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ON THE GLOBAL BEHAVIOR OF THE RATIONAL

SYSTEM
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Abstract. We investigate the system of rational difference equations
in the title, where the parameters and the initial conditions are positive
real numbers. We show that the system is permanent and has a unique
positive equilibrium which is locally asymptotically stable. We also find
sufficient conditions to insure that the unique positive equilibrium is
globally asymptotically stable.

1. Introduction

We show that the system of rational difference equations
xn+1 =

α1

xn + yn
, n = 0, 1, . . .

yn+1 =
α2 + β2xn + yn

yn

(1)

is permanent, where the parameters α1, α2, β2 and the initial conditions
x0, y0 of the system are positive real numbers. We actually show that there
exist positive real numbers l1, l2, L1, L2 such that for every positive solution
{(xn, yn)}∞n=0 of System (1), we have

l1 < xn < L1 and l2 < yn < L2 for n ≥ 3.

We show that the system has a unique positive equilibrium which is locally
asymptotically stable. We also find sufficient conditions to insure that the
unique positive equilibrium is globally asymptotically stable.
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For the last four years we have been interested in the boundedness char-
acter and the global behavior of systems of rational difference equations.
This paper is part of a general project which involves the system of rational
difference equations

xn+1 =
α1 + β1xn + γ1yn
A1 +B1xn + C1yn

, n = 0, 1, . . .

yn+1 =
α2 + β2xn + γ2yn
A2 +B2xn + C2yn

which includes 2401 special cases. In the numbering system which was
introduced by Camouzis, Kulenović, Ladas, and Merino in ([6]), System
(1) is #(12, 41). Related work has recently been given in ([1]-[11]) and
([14]-[19]).

The following well-known result is needed for the local asymptotic stabil-
ity analysis of the equilibrium of System (1).

Theorem 1.1. Let F = (f, g) be a continuously differentiable function de-
fined on an open set W in R2, and let (x̄, ȳ) in W be a fixed point of F.

(1) If all the eigenvalues of the Jacobian matrix JF (x̄, ȳ) have modulus
less than one, then the equilibrium point (x̄, ȳ) is locally asymptoti-
cally stable.

(2) If at least one of the eigenvalues of the Jacobian matrix JF (x̄, ȳ)
has modulus greater than one, then the equilibrium point (x̄, ȳ) is
unstable.

The following theorem gives necessary and sufficient conditions for the
two roots of a quadratic equation to have modulus less than one.

Theorem 1.2. ([13]) Assume p and q are real numbers. Then a necessary
and sufficient condition for both roots of the equation

λ2 + pλ+ q = 0

to have modulus less than 1 is that

|p| < 1 + q < 2.

The next theorem gives a sufficient condition to insure that there exists a
unique positive equilibrium, and it is a global attractor. Let k be a positive
integer. For i ∈ {1, . . . , k}, assume [ai, bi] is a closed and bounded interval,
and let F i : [a1, b1] × . . . × [ak, bk] → [ai, bi] be a continuous function. For
each i, j ∈ {1, . . . , k}, let Mi,j : [ai, bi] → [ai, bi] and mi,j : [ai, bi] → [ai, bi]
be defined as follows: given mi,Mi ∈ [ai, bi]
set

Mi,j(mi,Mi) =

{
Mi, if Fj is increasing in zi
mi, if Fj is non− increasing in zi
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and
mi,j(mi,Mi) = Mi,j(Mi,mi).

Theorem 1.3. ([12]) Assume that each i ∈ {1, . . . , k}, [ai, bi] is a closed
and bounded interval of real numbers, and the function

F i : C([a1, b1]× . . .× [ak, bk], [ai, bi]),

satisfies the following conditions:

(1) F i(z1, . . . , zk) is weakly monotonic in each of its arguments.
(2) If M1, . . . ,Mk,m1, . . . ,mk, where mi ≤ Mi for each i ∈ {1, . . . , k},

is a solution of the system of 2k equations: Mi = F i(M1,i(m1,M1), . . . ,Mk,i(mk,Mk))
, i ∈ {1, . . . , k}

mi = F i(m1,i(m1,M1), . . . ,mk,i(mk,Mk))

then
Mi = mi, for all i ∈ {1, . . . , k}.

Then the system of k difference equations:
x1n+1 = F 1(x1n, . . . , x

k
n)

x2n+1 = F 2(x1n, . . . , x
k
n) , n = 0, 1, . . .

...
xkn+1 = F k(x1n, . . . , x

k
n)

with initial condition (x10, . . . , x
k
0) ∈ [a1, b1] × . . . × [ak, bk], has exactly one

equilibrium point (x̄1, . . . , x̄k), and it is a global attractor.

2. Local stability of system (1)

Lemma 2.1. System (1) has a unique equilibrium (x̄, ȳ). Moreover, (x̄, ȳ)
is locally asymptotically stable.

