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FURTHER RESULTS ON THE LOGARITHMIC INTEGRAL

BRIAN FISHER, BILJANA JOLEVSKA-TUNESKA AND ARPAD TAKACI

Abstract. The logaritmic integral li(xr) and its associated functions
li+(x

r) and li−(x
r) are defined as locally summable functions on the real

line. Some convolutions and neutrix convolutions of these functions and
other functions are then found.

1. Introduction

The logarithmic integral li(x), see Abramowitz and Stegun [1] is defined
by

li(x) =



∫ x

0

dt

ln |t|
, for |x| < 1,

PV

∫ x

0

dt

ln t
, for x > 1,

PV

∫ x

0

dt

ln |t|
, for x < −1

=



∫ x

0

dt

ln |t|
, for |x| < 1,

limϵ→0+

[∫ 1−ϵ

0

dt

ln t
+

∫ x

1+ϵ

dt

ln t

]
, for x > 1,

limϵ→0+

[∫ −1+ϵ

0

dt

ln |t|
+

∫ x

−1−ϵ

dt

ln |t|

]
, for x < −1

where PV denotes the Cauchy principal value of the integral. We will there-
fore write

li(x) = PV

∫ x

0

dt

ln |t|
for all values of x.
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More generally, we have

li(xr) = PV

∫ xr

0

dt

ln |t|
and the associated functions li+(x

r) and li−(x
r) are now defined by

li+(x
r) = H(x) li(xr), li−(x

r) = H(−x) li(xr),

where H(x) denotes Heaviside’s function.
It follows that

li(xr) = PV

∫ x

0

tr−1dt

ln |t|
, (1)

see [4], the distribution xr−1 ln−1 |x| is then defined by

xr−1 ln−1 |x| = [li(xr)]′

and its associated distributions xr−1
+ ln−1 x+ and xr−1

− ln−1 x− are defined
by

xr−1
+ ln−1 x+ = H(x)xr−1 ln−1 |x| = [li+(x

r)]′,

xr−1
− ln−1 x− = H(−x)xr−1 ln−1 |x| = [li−(x

r)]′,

for r = 1, 2, . . . .
The classical definition of the convolution of two functions f and g is as

follows:

Definition 1. Let f and g be functions. Then the convolution f∗g is defined
by

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t) dt

for all points x for which the integral exist.

It follows easily from the definition 1 that if f ∗ g exists then g ∗ f exists
and

f ∗ g = g ∗ f (2)

and if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exists, then
(f ∗ g)′ = f ∗ g′ (or f ′ ∗ g). (3)

Definition 1 can be extended to define the convolution f ∗ g of two distri-
butions f and g in D′ with the following definition, see Gel’fand and Shilov
[7].

Definition 2. Let f and g be distributions in D′. Then the convolution f ∗g
is defined by the equation

⟨(f ∗ g)(x), φ(x)⟩ = ⟨f(y), ⟨g(x), φ(x+ y)⟩⟩
for arbitrary φ in D, provided f and g satisfy either of the conditions
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(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition, then
equations (2) and (3) are satisfied.

The above definition of the convolution is rather restrictive and so a neu-
trix convolution was defined in [3]. In order to define the neutrix convolu-
tion, we first of all let τ be a function in D, see [8], satisfying the following
properties:

(i) τ(x) = τ(−x),

(ii) 0 ≤ τ(x) ≤ 1,

(iii) τ(x) = 1 for |x| ≤ 1
2 ,

(iv) τ(x) = 0 for |x| ≥ 1.

The function τn is now defined by

τn(x) =

 1, |x| ≤ n,
τ(nnx− nn+1), x > n,
τ(nnx+ nn+1), x < −n,

for n = 1, 2, . . . .
The following definition of the non-commutative neutrix convolution was

given in [3].

Definition 3. Let f and g be distributions in D′ and let fn = fτn for
n = 1, 2, . . . . Then the non-commutative neutrix convolution f⃝∗ g is defined
as the neutrix limit of the sequence {fn ∗ g}n∈N, provided the limit h exists
in the sense that

N−lim
n→∞

⟨fn ∗ g, φ⟩ = ⟨h, φ⟩

for all φ in D, where N is the neutrix, see van der Corput [2], having domain
N ′ the positive reals and range N ′′ the real numbers, with negligible functions
finite linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the normal sense as n tends to
infinity.

