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GÖDEL FORM OF FUZZY TRANSITIVE RELATIONS

ISMAT BEG AND SAMINA ASHRAF

Abstract. The concepts of fuzzy transitivity of a fuzzy relation on a
given universe and the measure of fuzzy transitivity are studied with
the use of Gödel fuzzy implicator.

1. Introduction and preliminaries

The assumption of transitivity is an essential component of definitions of
equivalence as well as orderings. But as a matter of fact, when equivalence
relations are used for modelling indistinguishability or approximate equality,
it is the assumption of transitivity that causes paradoxical situations to come
forth. In history, this fact was recorded first of all by Poincaré in 1902 [20].
Later on, Menger pointed out that the failure of crisp relations in modelling
approximate equality is not only due to assumption of transitivity but the
crisp nature of definition of relations also contributes towards the emergence
of paradoxical situations. This is why the development of the notion fuzzy
set theory and later of fuzzy relations brought hope for the formulation of
better ways of defining transitivity.

Several fuzzy versions of transitivity were developed and extensively used
in the past four decades (see [26], [9] and [22]). Unfortunately, every new
form of fuzzy transitivity was still accompanied by paradoxical situations
(see [10], [17] and [18]). Studying transitivity pointwisely on the domain
X × X × X, in terms of fuzzy logical operators has also been done such
as [13], [14] and [15]. Beg and Ashraf [3],[5],[6],[7] and [8] reformulated the
definition of fuzzy transitivity in the similar settings but they advanced in
a different dimension. The major difference in their approach is that they
have defined the fuzzy set of transitivity of a fuzzy relation R on a universe
X as a fuzzy relation tr(R) on the same universe. In this way, several new
results were proved by comparing the two relations R and tr(R). A fuzzy
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measure [12] is then applied to this fuzzy set of transitivity in order to obtain
the degree or measure of transitivity of a given fuzzy relation R.

A pair of mappings consisting of a fuzzy implicator and fuzzy conjunction
are building blocks for the concept introduced by Beg and Ashraf [3]. Con-
sequently its properties show high dependence on the properties of the fuzzy
logical operators used in place of fuzzy conjunction and a fuzzy implicator.
This paper is written specifically for the study of properties of the fuzzy
set of transitivity and the measure of fuzzy transitivity under the use of the
Gödel fuzzy implicator. The reason behind this particular selection has been
the way Gödel fuzzy implicator takes a zero value, which is different from
other fuzzy implicators. It consequently opens new venues for nontransitive
fuzzy relations.

A fuzzy set A in a universe X is a mapping from X to [0, 1]. For any x
∈ X, the value A(x) is called the degree of membership of x in A. Moreover,
F (X) will stand for the set of all fuzzy subsets of X. Given a crisp universe
X, a fuzzy binary relation is a fuzzy subset of X×X. Fuzzy binary relations
will be called fuzzy relations throughout this paper.

Given a crisp universe X, and A,B ∈ F (X), A is said to be a subset of B
(in Zadeh’s sense [25]) denoted by A ⊆ B, if and only if A(x) ≤ B(x) for all
x ∈ X.

Definition 1.1. [19] The triangular norm (t-norm) T and triangular co-
norm (t-conorm) S are increasing, associative, commutative and [0, 1]2 →
[0, 1] mappings satisfying T (1, x) = x and S(x, 0) = x, for all x ∈ [0, 1].

A popular choice for the t-norm is: The minimum operator M : M(x, y) =
min(x, y).

The corresponding dual t-conorm is: The maximum operator M∗ :M∗(x, y)
= max(x, y).

Definition 1.2. [11] A negator N is an order-reversing [0, 1] → [0, 1] map-
ping such that N(0) = 1 and N(1) = 0. A strictly decreasing negator satis-
fying n(n(x)) = x, for all x ∈ [0, 1] is called a strong negator.

