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OPEN PROBLEMS AND CONJECTURES ON RATIONAL

SYSTEMS IN THREE DIMENSIONS
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Dedicated to Professor Mustafa Kulenović on the occasion of his 60th birthday

Abstract. We present some open problems and conjectures on Ratio-
nal Systems in three dimensions, or higher, with nonnegative parameters
and with nonnegative initial conditions such that the denominators are
always positive. We also employ the method of Full Limiting Sequences
to confirm an outstanding conjecture on kth-order rational difference
equations.

1. Introduction

In this paper, we present some open problems and conjectures on rational
systems in three dimensions of the form:

xn+1 =
α1 + β1xn + γ1yn + δ1zn
A1 +B1xn + C1yn +D1zn

yn+1 =
α2 + β2xn + γ2yn + δ2zn
A2 +B2xn + C2yn +D2zn

zn+1 =
α3 + β3xn + γ3yn + δ3zn
A3 +B3xn + C3yn +D3zn


, n = 0, 1, . . . (1)

with nonnegative parameters and with nonnegative initial conditions such
that the denominators are always positive.

We also employ the method of Full Limiting sequences, see Theorem 1.8
in [27], to confirm Conjecture 1, in Section 2, about the global character of
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solutions of the (k + 1)th-order rational difference equation :

xn+1 =
α

1 +
∏k

i=0 xn−i

, n = 0, 1, . . . (2)

which is derived from a rational system in higher dimensions.
A systematic work on the global character of rational systems in two

dimensions of the form :

xn+1 =
α1 + β1xn + γ1yn
A1 +B1xn + C1yn

yn+1 =
α2 + β2xn + γ2yn
A2 +B2xn + C2yn

 , n = 0, 1, . . . (3)

was intitiated in [15]. Several special cases of system (3) have been inves-
tigated by Kulenović and Merino and their students, and also by Ladas
and his collaborators and students. See [1]-[3], [5]-[7], [9]-[21], [25], [28]-[29],
[31]-[40]. See also: [4], [8], [22]-[23], [26], [30], [41]-[42], and [45].

It is an amazing fact that system (1) contains,

(24 − 1)× (24 − 1)× (24 − 1)× (24 − 1)× (24 − 1)× (24 − 1) = 11, 390, 625

special cases of rational systems in 3 dimensions and it is of paramount
importance to understand the global character of solutions of each one of
these special cases.

2. Open problems and conjectures

Here we pose some open problems and conjectures on the global character
of solutions of System (1).

We wish to determine the boundedness characterization of each special
case of System (1). In the past work on systems of two rational difference
equations, patterns emerged eventually after a large amount of work de-
scribing the boundedness characterizations on a case by case basis. We are
especially interested in finding similar patterns of boundedness for System
(1).

For each system with bounded solutions we wish to determine the global
stability character of their equilibrium points and the periodic nature of
their solutions.

For each system with unbounded solutions, we wish to determine the
way that their solutions are unbounded, the stable and unstable manifolds
of their equilibrium points, any invariants and whether there exists any
periodic trichotomies.
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We now pose an open problem for the simpler system :

xn+1 =
α1

yn

yn+1 =
α2

zn

zn+1 =
α3 + β3xn + γ3yn + δ3zn
A3 +B3xn + C3yn +D3zn


, n = 0, 1, . . . (4)

System (4) contains 225 of the 11,390,625 rational systems included in
System (1).

By eliminating the variables xn and yn from the third equation in (4), we
see that {zn} satisfies a third order rational difference equation of the form:

zn+1 =
γ + αzn−1 + δznzn−1 + α1βzn−1zn−2

C +Azn−1 +Dznzn−1 + α1Bzn−1zn−2
, n = 0, 1, . . . (5)

with nonnegative parameters and nonnegative initial conditions such that
the denominators are always positive.

Open Problem 1. Investigate the global character of solutions of the 225
special cases which are included in Eq. (5). For each special case, determine
its boundedness character, its periodic behavior, and the global stability char-
acter of its equilibrium points.

The following conjectures deal with some higher order analogues of Sys-
tem (4) and equation (5).

Assume α > 0. Then we pose the following three conjectures :

Conjecture 1. Every positive solution of the difference equation:

zn+1 =
α

1 +
∏k

i=0 zn−i

, n = 0, 1, . . .

has a finite limit.

This result was established, in [24], for the case in which k = 1.

Conjecture 2. Every positive solution of the difference equation:

zn+1 =
α

1 +
∏k

i=1 zn−i

, n = 0, 1, . . .

converges to a (not necessarily prime) period (k + 3) solution.

