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A2 + B2xn + C2yn
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Abstract. In this paper we investigate the global stability character of
the rational system in the title with the parameters B1, B2, A2+C2 pos-
itive, the parameters A1, α2, β2, A2, C2 nonnegative, and with arbitrary
nonnegative initial conditions such that the denominators are always
positive.

1. Introduction and Preliminaries

In this paper we investigate the global stability character of the rational
system

xn+1 =
α1

A1 +B1xn + yn
and yn+1 =

α2 + β2xn
A2 +B2xn + C2yn

, n = 0, 1, . . . ,

(1.1)
with

B1, B2, A2 + C2 > 0 and A1, α2, β2, A2, C2 ≥ 0

and with arbitrary nonnegative initial conditions x0 and y0 such that the
denominators are always positive.

In the notation that was introduced in [12], System (1.1) contains the
following 18 special cases:

#(12, 11): xn+1 =
α1

xn+yn
, yn+1 =

α2
1+xn

#(37, 11): xn+1 =
α1

A1+xn+yn
, yn+1 =

α2
1+xn
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#(12, 12): xn+1 =
1

B1xn+yn
, yn+1 =

1
B2xn+yn

#(37, 12): xn+1 =
1

A1+B1xn+yn
, yn+1 =

1
B2xn+yn

#(12, 17): xn+1 =
α1

xn+yn
, yn+1 =

xn
A2+xn

#(37, 17): xn+1 =
α1

A1+xn+yn
, yn+1 =

xn
A2+xn

#(12, 18): xn+1 =
α1

xn+yn
, yn+1 =

xn
B2xn+yn

#(37, 18): xn+1 =
α1

A1+xn+yn
, yn+1 =

xn
B2xn+yn

#(12, 32): xn+1 =
α1

xn+yn
, yn+1 =

α2+β2xn

1+xn

#(37, 32): xn+1 =
α1

A1+xn+yn
, yn+1 =

α2+β2xn

1+xn

#(12, 33): xn+1 =
1

xn+yn
, yn+1 =

α2+β2xn

B2xn+yn

#(37, 33): xn+1 =
1

A1+xn+yn
, yn+1 =

α2+β2xn

B2xn+yn

#(12, 37): xn+1 =
α1

xn+yn
, yn+1 =

1
A2+B2xn+yn

#(37, 37): xn+1 =
α1

A1+xn+yn
, yn+1 =

1
A2+B2xn+yn

#(12, 39): xn+1 =
α1

xn+yn
, yn+1 =

xn
A2+B2xn+yn

#(37, 39): xn+1 =
α1

A1+xn+yn
, yn+1 =

xn
A2+B2xn+yn

#(12, 44): xn+1 =
α1

xn+yn
, yn+1 =

α2+xn
A2+B2xn+yn

#(37, 44): xn+1 =
α1

A1+xn+yn
, yn+1 =

α2+xn
A2+B2xn+yn

An important ingredient in understanding the global stability character
of a system of difference equations, and thus for the special cases of System
(1.1), is the boundedness nature of its solutions. Interestingly, all of the 18
special cases of System (1.1) have the boundedness characterization (B,B),
that is, both components are always bounded. For the proofs of these see
[9], [14], and [15].

In addition to the boundedness characterization (B,B) of the solutions
of System (1.1), we are interested in determining whether every solution
converges to a finite limit, or every solution converges to a periodic solution.

Actually, for System (1.1) we offer the following conjecture.

Conjecture 1.1. Every solution of System (1.1) converges to a (not neces-
sarily prime) period-two solution.

Conjecture 1.1 has been confirmed for System #(12, 12) in [37], and for
System #(12, 18) in [15]. In this paper we confirm Conjecture 1.1 for the



ON THE GLOBAL CHARACTER OF THE RATIONAL SYSTEM 295

following 9 special cases:

#(12, 11),#(12, 17),#(12, 32),#(12, 37),#(37, 11),

#(37, 12),#(37, 17),#(37, 32),#(37, 37).

Conjecture 1.1 has not yet been confirmed (or refuted) for the following
7 special cases:

#(12, 33),#(12, 39),#(12, 44),#(37, 18),

#(37, 33),#(37, 39),#(37, 44).