Definition 1.3. [23] Given a t-norm T, a T -equivalence relation on a set
X is a fuzzy relation E on X that satisfies:

(i) E(x, x) = 1, for all x ∈ X; (Reflexivity),
(ii) E(x, y) = E(y, x), for all x, y ∈ X; (Symmetry),
(iii) T (E(x, y), E(y, z)) ≤ E(x, z) for all x, y, z ∈ X. (T -transitivity).

If T = min, then E is called a similarity relation. A min transitive relation
satisfies

max y ∈ X(min(E(x, y), E(y, z))) ≤ E(x, z) for all x, z ∈ X.

Commonly it is called a max−min transitive relation.
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Definition 1.4. [21] A fuzzy implicator I is a binary operation on [0, 1] with
order reversing first partial mappings and order preserving second partial
mappings satisfying the boundary conditions;

I(0, 1) = I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

The implicator to be used in this paper is the Gödel’s implicator which
is defined as:

Ig(x, y) =

{
1 if x ≤ y,

y otherwise.

Definition 1.5. [1] Given two fuzzy relations R and S on X, the direct
product or sup−T product of R and S is defined as:

R ◦T S(x, z) = sup
y∈X

T (R(x, y), S(y, z)).

Definition 1.6. [12, p.183] Let (X, ρ) be a measurable space. A function
m : ρ → [0,∞[ is a fuzzy measure if it satisfies the following properties:

m1 : m(∅) = 0, and m(X) = 1;
m2 : A ⊆ B implies that m(A) ≤ m(B).

The concept of measure considers that ρ ⊆ {0, 1}X , but this consideration
can be extended to a set ℑ of fuzzy subsets of X, i.e., ℑ ⊆ F (X), satisfying
the properties of the measurable space (F (X),ℑ).

For any A ∈ F (X), the following two measures will be used for the con-
struction of results on measure of fuzzy transitivity:

1. m1(A) = plinth(A) = inf
x∈X

A(x),

2. m2(A) = |A|
|X| =

n∑
i=1

A(xi)

n (in case of finite universes with n elements).

Definition 1.7. [4] The fuzzy inclusion Incl is a mapping Incl : F (X) ×
F (X) → F (X) which assigns to every A,B ∈ F (X), a fuzzy set Incl(A,B) ∈
F (X), defined as:

Incl(A,B)(x) = Ig(A(x), B(x)), for all x ∈ X.

The composition of fuzzy measure to this fuzzy set gives the measure of
inclusion i.e.,

m Incl(A,B) = m(Incl(A,B)).

2. Fuzzy set of transitivity and measure of fuzzy transitivity

Definition 2.1. [3] Let R be a fuzzy relation on X. The fuzzy set of tran-
sitivity trI,T (R) is a fuzzy relation on X defined as:

trI,T (R)(x, z) = inf
y∈X

I(T (R(x, y), R(y, z)), R(x, z)). (1)
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The transitivity function so defined assigns a degree of transitivity to the
relation at each point of X × X. Therefore, the given relation may have
different degrees of transitivity at different points of X×X. If trI,T (R) ̸= ∅,
then the relation R is called a fuzzy transitive relation, otherwise it is called
a nontransitive fuzzy relation. If trI,T (R)(x, z) ≥ 0.5, for all x, z ∈ X,
then the relation R is called a strong fuzzy transitive relation, otherwise it is
called a weak fuzzy transitive relation. A reflexive, symmetric and (strong or
weak) fuzzy transitive relation is called a (strong or weak fuzzy equivalence
relation). The superscripts I and T highlight the dependence of pointwise
transitivity upon the implicator I and the t-norm T , whereas, R denotes the
fuzzy relation for which the fuzzy relation of transitivity is being constructed.