Conjecture 3. Every positive solution of the difference equation :

zn+1 =
α

1 + zn−lzn−k
, n = 0, 1, . . .
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converges to a (not necessarily prime) period (l + k + 2) solution.

We now present some other conjectures about special cases of System (1),
which are included in the following simpler system :

xn+1 = γ1yn

yn+1 = δ2zn

zn+1 =
α3 + β3xn + γ3yn + δ3zn
A3 +B3xn + C3yn +D3zn


, n = 0, 1, . . . (6)

This system reduces to the following third order rational difference equa-
tion :

zn+1 =
α+ βzn + γzn−1 + δzn−2

A+Bzn + Czn−1 +Dzn−2
, n = 0, 1, . . . , (7)

This equation was investigated in [16]. In [16], the authors posed several
interesting open problems and conjectures on the difference equation (7).
There are several noteworthy conjectures, which have not yet been resolved.

Conjecture 4. Assume C > 0 and that an equilibrium point z̄ of the dif-
ference equation

zn+1 =
α+ βzn + γzn−1

A+Bzn + Czn−1
, n = 0, 1, . . . , (8)

is locally asymptotically stable. Show that x̄ is a global attractor of all positive
solutions of equation (8).

To prove Conjecture 4, it is necessary that following conjecture be con-
firmed.

Conjecture 5. For the difference equation

zn+1 =
α+ βzn

A+ zn + Czn−1
, n = 0, 1, . . . . (9)

assume A ≥ 0, all other parameters positive, and nonnegative initial condi-
tions such that the denominators are never zero. Show that every solution
of (9) converges.

For the most recent account of the progress made on Conjecture 4, see
[5], [16], [41] and [46].

Another interesting conjecture is the following period-six trichotomy con-
jecture :
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Conjecture 6. Assume that α,C ∈ [0,∞). Then the following period-six
trichotomy result is true for the rational equation

zn+1 =
α+ zn

Czn−1 + zn−2
, n = 0, 1, . . . . (10)

(a) Every positive solution of equation (10) converges to its positive equi-
librium, if and only if, αC2 > 1.

(b) Every positive solution of equation (10) converges to a not necessarily
prime period-six solution of equation (10), if and only if, αC2 = 1.

(c) Equation (10) has positive unbounded solutions, if and only if, αC2 <
1.

The only part of this conjecture which has been resolved is the case for
which αC2 = 0. This was resolved in [43].

Related to Conjecture 8 is the following conjecture :

Conjecture 7. For the difference equation

zn+1 =
α+ zn

Czn−1 + zn−2
, n = 0, 1, . . . . (11)

assume positive parameters and nonnegative initial conditions such that the
denominators are never zero. The difference equation (11), has unbounded
solutions in some range of the parameters.

This is the only special case of (7) whose boundedness character has not
been established yet. We present another conjecture about the boundedness
character of (7).

Conjecture 8. Assume α, β, γ ∈ [0,∞). Then every positive solution of
the difference equation

zn+1 =
α+ βzn + γzn−1

zn−2
, n = 0, 1, . . . . (12)

is bounded, if and only if, β = γ.

For the most recent work on the boundedness character of (7) see [16],
[43] and [44].

3. Confirmation of Conjecture 1

In this section, we establish the following theorem, which confirms the
above Conjecture 1.

Theorem 1. Every solution of the (k + 1)th-order difference equation

xn+1 =
α

1 +
∏k

i=0 xn−i

, n = 0, 1, . . . , (13)

has a finite limit.
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For the proof of this theorem we need the following lemma, which is
Theorem 1.8 of [27].

Lemma 1. Consider the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k) , (14)

where f ∈ C
[
Jk+1, J

]
for some interval of real numbers J and some non-

negative integer k. Let {xn}∞n=−k be a solution of (14). Set I=limn→∞ inf xn
and S = limn→∞ supxn, and suppose that I, S ∈ J . Let L0 be a limit point
of the sequence {xn}∞n=−k. Then the following statements are true:

1. There exists a solution {Ln}∞n=−∞ of (14), called a full limiting se-
quence of {xn}∞n=−k, such that L0 = L0, and such that for every
N ∈ {. . . ,−1, 0, 1, . . .}, LN is a limit point of {xn}∞n=−k. In partic-
ular,

I ≤ LN ≤ S for all N ∈ {. . . ,−1, 0, 1, . . .} .