In our investigation the following theorems will play a crucial role.

Theorem 1.1. ([24] or [26]) Assume that p and q are real numbers. Then
a necessary and sufficient condition for both roots of the equation

λ2 + pλ+ q = 0

to lie inside the unit circle is

|p| < 1 + q < 2.

Theorem 1.2. (Amleh, Camouzis, and Ladas, [1]) Let I be a set of real
numbers and let

F : I × I → I

be a function F (u, v) which increases in both variables. Then for every
solution {xn}∞n=−1 of equation

xn+1 = F (xn, xn−1), n = 0, 1, . . .

the subsequences {x2n} and {x2n+1} of even and odd terms of the solution
do exactly one of the following:

i) Eventually they are both monotonically increasing.
ii) Eventually they are both monotonically decreasing.
iii) One of them is monotonically increasing and the other is monoton-

ically decreasing.

Theorem 1.3. (Camouzis and Ladas, [13]) Let I be a set of real numbers
and let

F : I × I → I

be a function F (u, v) which decreases in the first and increases in the second
variable. Then for every solution {xn}∞n=−1 of equation

xn+1 = F (xn, xn−1), n = 0, 1, . . .

the subsequences {x2n} and {x2n+1} of even and odd terms of the solution
do exactly one of the following:

i) They are both monotonically increasing.
ii) They are both monotonically decreasing.
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iii) Eventually, one of them is monotonically increasing and the other is
monotonically decreasing.

The next theorem is a new global stability result which we employed
to establish the global stability character of Systems #(12, 17), #(37, 17),
#(12, 32), and #(37, 32).

Theorem 1.4. Let

xn+1 = f(xn, xn−1), n = 0, 1, . . . (1.2)

with

(1) f ∈ C[(0,∞)× (0,∞), (0,∞)].
(2) f(x, y) is decreasing in x and y.
(3) xf(x, x) is increasing in x.
(4) Equation (1.2) has a unique positive equilibrium point x̄.

Then every positive solution {xn}∞n=−1 of Eq. (1.2) which is bounded from
above and from below by positive constants converges to x̄.

Proof. Let {xn}∞n=−1 be a positive solution of Eq. (1.2) which is bounded
from above and from below by positive constants. Therefore we have that

I = lim inf
n→∞

xn and S = lim sup
n→∞

xn

both exist and are finite positive numbers.
We show that I = S. Assume, for the sake of contradiction, that I < S.

For each ε > 0 there exists N = N(ε) such that for all n ≥ N

I − ε < xn < S + ε.

Therefore we have

xn+1 < f(I − ε, I − ε), for all n ≥ N

and

xn+1 > f(S + ε, S + ε), for all n ≥ N.

Since ε is arbitrary the previous two inequalities become respectively

S ≤ f(I, I) (1.3)

and

I ≥ f(S, S). (1.4)

From (1.3) and (1.4) we have

Sf(S, S) ≤ SI ≤ If(I, I) ⇒ Sf(S, S) ≤ If(I, I) ⇔ S ≤ I

which is a contradiction. �
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Theorem 1.5. (Kulenovic, Ladas, and Sizer, [13] or [27]) Let [a, b] be a
closed and bounded interval of real numbers and let F ∈ C([a, b]k+1, [a, b])
satisfy the following conditions:

(1) F (z1, . . . , zk+1) is monotonic in each of its arguments.
(2) For each m,M ∈ [a, b] and for each i ∈ {1, . . . , k + 1}, we define

Mi(m,M) =

{
M if F is increasing in zi
m if F is decreasing in zi

and

mi(m,M) =Mi(M,m)

and we assume that if (m,M) is a solution of the system:

M = F (M1(m,M), . . . ,Mk+1(m,M))
m = F (m1(m,M), . . . ,mk+1(m,M))

}
,

then M = m.
Then the difference equation

yn+1 = F (yn, yn−1, . . . , yn−k), n = 0, 1, . . . (1.5)

has a unique equilibrium point ȳ ∈ [a, b] and every solution of Eq.
(1.5), with initial conditions in [a, b], converges to ȳ.