Remark 2.2. As it can be observed from the definition of the fuzzy set of
transitivity of a given relation that the given relation shows a zero transitiv-
ity only at the points where the implicator in use has a zero value. As can
be observed from Definition 1.4, most of the fuzzy implicators assign a zero
value only to the point (1, 0). In the case when such implicators are used in
the definition of fuzzy transitivity, this property can be interpreted as that
a fuzzy relation would be nontransitive only when R(x, y) = R(y, z) = 1
and R(x, z) = 0. Intuitively speaking at any place where the link between
the first and the third point diminishes while the link between first and sec-
ond and between the second and third points exists to a nonzero degree,
the transitivity should be considered zero. To obtain this consequence, this
paper is dedicated to the study of fuzzy transitivity specifically with the
use of the Gödel’s implicator which allocates a value zero to all those points
where the first variable is nonzero and the second variable is zero. The min
and max t-norms will be used for conjunction and disjunction purposes. In
this particularized atmosphere, we shall not use the superscripts, hence the
fuzzy set of transitivity tr(R) of a fuzzy relation R is defined as:

tr(R)(x, z) = inf
y∈X

Ig(M(R(x, y), R(y, z)), R(x, z))

= inf
y∈X

{
1 if min(R(x, y), R(y, z)) ≤ R(x, z),

R(x, z) if min(R(x, y), R(y, z)) > R(x, z).
(2)

Remark 2.3. It can be easily observed from (2), that for a max−min
transitive fuzzy relation R, tr(R)(x, z) = 1 for all x, z ∈ X. Hence the class
of similarity relations is a subclass of the class of strong fuzzy equivalence
relations.

Theorem 2.4. Let R be a fuzzy relation on a universe X. The fuzzy set of
inclusion (defined in terms of Ig) of R ◦ R into R is equal to the fuzzy set
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of transitivity of R i.e., for all x, z ∈ X,

Incl(R ◦R,R)(x, z) = tr(R)(x, z).

Proof. Let x, z ∈ X, then using Definition 1.4 and 1.7, we get

Incl (R ◦R,R)(x, z) = Ig(R ◦R(x, z), R(x, z))

= Ig(sup
y∈X

min(R(x, y), R(y, z)), R(x, z))

= inf
y∈X

Ig(min(R(x, y), R(y, z)), R(x, z))

= tr(R)(x, z).

�
Remark 2.5. Theorem 2.4 can be restated alternatively as: Calculating the
transitivity at any point (x, z) ∈ X2 is equivalent to calculating the degree
of inclusion of R ◦ R into R at that point. This remark opens ways for the
use of t-norms other than min along with the Gödel fuzzy implicator. Once
we calculate the composition R ◦ R with the help of any t-norm, it stands
as a fuzzy relation on X and the next task is to calculate the pointwise
inclusion of R ◦R into R, for which any implicator may be used.

Remark 2.6. It can be easily observed from (2), that for any c ∈ [0, 1],
R(x, y) ≥ c implies that tr(R)(x, y) ≥ c for all x, y ∈ X.

The converse of Remark 2.6 may not hold in general. The fuzzy relations
with all the values less than some certain threshold value show large transi-
tivity degrees at each point as can be observed by the following example.

Example 2.7. Consider two relations R and S defined on X = {1, 2, 3} by:

R =

 1 0.2 0.1
0.2 1 0.2
0.1 0.2 1

 and S =

 1 0.15 0.1
0.15 1 0.12
0.1 0.12 1

 .

Their fuzzy sets of transitivity are:

tr(R) =

 1 1 0.1
1 1 1
0.1 1 1

 , tr(S) =

 1 1 0.1
1 1 1
0.1 1 1

 .

This example also confirms the inclusions stated in Remark 2.6. We also
observe that the only deciding factor for higher values of transitivity are the
smaller variations within the data values.