Proof. Suppose (x̄, ȳ) is a feasible equilibrium of System (1). That is

x̄ =
α1

x̄+ ȳ
and ȳ =

α2 + β2x̄+ ȳ

ȳ
.

Note that x̄ <
√
α1 and ȳ =

α1 − x̄2

x̄

and so
α1 − x̄2

x̄
= ȳ =

α2 + β2x̄+ ȳ

ȳ
=

α2 + β2x̄+ α1−x̄2

x̄
α1−x̄2

x̄

.

After simplifying we have

α2x̄
2 + β2x̄

3 + α1x̄− x̄3 − (α1 − x̄2)2 = 0.
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Set
f(x) = x4 + (1− β2)x

3 − (2α1 + α2)x
2 − α1x+ α2

1. (2)

Thus in order to show that there exists a unique equilibrium (x̄, ȳ), it
suffices to show f(x) = 0 has a unique positive solution less than

√
α1. By

Descartes’ rule of signs we know (2) has at most two positive roots. We also
see that f(0) = α2

1 > 0 and f(
√
α1) = −α1(

√
α1β2 + α2) < 0. Since f(x) is

a fourth degree polynomial with a positive leading coefficient we know that
it has a minimum of two positive roots. Therefore there are exactly two
positive roots; one root is less than

√
α1, and the other is greater than

√
α1.

Thus the proof is complete. �
We shall now investigate the linearized stability of the equilibrium (x̄, ȳ)

of System (1).
Let

f(x, y) =
α1

x+ y
and g(x, y) =

α2 + β2x+ y

y
.

Then

J(x̄,ȳ)=


∂f

∂x̄

∂f

∂ȳ

∂g

∂x̄

∂g

∂ȳ

=


−α1

(x̄+ ȳ)2
−α1

(x̄+ ȳ)2

β2
ȳ

−(α2 + β2x̄)

ȳ2

=


−x̄2

α1

−x̄2

α1

β2
ȳ

1− ȳ

ȳ

 .

The characteristic equation of the linearized equation of System (1) about
the equilibrium (x̄, ȳ) is

λ2 +
x̄2ȳ − α1(1− ȳ)

α1ȳ
λ+

x̄2(ȳ − 1 + β2)

α1ȳ
= 0.

By Theorem 1.2 we see that both roots are real and lie within the unit disk.
Therefore by Theorem 1.1, the unique positive equilibrium (x̄, ȳ) is locally
asymptotically stable.

3. Permanence

We say that System (1) is permanent if there exists real numbers l1, L1, l2,
and L2 such that for every positive solution {(xn, yn)}∞n=0 of System (1),
there exists an integer N ≥ 0, such that

l1 < xn < L1 and l2 < yn < L2 for every integer n ≥ N.

With this in mind, define l1, L1, l2, and L1 as follows:

(1) l1 =
α1

α1 + α2 + 1 + β2α1
(2) L1 = α1

(3) l2 = 1
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(4) L2 = α1 + 1 + β2α1.

Theorem 3.1. System (1) is permanent. In particular, let {(xn, yn)}∞n=0

be a positive solution of System (1). Then for every integer n ≥ 4, we have

l1 < xn < L1 and l2 < yn < L2.

Proof. Given a non-negative integer n ≥ 0, note that

xn+1 =
α1

xn + yn
∈ (0,∞)

and

yn+1 =
α2 + β2xn + yn

yn
=

α2 + β2xn
yn

+ 1 ∈ (1,∞).

Thus yn > 1 = l2 for n ≥ 1.

Hence if n ≥ 1, then

0 < xn+1 =
α1

xn + yn
<

α1

0 + 1
= α1

and so xn < L1 for n ≥ 2.

Hence if n ≥ 2, then

yn+1 =
α2 + β2xn + yn

yn
<

α2 + β2α1 + 1

1
= L2.

That is, for every integer n ≥ 3 we have

l2 < yn < L2.

If n ≥ 3, then

xn+1 =
α1

xn + yn
>

α1

α1 + α2 + β2α1 + 1
= l1.

That is, for every integer n ≥ 4 we have

l1 < xn < L1

and the proof is complete. �

4. Global asymptotic stability of System (1)

The following theorem gives a sufficient condition for the unique equilib-
rium of System (1) to be globally asymptotically stable.
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Theorem 4.1. Suppose that either

0 < α2 ≤
α1β

2
2

1 + β2
− 2

√
α1β2

2

1 + β2

or

α1β
2
2

1 + β2
≤ α2.

Then the unique equilibrium point (x̄, ȳ) is globally asymptotically stable.