For further reading on difference equations and systems of difference equa-
tions see [2], [4]-[8], [10], [11], [13], [16]-[26], [25], [28]-[36], [38].

2. Systems #(12, 11) and #(37, 11)

Consider the system

xn+1 =
α1

A1 + xn + yn
and yn+1 =

α2

1 + xn
, n = 0, 1, . . . (2.1)

with

α1, α2 > 0 and A1 ≥ 0.

When

A1 = 0

System (2.1) is System #(12, 11) and when

A1 > 0

System (2.1) is System #(37, 11).
For System (2.1) we show that every solution has a finite limit.
System (2.1) has a unique equilibrium point (x̄, ȳ), and x̄ is the unique

positive real root of the cubic equation

x̄3 + (A1 + 1)x̄2 + (A1 + α2 − α1)x̄− α1 = 0.
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The characteristic equation of the linearized system of System (2.1) about
(x̄, ȳ) is

λ2 +
α1

(A1 + x̄+ ȳ)2
λ− α1α2

(1 + x̄)2(A1 + x̄+ ȳ)2
= 0.

According to Theorem 1.1 a necessary and sufficient condition for both
roots of the above equation to lie inside the unit circle is

α1

(A1 + x̄+ ȳ)2
< 1− α1α2

(1 + x̄)2(A1 + x̄+ ȳ)2
< 2. (2.2)

The right-hand side inequality of condition (2.2) is trivially true. For the
left-hand side inequality of condition (2.2), using the equilibrium equations

x̄ =
α1

A1 + x̄+ ȳ
and ȳ =

α2

1 + x̄
,

we have

α1(1 + x̄)2 < (1 + x̄)2(A1 + x̄+ ȳ)2 − α1α2

⇔ x̄(A1 + x̄+ ȳ)(1 + x̄)2 < (1 + x̄)2(A1 + x̄+ ȳ)2 − x̄(A1 + x̄+ ȳ)ȳ(1 + x̄)

⇔ x̄(1 + x̄) < (1 + x̄)(A1 + x̄+ ȳ)− x̄ȳ

⇔ A1(1 + x̄) + ȳ > 0

which is true. It follows that (x̄, ȳ) is locally asymptotically stable for all
values of the parameters α1, A1, and α2.

The boundedness character of System (2.1) is described by the following
lemma. For its proof see [9] or [14].

Lemma 2.1. Both components {xn} and {yn} of System (2.1) are bounded
from above and from below by positive constants.

By substituting the value of yn from the second equation of the system
into the first we see that the component {xn} satisfies the second order
rational difference equation

xn+1 =
α1

A1 + xn + α2
1+xn−1

=
α1 + α1xn−1

A1 + α2 + xn +A1xn−1 + xnxn−1
, n = 1, 2, . . . . (2.3)

The function

f(x, y) =
α1 + α1y

A1 + α2 + x+A1y + xy

associated with Eq. (2.3) is decreasing in the first and increasing in the
second argument. Then by employing Theorem 1.3 it follows that the sub-
sequences {x2n} and {x2n+1} both converge to x̄, since Eq. (2.3) has no
prime period-two solutions.
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To establish that Eq. (2.3) has no prime period-two solutions we assume,
for the sake of contradiction, that

. . . ϕ, ψ, ϕ, ψ, . . .

is a prime period-two solution of Eq. (2.3). Then

ϕ =
α1 + α1ϕ

A1 + α2 + ψ +A1ϕ+ ϕψ
and ψ =

α1 + α1ψ

A1 + α2 + ϕ+A1ψ + ϕψ

and so
α1 + α1ϕ = (A1 + α2)ϕ+ ϕψ +A1ϕ

2 + ϕ2ψ (2.4)

and
α1 + α1ψ = (A1 + α2)ψ + ϕψ +A1ψ

2 + ψ2ϕ. (2.5)

By subtracting (2.5) from (2.4) and then by dividing the result by ϕ− ψ
we obtain

α1 = A1 + α2 +A1(ϕ+ ψ) + ϕψ. (2.6)

By substituting the value of α1 from (2.6) into (2.4) we obtain

A1 + α2 +A1ϕ+A1ψ +A1ϕψ = 0

which is a contradiction.
According to the preceding discussion the next result follows.