Proposition 2.8. Let R be a fuzzy relation, then the following inclusion
holds:

R ⊆ tr(R),
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i.e., for all x, z ∈ X,

R(x, z) ≤ tr(R)(x, z). (3)

Proof. The proof follows from the Definition of the Gödel’s implicator where
Ig(x, y) ≥ y, for all x, y ∈ [0, 1]. �

Corollary 2.9. The fuzzy transitivity relation tr(R) of a reflexive, sym-
metric and fuzzy transitive relation R on a universe X is itself a reflexive,
symmetric and fuzzy transitive relation on the same universe.

Proof. Reflexivity is due to the fact that R(x, x) = 1 and tr(R)(x, x) ≥
R(x, x) = 1.

For symmetry we observe that for all x, z ∈ X:

tr(R)(z, x) = inf
y∈X

Ig(min(R(z, y), R(y, x)), R(z, x))

= inf
y∈X

Ig(min(R(y, z), R(x, y)), R(x, z)) (by symmetry of R)

= inf
y∈X

Ig(min(R(x, y), R(y, z)), R(x, z)) (by commutative nature of min )

= tr(R)(x, z).

It can further be observed that the fuzzy set of transitivity remains non
zero throughout its domain. Due to Proposition 2.8, if tr(R)(x, z) > 0 for
all x, z ∈ X, then tr(tr(R)(x, z)) > 0 for all x, z ∈ X. �

Corollary 2.10. If tr(R)(x, z) = 0 for some x, z ∈ X, then tr(tr(R)(x, z))
= 0 and tr(tr(tr(R)(x, z))) = 0.

Proof. tr(R)(x, z) = 0 implies that there exists a y ∈ X such that R(x, y) ̸=
0 and R(y, z) ̸= 0 and R(x, z) = 0. It further implies that tr(R)(x, y) ̸= 0,
tr(R)(y, z) ̸= 0 and tr(R)(x, z) = 0. �

Definition 2.11. [3] The measure of fuzzy transitivity is a mapping Tr :
F (X ×X) → [0, 1] defined as:

Tr(R) = m(tr(R)),

where F (X×X) denotes the set of all fuzzy relations on X and m is a fuzzy
measure.

A fuzzy relation R is called ϵ-fuzzy transitive if Tr(R) = ϵ. A reflexive,
symmetric and ϵ- transitive relation is called an ϵ-equivalence relation.

It can be easily observed that for a fuzzy transitive relation ϵ > 0, if R
is a strong fuzzy equivalence relation, then ϵ ≥ 0.5. We will use only two
measures m1 and m2 (mentioned after Definition 1.6.) We shall call Tr1(R)
and Tr2(R) according to as measure m1 or m2 is being used respectively.
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Example 2.12. If we apply the measures m1 and m2 from Example 2.7,
then we get

Tr1(R) = m1(tr(R)) = 0.1 and Tr2(R) = m2(tr(R)) = 0.8

and

Tr1(S) = m1(tr(S)) = 0.1 and Tr2(S) = m2(tr(S)) = 0.8.

Theorem 2.13. Let R be an ϵ-equivalence relation on X. Then tr(R) is a
fuzzy equivalence relation with measure of transitivity greater than ϵ.

Proof. Reflexivity and symmetry have already been proved in Corollary 2.9.
Next let Tr(R) = m(tr(R)) = ϵ. Now from Proposition 2.8 it follows that

R ⊆ tr(R) ⊆ tr(tr(R)).

Applying the Sugeno’s fuzzy measure and using its monotonic nature, we
get

ϵ ≤ m(R) ≤ m(tr(R)) ≤ m(tr(tr(R))).

Hence the fuzzy set of transitivity of an ϵ-equivalence relation R is a fuzzy
relation with measure of transitivity greater than ϵ. �

We further observe that the measure of transitivity is always greater than
the measure of a given fuzzy relation.

Example 2.14. Let X = {1, 2, 3, 4}. If a relation R is defined on X as:

R =


1 0.9 1 0.6
0.9 1 0.6 1
1 0.6 1 0.8
0.6 1 0.8 1

 , then tr(R) =


1 1 1 0.6
1 1 0.6 1
1 0.6 1 1
0.6 1 1 1


and tr(tr(R)) =


1 1 1 0.6
1 1 0.6 1
1 0.6 1 1
0.6 1 1 1

 = tr(tr(tr(R))) . . .