It is easily seen that any results proved with the original definition of the
convolution hold with the new definition of the neutrix convolution. The
following results proved in [3] hold, first showing that the neutrix convolution
is a generalization of the convolution.

Theorem 1. Let f and g be distributions in D′, satisfying either condition
(a) or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix
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convolution f ⃝∗ g exists and

f ⃝∗ g = f ∗ g.

Theorem 2. Let f and g be distributions in D′ and suppose that the neutrix
convolution f ⃝∗ g exists. Then the neutrix convolution f ⃝∗ g′ exists and

(f ⃝∗ g)′ = f ⃝∗ g′.

If N−lim
n→∞

⟨(fτ ′n) ∗ g, φ⟩ exists and equals ⟨h, φ⟩ for all φ in D, then f ′ ⃝∗ g

exists and

(f ⃝∗ g)′ = f ′ ⃝∗ g + h.

In the following, we need to extend our set of negligible functions to
include finite linear sums of the functions ns li(nr) and ns ln−r n, (n > 1)
for s = 0, 1, 2, . . . and r = 1, 2, . . . .

2. Main Results

The following lemmas were proved in [4].

Lemma 1.

lim
n→∞

∫ n+n−n

n
τn(t) li(t)(x− t)r dt = 0 (4)

for r = 1, 2, . . . .

Lemma 2.

N−lim
n→∞

li[(x+ n)r] = 0, (5)

N−lim
n→∞

nr li[(x+ n)] = 0 (6)

for r = 1, 2, . . . .

We now prove a number of results involving the convolution. First of all
we have

Theorem 3. The convolutions li+(x
s) ∗ xr+ and xs−1

+ ln−1 x+ ∗ xr+ exist and

li+(x
s) ∗ xr+ =

1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)r−i+1xi li+(x

r+s−i+1), (7)

xs−1
+ ln−1 x+ ∗ xr+ =

r∑
i=0

(
r

i

)
(−1)r−ixi li+(x

r+s−i) (8)

for r = 0, 1, 2, . . . and s = 1, 2, . . . .
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Proof. It is obvious that li+(x
s) ∗ xr+ = 0 if x < 0.

When x > 0, we have

li+(x
s) ∗ xr+ = PV

∫ x

0
(x− t)r

∫ t

0

us−1du

lnu
dt

= PV

∫ x

0

us−1

lnu

∫ x

u
(x− t)r dt du

= PV
1

r + 1

r+1∑
i=0

(−1)r−i+1xi
(
r + 1

i

)∫ x

0

ur+s−i

lnu
du

=
1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)r−i+1xi li(xr+s−i+1),

on using equation (1) and equation (7) is proved.
Now, using equation (3) and (7), we get

xs−1
+ ln−1 x+ ∗ xr+ = r li+(x

s) ∗ xr−1
+

=
r∑

i=0

(
r

i

)
(−1)r−ixi li+(x

r+s−i),

proving equation (8). �

Corollary 1. The convolutions li−(x
s)∗xr− and xs−1

− ln−1 x− ∗xr− exist and

li−(x
s) ∗ xr− =

1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)r−i+2xi li−(x

r+s−i+1), (9)

xs−1
− ln−1 x− ∗ xr− =

r∑
i=0

(
r

i

)
(−1)r−i+1xi li−(x

r+s−i) (10)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Equations (9) and (10) follow on replacing x by −x in equation (7)
and (8). �

Theorem 4. The neutrix convolutions li+(x
s)⃝∗ xr and xs−1 ln−1 x+ ⃝∗ xr

exist and

li+(x
s)⃝∗ xr = 0, (11)

xs−1 ln−1 x+ ⃝∗ xr = 0 (12)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .
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Proof. We put [li+(x
s)]n = li+(x

s)τn(x). Then the convolution [li+(x
s)]n∗xr

exists by definition 1 and

[li+(x
s)]n ∗ xr =

∫ n

0
li(ts)(x− t)r dt+

∫ n+n−n

n
τn(t) li(t

s)(x− t)r dt, (13)

where∫ n

0
li(ts)(x− t)r dt = PV

∫ n

0
(x− t)r

∫ t

0

us−1du

lnu
dt

= PV

∫ n

0

us−1

lnu

∫ n

u
(x− t)r dt du

= PV
1

r + 1

r+1∑
i=0

(−1)r−i+1xi
(
r + 1

i

)∫ n

0

ur+s−i − nr+s−i

lnu
du

=
1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)r−i+1xi[li(nr+s−i+1)− nr+s−i+1 li(n)].