Theorem 2.1. The unique equilibrium point of System (2.1) is globally
asymptotically stable.

For an alternative proof of Theorem 2.1 see Section 6.

3. Systems #(12, 17) and #(37, 17)

Consider the system

xn+1 =
α1

A1 + xn + yn
and yn+1 =

xn
A2 + xn

, n = 0, 1, . . . (3.1)

with
α1, A2 > 0 and A1 ≥ 0.

When
A1 = 0

System (3.1) is System #(12, 17) and when

A1 > 0

System (3.1) is System #(37, 17).
For System (3.1) we show that every solution has a finite limit.
System (3.1) has a unique equilibrium point (x̄, ȳ), and x̄ is the unique

positive real root of the cubic equation

x̄3 + (A1 +A2 + 1)x̄2 + (A1A2 − α1)x̄− α1A2 = 0.
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The characteristic equation of the linearized system of System (3.1) about
(x̄, ȳ) is

λ2 +
α1

(A1 + x̄+ ȳ)2
λ+

α1A2

(A2 + x̄)2(A1 + x̄+ ȳ)2
= 0.

According to Theorem 1.1 a necessary and sufficient condition for both
roots of the above equation to lie inside the unit circle is

α1

(A1 + x̄+ ȳ)2
< 1 +

α1A2

(A2 + x̄)2(A1 + x̄+ ȳ)2
< 2. (3.2)

By using the equilibrium equations

x̄ =
α1

A1 + x̄+ ȳ
(3.3)

and

ȳ =
x̄

A2 + x̄
(3.4)

condition (3.2) can be written as

x̄2

α1
< 1 +

A2

α1
ȳ2 < 2. (3.5)

From (3.3) we have

x̄2 =
α2
1

(A1 + x̄+ ȳ)2
<
α2
1

x̄2
⇒ x̄4 < α2

1

⇒ x̄2 < α1 < α1 +A2ȳ
2 ⇒ x̄2

α1
< 1 +

A2

α1
ȳ2,

and so the left-hand side inequality of (3.5) holds. Using now both (3.3) and
(3.4) we have

x̄2 =
α2
1

(A1 + x̄+ ȳ)2
⇒ ȳ2(A2 + x̄)2 =

α2
1

(A1 + x̄+ ȳ)2

⇒ ȳ2 =
α2
1

(A2 + x̄)2(A1 + x̄+ ȳ)2
<

α2
1

A2
2ȳ

2

⇒ A2
2ȳ

4 < α2
1 ⇒

A2

α1
ȳ2 < 1,

and so the right-hand side inequality of (3.5) holds. It follows that (x̄, ȳ) is
locally asymptotically stable for all values of the parameters α1, A1, and A2.

The boundedness character of System (3.1) is described by the following
lemma. For its proof see [9] or [14].

Lemma 3.1. Both components {xn} and {yn} of System (3.1) are bounded
from above and from below by positive constants.
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By substituting the value of yn from the second equation of the system
into the first we see that the component {xn} satisfies the second order
rational difference equation

xn+1 =
α1

A1 + xn + xn−1

A2+xn−1

=
α1A2 + α1xn−1

A1A2 +A2xn + (1 +A1)xn−1 + xnxn−1
, n = 1, 2, . . . . (3.6)

The function

f(x, y) =
α1A2 + α1y

A1A2 +A2x+ (1 +A1)y + xy

associated with Eq. (3.6) is decreasing in both variables and the function
xf(x, x) is increasing. Therefore, in view of Lemma 3.1 and by Theorem 1.4
it follows, that every positive solution of Eq. (3.6) converges to x̄. From
this and the second equation of the system the next theorem follows.

Theorem 3.1. The unique equilibrium point of System (3.1) is globally
asymptotically stable.

4. Systems #(12, 32) and #(37, 32)

Consider the system

xn+1 =
α1

A1 + xn + yn
and yn+1 =

α2 + β2xn
1 + xn

, n = 0, 1, . . . (4.1)

with

α1, α2, β2 > 0 and A1 ≥ 0.