We observe that none of the tr(R), tr(tr(R)) . . . is a min transitive fuzzy
relation on X. In fact the relation tr(R) is a fixed point of tr, tr2, tr3, and
so on.

From Example 2.14, we observe that firstly tr(R) is the fixed point of
tr, tr2, tr3, and so on and secondly that although the transitive operator
increases the transitivity at each point of X ×X, does not necessarily reach
the transitive closure of R (i.e., the smallest min-transitive superset of R).

Beg and Ashraf [3] tried to obtain a min-transitive fuzzy relation by re-
peated application of tr on R. From Example 2.14, it is clear that the choice
of the Gödel fuzzy implicator does not favor this hypothesis.
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Theorem 2.15. Let R be a fuzzy relation on X and ◦ stand for sup−min
product. Then

m Incl(R ◦R,R) = Tr(R).

Proof. The proof follows from the equality of fuzzy sets established in The-
orem 2.4 i.e.,

Incl(R ◦R,R) = tr(R).

Applying measure on both sides, we get

m(Incl(R ◦R,R)) = m(tr(R)) = Tr(R).

In case we use m1 we obtain Inc(R ◦ R,R) = Tr(R), where Inc is defined
by Incl(R ◦R,R) = inf

x∈X
I(R ◦R(x), R(x)) as given by Bandler and Kohout

[2]. �

Theorem 2.16. If ϵ ̸= 0 and R is an ϵ-equivalence relation with measure m1

used in the calculation of measure of transitivity, then either R is max−min
transitive or R(x, z) ≥ ϵ, for all (x, z) ∈ X2.

Proof. Given R is an ϵ-equivalence relation,

inf
x,z∈X

[ inf
y∈X

Ig(min(R(x, y), R(y, z)), R(x, z))] ≥ ϵ.

It implies that for all x, y, z ∈ X,

Ig(min(R(x, y), R(y, z)), R(x, z)) ≥ ϵ.

This implies either the relation is max−min transitive or R(x, z) ≥ ϵ for all
x, z ∈ X. �

Remark 2.17. The class of strong fuzzy equivalence relations is much
wider than the class of min-transitive equivalence relations. For example, if
R(x, y) = 0.9, R(y, z) = 0.8 and R(x, z) = 0.6, then trIg ,M (R)(x, z) = 0.6
but the min-transitivity failed at this point.

Theorem 2.18. The class of fuzzy transitive relations is closed under fuzzy
intersection.

Proof. Let R and S be the two fuzzy transitive relations. By hypothesis for
all (x, y, z) ∈ X3

Ig(min(R(x, y), R(y, z)), R(x, z)) > 0

and Ig(min(S(x, y), S(y, z)), S(x, z)) > 0.
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On the contrary suppose that there exist x, y, z ∈ X such that

Ig(M(M(R,S)(x, y),M(R,S)(y, z)),M(R,S)(x, z)) = 0,

⇒ min(M(R,S)(x, y),M(R,S)(y, z)) ̸= 0 and M(R,S)(x, z) = 0,

⇒ M(R,S)(x, y) ̸= 0 and M(R,S)(y, z) ̸= 0 and M(R,S)(x, z) = 0,

⇒ R(x, y) ̸= 0 and S(x, y) ̸= 0 and R(y, z) ̸= 0

and S(y, z) ̸= 0 and R(x, z) = 0 or S(x, z) = 0,

⇒ either Ig(min(R(x, y), R(y, z)), R(x, z)) = 0

or Ig(min(S(x, y), S(y, z)), S(x, z)) = 0,

a contradiction to the hypothesis. Thus R ∩ S is fuzzy transitive. �

Theorem 2.19. Let (X, d) be an ultra-metric space. Define a fuzzy relation
R on X as:

R(x, y) =
1

1 + d(x, y)
.