Thus from Lemma 1 we have

N−lim
n→∞

∫ n

0
li(ts)(x− t)r dt = 0. (14)

Equation (11) now follows using Lemma 1, equations (13) and (14).
Differentiating equation (11) and using Theorem 2 we get

xs−1 ln−1 x+ ⃝∗ xr = N−lim
n→∞

[li+(x
s)τ ′n(x)] ∗ xr (15)

where, on integration by parts we have

[li+(x
s)τ ′n(x)] ∗ xr =

∫ n+n−n

n
τ ′n(t) li(t

s)(x− t)r dt

= − li(ns)(x− n)r −
∫ n+n−n

n
ts−1 ln−1(ts)(x− t)rτn(t) dt

+ r

∫ n+n−n

n
li(ts)(x− t)r−1τn(t) dt. (16)

It is clear that

lim
n→∞

∫ n+n−n

n
ts−1 ln−1(t)(x− t)rτn(t) dt = 0 (17)

and now equation (12) follows from lemma 1 and equations (15), (16) and
(17). �
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Corollary 2. The neutrix convolutions li−(x
s)⃝∗ xr and xs−1

− ln−1 x− ⃝∗ xr

exist and

li−(x
s)⃝∗ xr = 0, (18)

xs−1
− ln−1 x− ⃝∗ xr = 0 (19)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Equations (18) and (19) on replacing x by −x in equation(11) and
(12). �
Corollary 3. The neutrix convolutions li(xs) ⃝∗ xr and xs−1 ln−1 |x| ⃝∗ xr

exist and

li(xs)⃝∗ xr = 0, (20)

xs−1 ln−1 |x| ⃝∗ xr = 0 (21)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Equation (20) follows on adding equation (18) and (11) and equation
(21) follows on adding equations (12) and (19). �
Corollary 4. The neutrix convolutions li+(x

s)⃝∗ xr−, li−(x
s)⃝∗ xr+, x

s−1
+ ln−1

x+ ⃝∗ xr− and xs−1
− ln−1 x− ⃝∗ xr+ exist and

li+(x
s)⃝∗ xr− =

1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)ixi li+(x

r+s−i+1), (22)

li−(x
s)⃝∗ xr+ =

1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)i+1xi li−(x

r+s−i+1), (23)

xs−1
+ ln−1 x+ ⃝∗ xr− =

r∑
i=0

(
r

i

)
(−1)ixi li+(x

r+s−i), (24)

xs−1
− ln−1 x− ⃝∗ xr+ =

r∑
i=0

(
r

i

)
(−1)i+1xi li−(x

r+s−i), (25)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Noting that xr = xr+ + (−1)rxr− and the fact that the neutrix convo-
lution product is distributive with respect to addition, we have

li+(x
s)⃝∗ xr = li+(x

s) ∗ xr+ + (−1)r li+(x
s)⃝∗ xr−.

Equation (22) follows from equations (7) and (11). Equation (23) follows on
replacing x by −x in equation (22).

