+q = [CL + Untg—1+ -+ un—l—l] /uny

with @ > 0, ug,u1,...,ug—1 > 0, is the first example. In this case, the space
X is R}Y, and F is defined by

F(x1,22,...,2q) = ([a—i—a:l + - —i—xq_l]/xq, T1,%9, .. .,xq_l),

if we take M;,, = (Un+4q—1,- ., Upn). 1t is classical that there is a first invariant
function

G(z1,.. . xq) = [(z1+1)(z2+1). . (zg+ 1) (a+a1+T2+- - +Tq)] /21 2. . T4

It is proved in [6] that G has property (UCP) and that the dynamical system
(Rf?, F) satisfies the hypothesis of Lemma 2. So the equilibrium is locally
stable, and the solutions are permanent. In the case ¢ = 3 a study is given
for the first time in [10], and an other point of view is in [6]; in this two
papers, answers to the problems of part 2.1 are given.

(b) The g-periodic order ¢ Lyness equation

Untq = (1 + Untg—1+ -+ Unt1)/Pn tn

with p, > 0 and g¢-periodic, and with ug,u1,...,uq—1 > 0, is the second
example. If ¢ = 2 (and only in this case) it is the same problem as in (b) of

Section II.2. This equation is studied in [13]. The authors prove that if one
(0) (1) (¢—1)

put xn’ = Ugn, Tn = Ugn—1, ---,Tn = Ugn—q+1, We obtain a dynamical
system in R} ? which has an invariant function
1 1
G(zo, ..., xg—1) = (1+—). . .<1+ >(1+$n+- A+ Tp_gy1)
T'n—q+1 Tn—g+1 T'n Tn

where the r; are the g values of the periodic function n +— p,. There is a
unique equilibrium and (UCP) is satisfied. Moreover, property (iv) of the
Lemma 2 is easy to prove. So the local stability is true, and the tedious
calculations in [13] with the Hessian are unnecessary.

4. DIFFERENTIAL AND GEOMETRIC TOOLS FOR LEVEL SETS OF
INVARIANTS IN R? WHEN ¢ > 3

Lemma 2 is a good tool for proving local stability, but it says nothing
about the topological nature of the level sets of invariant functions when
q > 3. A natural question which generalizes the 2-dimensional situation is
the following:

Question. Under hypothesis of Lemma 2 for X an open subset of RY, are
the level sets of the invariant homeomorphic to the sphere S9=1?
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If (UCP) is true, the level sets {G = K} are manifolds. In this case, the
following result of Reeb may be useful (see [15] ch.III H).

Fact 5 (Reeb’s theorem). If C is a C! k-dimensional compact manifold, and
if there is a C'! numerical function f on C which has exactly 2 critical points
(which can even be degenerated), then C is homeomorphic to the sphere S¥,

For example, the first invariant G of order ¢ Lyness’ difference equation
has easily (UCP) property (see [6]), and so for K €]G,,,G(c0)[ the level
sets Cx = {G = K} are differentiable manifolds. It is proved easily in [6]
that the function f(z1,...,24) := Y +_; 2; has exactly two critical points on
Crk. So Ck is homeomorphic to the (¢ — 1)-dimensional sphere.

In some cases it is possible to prove the homeomorphism to spheres of the
level sets {H = K} of an invariant H (satisfying Lemma 2) only when K
is sufficiently near to the minimum H,, of H (at the fixed point L). In this
case, property (UCP) permits to have an homeomorphism to spheres for all
values of K €]H,, , H(o0)][, from the following useful result (see [15] Ch. 3
Theorem 50):

Fact 6. Let be V a differential manifold, and f : V +— R a smooth function,
such that
(i) f has a unique critical point «, at its absolute minimum m = f(«);
(ii) For every A, p such that m < X < p, the subset V{' :=
f(x) < p} is compact.
Then there is a diffeomorphism of V which maps V) onto V.

For example, in [6] and [7] this method is used for proving that for ¢ = 3,4
and 5 the level sets of the second invariant H for order ¢ Lyness’ difference
equation (6) are homeomorphic to spheres, where the second invariant is
given by

q—1
H(zi,...,2q) := [H(l +aj+zi)|(a+zi2g + 21+ Fxg)/T120. . 24
j=1
For ¢ > 6, the difficulty is to prove the (UCP) property, the problem remains
open.

Acknowledgment. Thanks to Jacques Lafontaine (Montpellier, France)
for fruitful dicussions about Fact 4.
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