When

A1 = 0

System (4.1) is System #(12, 32) and when

A1 > 0

System (4.1) is System #(37, 32).
For System (4.1) we show that every solution has a finite limit.
When α2 = β2, System (4.1) reduces to

xn+1 =
α1

A1 + α2 + xn
and yn+1 = α2, n = 1, 2, . . . ,

for which every solution converges to a finite number. In the sequel, we
consider the case where α2 ̸= β2.

System (4.1) has a unique equilibrium point (x̄, ȳ), and x̄ is the unique
positive real root of the cubic equation

x̄3 + (A1 + β2 + 1)x̄2 + (A1 + α2 − α1)x̄− α1 = 0. (4.2)
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The characteristic equation of the linearized system of System (4.1) about
(x̄, ȳ) is

λ2 +
α1

(A1 + x̄+ ȳ)2
λ+

(β2 − α2)α1

(1 + x̄)2(A1 + x̄+ ȳ)2
= 0.

According to Theorem 1.1 a necessary and sufficient condition for both
roots of the above equation to lie inside the unit circle is

α1

(A1 + x̄+ ȳ)2
< 1 +

α1(β2 − α2)

(1 + x̄)2(A1 + x̄+ ȳ)2
< 2. (4.3)

By using the equilibrium equations

x̄ =
α1

A1 + x̄+ ȳ
(4.4)

and

ȳ =
α2 + β2x̄

1 + x̄
(4.5)

condition (4.3) can be written as

x̄2

α1
< 1 +

(β2 − α2)x̄
2

α1(1 + x̄)2
< 2. (4.6)

For the left-hand side inequality of (4.6) we have

x̄2(1 + x̄)2 < α1(1 + x̄)2 + (β2 − α2)x̄
2

⇔ x̄2(1 + x̄)2 < α1 + α1x̄
2 + 2α1x̄+ (β2 − α2)x̄

2

and then by using the value of α1 from (4.2) we have

x̄2(1+x̄)2 < x̄3+(A1+β2+1)x̄2+(A1+α2−α1)x̄+α1x̄
2+2α1x̄+β2x̄

2−α2x̄
2

⇔ x̄3 + x̄2 < A1x̄+ 2β2x̄+A1 + α2 + α1x̄+ α1 − α2x̄.

Then by using again the value of α1 from (4.2) the above inequality can be
written as

x̄3+x̄2< A1x̄+2β2x̄+A1+α2+α1x̄+x̄
3+(A1+β2+1)x̄2+(A1+α2−α1)x̄−α2x̄

⇔ 2(A1 + β2)x̄+A1 + α2 + (A1 + β2)x̄
2 > 0

which is true. For the right-hand side inequality of (4.6) we have

(β2 − α2)x̄
2 < α1(1 + x̄)2 ⇔ (β2 − α2)x̄

2 < α1 + 2α1x̄+ α1x̄
2

and then by using the value of α1 from (4.2) we have

(β2 − α2)x̄
2 < x̄3 + (A1 + β2 + 1)x̄2 + (A1 + α2 − α1)x̄+ 2α1x̄+ α1x̄

2

⇔ −α2x̄
2 < x̄3 + (A1 + α1 + 1)x̄2 + (A1 + α1 + α2)x̄

which is true. It follows that (x̄, ȳ) is locally asymptotically stable for all
values of the parameters α1, A1, α2, and β2.
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The boundedness character of System (4.1) is described by the following
lemma. For its proof see [9].

Lemma 4.1. Both components {xn} and {yn} of System (4.1) are bounded
from above and from below by positive constants.

By substituting the value of yn from the second equation of the system
into the first we see that the component {xn} satisfies the second order
rational difference equation

xn+1 =
α1

A1 + xn + α2+β2xn−1

1+xn−1

=
α1 + α1xn−1

A1 + α2 + xn + (A1 + β2)xn−1 + xnxn−1
, n = 1, 2, . . . . (4.7)

The function

f(x, y) =
α1 + α1y

A1 + α2 + x+ (A1 + β2)y + xy

associated with Eq. (4.7) is decreasing in both variables when

α2 < β2 (4.8)

and is decreasing in the first and increasing in the second argument when

α2 > β2. (4.9)

When (4.8) holds, and because the function xf(x, x) is increasing, by
employing Theorem 1.4 it follows, that every solution of Eq. (4.7) converges
to x̄. Alternatively, when (4.8) holds we can arrive at the same result by
employing Theorem 1.5 to the Eq. (4.7) in the interval [0, α1

A1+α2
].