2. For every i0 ∈ {. . . ,−1, 0, 1, . . .}, there exists a subsequence {xri}
∞
i=0

of {xn}∞n=−m such that

LN = lim
i→∞

xri+N for all N ≥ i0.

The result that every solution of the difference equation (13) has a finite
limit will follow as a corollary of the following theorem.

Theorem 2. Every solution of the (k + 2)-order difference equation

xn+1 =
xn

(
1 +

∏k+1
i=1 xn−i

)
1 +

∏k
i=0 xn−i

, n = 0, 1, . . . , (15)

has a finite limit.

This is because every solution of the difference equation (13) converges
if every solution of difference equation (15) converges. This is true because
every solution of (13) is a solution of (15). This will be demonstrated below
in the case for which k = 2.

For simplicity of the presentation, we will just establish Theorem 1 for
the third order difference equation,

xn+1 =
α

1 + xnxn−1xn−2
, n = 0, 1, . . . . (16)

The proof for the general case is similar but lengthier.

Notice that, for the difference equation (16), we have

xn (1 + xn−1xn−2xn−3) = α, n = 1, 2, . . . . (17)
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Using (17), we can embed the difference equation (16) into the difference
equation

xn+1 =
xn (1 + xn−1xn−2xn−3)

1 + xnxn−1xn−2
, n = 1, 2, . . . (18)

which is a special case of the difference equation (15).
To establish Theorem 2, for the case where k = 2, we need the following

lemma.

Lemma 2. Let {xn}∞n=−2 be a solution of (18). Set

m = min {x−2, x−1, x0, x1}
and

M = max {x−2, x−1, x0, x1} .

Then

m ≤ xn ≤ M, for all n ≥ −2.

Proof. Clearly

m ≤ xn ≤ M, for all − 2 ≤ n ≤ 1.

Notice that

x2 =
x1 (1 + x0x−1x−2)

1 + x1x0x−1
.

and
∂

∂w

(
w (1 + xyz)

1 + wxy

)
=

xyz + 1

(wxy + 1)2
> 0 (19)

and
∂

∂z

(
w (1 + xyz)

1 + wxy

)
=

wxy

wxy + 1
> 0. (20)

By (19) and (20) it follows that

m =
m (1 + x0x−1m)

1 +mx0x−1
≤ x1 (1 + x0x−1x−2)

1 + x1x0x−1
≤ M (1 + x0x−1M)

1 +Mx0x−1
= M.

and by induction, that

m ≤ xn ≤ M for all n ≥ −2.

�

To complete the proof, it suffices to show that

lim
n→∞

inf xn = lim
n→∞

supxn.

For the sake of contradiction, assume that

lim
n→∞

inf xn < lim
n→∞

supxn.
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By part 1. of Lemma 1, there exists a full limiting sequence {Ln}∞n=−∞
of {xn}∞n=−2 with L0 = I = limn→∞ inf xn.

We claim that Ln = I for all n ∈ Z.
We first show that L−n = L0 for all n = 0, 1, . . . . We will show L−1 = L0.

For the sake of contradiction, assume that L−1 > L0. Then, by (19) and
(20), (18) is increasing with respect to the first and last argument. Hence

L0 =
L−1 (1 + L−2L−3L−4)

1 + L−1L−2L−3
>

L0 (1 + L−2L−3L0)

1 + L0L−2L−3
= L0.

This is a contradiction. It follows by induction that L−n = L0 for all n =
0, 1, . . . .

It follows that Ln = I, for all n ∈ N, since every point of (18) is an
equilibrium point and since L−n = L0 for all n = 0, 1, . . . .

By part 2 of Lemma 1, there exists a subsequence {xri}
∞
i=0 of {xn}∞n=−2

such that
lim
i→∞

xri−j = L−j

for every −1 ≤ j ≤ 2. It also follows that L−j = L0 for every −1 ≤ j ≤ 2
from what was just proved. So as L0 = limn→∞ inf xn, there exists a positive
integer s such that rs ≥ 0 and

max
{
xrs−2 , xrs−1 , xrs , xrs+1

}
≤ 1

2

(
lim
n→∞

supxn + lim
n→∞

inf xn

)
.

It follows by Lemma 2 that

xn ≤ 1

2

(
lim
n→∞

supxn + lim
n→∞

inf xn

)
for all n ≥ rs+1. Thus, using the assumption limn→∞ inf xn< limn→∞ supxn,
it follows that

lim
n→∞

supxn ≤ 1

2

(
lim
n→∞

supxn + lim
n→∞

inf xn

)
< lim

n→∞
supxn.

�
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