Proof. The proof will be by Theorem 1.3. For (x, y) ∈ [0,∞)× (0,∞), set

f(x, y) =
α1

x+ y
and g(x, y) =

α2 + β2x+ y

y

and letR = [a, b]×[c, d] = [0, α1]×[1, α2+β2α1+1]. Let T : [0,∞)×(0,∞) →
(0,∞)× (0,∞) be given by T (x, y) : (f(x, y), g(x, y)).

We shall first show that T [R] ⊂ R. Suppose (x, y) ∈ R. It suffices to show
that

f(x, y) ∈ [a, b] and g(x, y) ∈ [c, d].

(1) We shall first show that a < f(x, y).
Note that

a = 0 <
α1

x+ y
= f(x, y).

(2) We shall next show that f(x, y) ≤ b.
We have

f(x, y) =
α1

x+ y
≤ α1

a+ c
=

α1

0 + 1
= α1 = b.

(3) We shall next show that c < g(x, y).

c = 1 <
α2 + β2x

y
+ 1 =

α2 + β2x+ y

y
= g(x, y).

(4) Finally, we shall show that g(x, y) ≤ d.
Now

g(x, y) =
α2 + β2x+ y

y
≤ α2 + β2b+ 1

1
= α2 + β2α1 + 1 = d.

Thus T [R] ⊂ R.
Clearly f is strictly decreasing in x and strictly decreasing in y, and g is

strictly increasing in x and strictly decreasing in y. So to apply Theorem
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1.3, suppose (m1,M1,m2,M2) ∈ [0, α1]
2× [1, α2+1+β2α1]

2 is a solution of
the system of equations

m1 =
α1

M1 +M2
, M1 =

α1

m1 +m2

m2 =
α2 + β2m1 +M2

M2
, M2 =

α2 + β2M1 +m2

m2

with

0 ≤ m1 ≤ M1 ≤ α1 and 1 ≤ m2 ≤ M2 ≤ α2 + 1 + β2α1.

It suffices to show that

m1 = M1 and m2 = M2.

For the sake of contradiction, suppose that this is not the case.
Now

m1M1 +m1M2 = α1 = M1m1 +M1m2

and so m1M2 = M1m2. Since m1 =
α1

M1 +M2
, we see m1 is positive, and so

as m1M2 = M1m2, we have

0 < m1 < M1 and 1 < m2 < M2.

Hence

M2 =
m2

m1
M1.

We also have

α2 + β2m1 +M2 = m2M2 = α2 + β2M1 +m2.

Therefore β2m1 +M2 = β2M1 +m2, and hence

M2 −m2 = β2M1 − β2m1.

Thus

β2(M1 −m1) = M2 −m2 =
m2

m1
M1 −m2 =

m2

m1
(M1 −m1).

So as M1 ̸= m1, we have

β2 =
m2

m1
̸= 0.

That is,

m2 = β2m1 and M2 = β2M1.

Recall that

m1 =
α1

M1 +M2
=

α1

M1 + β2M1
=

α1

(1 + β2)M1
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and so

m1M1 =
α1

1 + β2
.

Thus

(1) M1 =
α1

1 + β2
· 1

m1
.

(2) m2 = β2m1.

(3) M2 = β2M1 =
α1β2
1 + β2

· 1

m1
.

In particular, since m2 = β2m1, we see that

1

β2
m2M2 = m1M2 =

α1β2
1 + β2

and so

m2M2 =
α1β

2
2

1 + β2
.

Thus

α1β
2
2

1 + β2
= m2M2 = α2 + β2m1 +M2

= α2 + β2m1 + β2M1

= α2 + β2m1 +
α1β2
1 + β2

· 1

m1

and so

0 = β2m
2
1 +

(
α2 −

α1β
2
2

1 + β2

)
m1 +

α1β2
1 + β2

.

We also have

α1β
2
2

1 + β2
= m2M2 = α2 + β2M1 +m2 = α2 + β2M1 + β2m1

= α2 + β2M1 +
α1β2
1 + β2

· 1

M1

and thus

0 = β2M
2
1 +

(
α2 −

α1β
2
2

1 + β2

)
M1 +

α1β2
1 + β2

.

That is, m1 and M1 are the two distinct roots of the quadratic equation

β2z
2 +

(
α2 −

α1β
2
2

1 + β2

)
z +

α1β2
1 + β2

= 0.
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Hence

0 < m1 =

(
α1β

2
2

1 + β2
− α2

)
−

√(
α2 −

α1β2
2

1 + β2

)2

− 4α1β2
2

1 + β2

2β2

and

m1 < M1 =

(
α1β

2
2

1 + β2
− α2

)
+

√(
α2 −

α1β2
2

1 + β2

)2

− 4α1β2
2

1 + β2

2β2
.

So by our hypothesis this is a contradiction, and the proof of the theorem
is complete.

�

Extensive computer simulations lead us to the following conjecture:

Conjecture 4.1. The unique positive equilibrium of System (1) is globally
asymptotically stable for the entire range of the parameters.
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