When (4.9) holds, by employing Theorem 1.3 it follows that the subse-
quences {x2n} and {x2n+1} both converge to x̄, since Eq. (4.7) has no prime
period-two solutions. The proof that Eq. (4.7) has no prime period-two
solutions is similar to the proof of the fact that Eq. (2.3) has no prime
period-two solutions and will be omitted.

From the preceding discussion the next result follows.

Theorem 4.1. The unique equilibrium point of System (4.1) is globally
asymptotically stable.

5. System #(12, 37)

Consider the system

xn+1 =
α

xn + yn
and yn+1 =

1

A+Bxn + yn
, n = 0, 1, . . . . (5.1)

For this system we show that every solution has a finite limit.
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The equilibrium points of System (5.1) are the points (x̄, ȳ) ∈ (0,∞)2

such that:
x̄ =

α

x̄+ ȳ
(5.2)

and

ȳ =
1

A+Bx̄+ ȳ
. (5.3)

From (5.2) we have

x̄ =
α

x̄+ ȳ
⇒ x̄2 + x̄ȳ = α⇒

ȳ =
α− x̄2

x̄
> 0, (5.4)

from which it follows that
x̄ <

√
α. (5.5)

Furthermore, from (5.3) we have

ȳ =
1

A+Bx̄+ ȳ
<

1

ȳ

from which it follows that
ȳ < 1. (5.6)

By substituting the value of ȳ from (5.4) into (5.3) we see that the component
x̄ satisfies the following quartic polynomial:

h(x̄) = (1−B)x̄4 −Ax̄3 + (Bα− 2α− 1)x̄2 +Aαx̄+ α2 = 0. (5.7)

When B ≥ 1 according to the Descartes Rule of Signs the above quartic
polynomial has a unique positive real root. When B < 1 the coefficients
of the above polynomial change sign twice and therefore has two or none
positive real roots. But h(0) = α2 > 0 and h(

√
α) = −α < 0 which means

that the equation h(x̄) = 0 has a unique positive real root less than
√
α.

Hence, System (5.1) has a unique equilibrium point (x̄, ȳ).
The characteristic equation of the linearized system of System (5.1) about

(x̄, ȳ) is

λ2 + (
α

(x̄+ ȳ)2
+

1

(A+Bx̄+ ȳ)2
)λ+

α− αB

(x̄+ ȳ)2(A+Bx̄+ ȳ)2
= 0.

According to Theorem 1.1 a necessary and sufficient condition for both
roots of the above equation to lie inside the unit circle is

α

(x̄+ ȳ)2
+

1

(A+Bx̄+ ȳ)2
< 1 +

α− αB

(x̄+ ȳ)2(A+Bx̄+ ȳ)2
< 2. (5.8)

By using (5.2), (5.3), and (5.4) condition (5.8) can be written as

x̄2

α
+

(α− x̄2)2

x̄2
< 1 +

(1−B)

α
x̄2ȳ2 < 2. (5.9)
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For the left-hand side inequality of (5.9), using again (5.4), we have

x̄2

α
+

(α− x̄2)2

x̄2
< 1 +

(1−B)

α
(α− x̄2)2 ⇔

x̄4+α3+αx̄4−2α2x̄2 < αx̄2+α2x̄2+(1−B)x̄4x̄2−2αx̄4−Bα2x̄2+2αBx̄4

which by substituting the value of (1−B)x̄4 from (5.7) into it can be written
as

α3 + α[(Bα− 2α− 1)x̄2 + (1−B)x̄4] < Ax̄5 −Aαx̄3.

Then by substituting the value of [(Bα− 2α− 1)x̄2 + (1−B)x̄4] from (5.7)
into the above inequality we obtain

αx̄3 − α2x̄ < x̄5 − αx̄3 ⇔ αx̄2 − α2 < x̄4 − αx̄2 ⇔ (x̄2 − α)2 > 0

which is true. For the right-hand side inequality of (5.9) we have

(1−B)x̄2ȳ2 < α

which clearly holds when B ≥ 1. Next we assume that B < 1. From (5.5)
and (5.6) it follows that

x̄2ȳ2 < α⇒ (1−B)x̄2ȳ2 < α(1−B) < α.