Then R is reflexive, symmetric and tr(R)(x, z) > 0.5, for all (x, z) ∈ X.

Proof. For all x, y, z ∈ X we have:

(i) Reflexivity: R(x, x) = 1
1+d(x,x) =

1
1+0 = 1,

(ii) Symmetry: R(x, y) = 1
1+d(x,y) =

1
1+d(y,x) = R(y, x),

(iii) Strong Fuzzy transitivity: Suppose on contrary that there exist x, y, z
∈ X such that

tr(x, y, z) = Ig(M(R(x, y), R(y, z)), R(x, z)) < 0.5.

This implies that

Ig(M(
1

1 + d(x, y)
,

1

1 + d(y, z)
),

1

1 + d(x, z)
) < 0.5,

⇔ M(
1

1 + d(x, y)
,

1

1 + d(y, z)
) ≥ 0.5 and

1

1 + d(x, z)
< 0.5,

⇔ 1

1 + d(x, y)
> 0.5 and

1

1 + d(y, z)
> 0.5 and 1 + d(x, z) > 2,

i.e., d(x, y) < 1 and d(y, z) < 1 and d(x, z) > 1. (4)

The inequality (4) implies that max(d(x, y), d(y, z)) < 1. Since d is an ultra-
metric it follows that, d(x, z) ≤ max(d(x, y), d(y, z)) < 1. But ( 4) also im-
plies that d(x, z) > 1. Hence these inequalities can not hold simultaneously,
a contradiction. �
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3. Conclusion

In this paper, we studied the concepts of fuzzy set of transitivity and
measure of fuzzy transitivity with the help of the Gödel fuzzy implicator.
The two dimensional approach to the study of transitivity of a fuzzy relation
initially with a point wise character and then globally, gives better insight
into the transitive nature of a given fuzzy relation. The definition of the
measure of fuzzy transitivity opens new ways to allocate a single degree of
transitivity to a given fuzzy relation.

Now let us turn towards one of the paradoxical situations discussed by
Klawonn in [18]. According to him: In a metric space (X, d) if we define
x ≈ y (read as x is indistinguishable to y) ⇔ d(x, y) ≤ δ for some δ > 0,
then for any a, b, c ∈ X,

d(a, b) ≤ δ and d(b, c) ≤ δ, implies that d(a, c) ∈]0, 2δ[.
Hence a ≈ b and b ≈ c, but a and c may or may not be indistinguishable

by this criteria. Hence transitivity can not be obtained however small a δ is
selected.

In order to analyze this situation in light of the Gödel form of fuzzy
transitivity, let us assume that d is a [0, 1]−valued metric on X. Define a
fuzzy relation on X as: R(x, y) = N(d(x, y)), where N is a strong negator.
We observe that at any point (a, c) ∈ X:

tr(R)(a, c) = inf
b∈X

{
1 if min(R(a, b), R(b, c)) ≤ R(a, c)

R(a, c) otherwise.

It is obvious that, tr(R)(a, c) = 1 implies that d(a, c) ≤ δ, other wise,

tr(R)(a, c) = R(a, c) = N(d(a, c)). (5)

So, in a nutshell, in terms of If a ≈ b and b ≈ c, and tr(R)(a, c) = 1, a ≈ c.
So, the paradox appears because of the requirement of 1-degree transitivity
which is quite unnatural. As can be observed from (5), the greater the
distance between a and c, be smaller is the value of tr(R)(a, c). The smallest
value of tr(R)(a, c) is obtained for the greatest value of d(a, c) = 2δ, in which
case tr(R)(a, c) = N(2δ), which obviously depends directly on the selection
of value of δ. A direct observation is that to attain the phenomenon of high
transitivity one should define approximate equality for very small radii.
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