It follows that (x̄, ȳ) is locally asymptotically stable for all values of the
parameters α, A, and B.

The boundedness character of System (5.1) is described by the following
lemma. For its proof see [14].

Lemma 5.1. Both components {xn} and {yn} of System #(12, 37) are
bounded from above and from below by positive constants.

In view of Lemma 5.1 we have that

Ix = lim inf
n→∞

xn, Sx = lim sup
n→∞

xn

and

Iy = lim inf
n→∞

yn, Sy = lim sup
n→∞

yn

all exist and are finite positive numbers. For the proof of the following result,
see Section 6.

Theorem 5.1. The unique equilibrium point of System (5.1) is globally
asymptotically stable.
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6. System #(37, 37)

Consider the system

xn+1 =
α1

A1 +B1xn + C1yn
and yn+1 =

α2

A2 +B2xn + C2yn
, n = 0, 1, . . . .

(6.1)
System (6.1) was first studied by Camouzis and Ladas in [14] where they

showed that every solution converges to a not necessarily prime period two
solution. We actually show here that every solution converges to a finite
limit.

Clearly, both components are bounded from above and from below by
positive constants. Therefore,

Ix = lim inf
n→∞

xn, Sx = lim sup
n→∞

xn

and

Iy = lim inf
n→∞

yn, Sy = lim sup
n→∞

yn

all exist and are finite positive numbers.
Here, the functions

f(x, y) =
α1

A1 +B1x+ C1y
and g(x, y) =

α2

A2 +B2x+ C2y

associated with System (6.1) decrease in their variables.

Theorem 6.1. Every solution of System (6.1) converges to a finite limit.

Proof. For each ε > 0 there exist N1 = N1(ε) and N2 = N2(ε) such that

Ix − ε < xn < Sx + ε, for all n ≥ N1 (6.2)

and

Iy − ε < yn < Sy + ε, for all n ≥ N2. (6.3)

In view of the monotonic character of f we have

xn+1 = f(xn, yn) < f(Ix − ε, Iy − ε), for all n ≥ N

where N = max{N1, N2}.
Since ε is arbitrary we have

Sx ≤ f(Ix, Iy)

or

Sx ≤ α1

A1 +B1Ix + C1Iy
. (6.4)

Similarly,

Ix ≥ α1

A1 +B1Sx + C1Sy
, (6.5)
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Sy ≤ α1

A2 +B2Ix + C2Iy
, (6.6)

and
Iy ≥ α2

A2 +B2Sx + C2Sy
. (6.7)

From (6.4) and (6.5) we have

0 ≤ A1(Sx − Ix) ≤ C1(IxSy − SxIy). (6.8)

From (6.6) and (6.7) we have

0 ≤ A2(Sy − Iy) ≤ B2(SxIy − IxSy). (6.9)

In view of (6.8) and (6.9) the result follows. �
Assuming that we relax the condition on the parameters so that,

A1 ≥ 0 and C2 = 0

the proof of Theorem 6.1 still holds implying that every solution of System
(2.1) converges to a finite limit.

Also, when
A1 = 0

the proof of Theorem 6.1 still holds implying that every solution of System
(5.1) converges to a finite limit.
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[12] E. Camouzis, M. R. S. Kulenović, G. Ladas, and O. Merino, Rational systems in the

plane, J. Difference Equ. Appl., 15 (2009), 303–323.
[13] E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equa-

tions; With Open Problems and Conjectures, Chapman & Hall/CRC Press, Novem-
ber 2007.

[14] E. Camouzis and G. Ladas, Global results on rational systems in the plane, I, J.
Difference. Equ. Appl., 16 (2010), 975–1013.

[15] E. Camouzis, G. Ladas, and L. Wu, On the global character of the system xn+1 =
α1+γ1yn

xn
and yn+1 = β2xn+γ2yn

B2xn+C2yn
, Int. J. Pure Appl. Math., 53 (2009), 21–36.
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