Equation (24) follows from equations (8) and (12) and equation (25) fol-
lows on replacing x by −x in equation (24). �



98 BRIAN FISHER, BILJANA JOLEVSKA-TUNESKA AND ARPAD TAKACI

Theorem 5. The neutrix convolutions xr ⃝∗ li+(x
s) and xr ⃝∗ xs−1

+ ln−1 x+
exist and

xr ⃝∗ li+(x
s) = 0, (26)

xr ⃝∗ xs−1
+ ln−1 x+ = 0 (27)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. We put (xr)n = xrτn(x) for r = 0, 1, 2, . . . . Then the convolution
(xr)n ∗ li+(xs) exists by Definition 1 and

(xr)n ∗ li+(xs) =
∫ x+n

0
li(ts)(x− t)r dt+

∫ x+n+n−n

x+n
τn(x− t) li(ts)(x− t)r dt,

(28)
where∫ x+n

0
li(ts)(x− t)r dt = PV

∫ x+n

0
(x− t)r

∫ t

0

us−1du

lnu
dt

= PV

∫ x+n

0

us−1

lnu

∫ x+n

u
(x− t)r dt du

= PV
1

r + 1

r+1∑
i=0

(−1)r−i+1xi
(
r + 1

i

)∫ x+n

0

ur+s−i

lnu
du

− PV
(−n)r+1

r + 1

∫ x+n

0

us−1du

lnu

=
1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)r−i+1xi li[(x+ n)r+s−i+1]− (−n)r+1

r + 1
li ((x+ n)s) .

Thus, on using Lemma 2, we have

N−lim
n→∞

∫ x+n

0
li(ts)(x− t)r dt = 0. (29)

Further, using lemma 2 it is easily seen that

lim
n→∞

∫ x+n+n−n

x+n
τn(x− t) li(ts)(x− t)r dt = 0 (30)

and equation (26) follows from equations (28), (29) and (30).
Differentiating equation (26) gives equation (27). �

Corollary 5. The neutrix convolutions xr ⃝∗ li−(x
s) and xr ⃝∗ xs−1

− ln−1 x−
exist and

xr ⃝∗ li−(x
s) = 0, (31)

xr ⃝∗ xs−1
− ln−1 x− = 0 (32)
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for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Equations (31) and (32) follow on replacing x by −x in equations
(26) and (27). �

Corollary 6. The neutrix convolutions xr ⃝∗ li(xs) and xr ⃝∗ xs−1 ln−1 |x|
exist and

xr ⃝∗ li(xs) = 0, (33)

xr ⃝∗ xs−1 ln−1 |x| = 0 (34)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Equation (33) follows on adding equation (31) and (26) and equation
(34) follows on adding equations (27) and (32). �

Corollary 7. The neutrix convolutions xr− ⃝∗ li+(x
s), xr+ ⃝∗ li−(x

s), xr− ⃝∗
xs−1
+ ln−1 x+ and xr+ ⃝∗ xs−1

− ln−1 x− exist and

xr− ⃝∗ li+(x
s) =

1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)ixi li+(x

r+s−i+1), (35)

xr+ ⃝∗ li−(x
s) =

1

r + 1

r+1∑
i=0

(
r + 1

i

)
(−1)i+1xi li−(x

r+s−i+1), (36)

xr− ⃝∗ xs−1
+ ln−1 x+ =

1

r + 1

r∑
i=0

(
r

i

)
(−1)ixi li+(x

r+s−i), (37)

xr+ ⃝∗ xs−1
− ln−1 x− =

1

r + 1

r∑
i=0

(
r

i

)
(−1)i+1xi li−(x

r+s−i) (38)

for r = 0, 1, 2, . . . , and s = 1, 2, . . . .

Proof. Equation (35) follows from equations (7) and (26) on noting that

xr ⃝∗ li+(x
s) = xr+ ∗ li+(xs) + (−1)rxr− ⃝∗ li+(x

s).

Equation (36) follows on replacing x by −x in equation (35). Equation
(37) follows from equations (8) and (27) and equation (38) follows on re-
placing x by −x in equation (37). �

For further results involving the convolution see [5] and [6].



100 BRIAN FISHER, BILJANA JOLEVSKA-TUNESKA AND ARPAD TAKACI

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with
formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, p. 879,
1972.

[2] J. G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math., 7 (1959-60),
291-398.

[3] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb.
Rad. Prirod.-Mat. Fak. Ser. Mat., 17 (1987), 119-135.

[4] B. Fisher and B. Jolevska-Tuneska, On the logarithmic integral, Hacet. J. Math. Stat.,
39 (3) (2010), 393-401.

[5] B. Fisher, B. Jolevska-Tuneska and A.Takaci, On convolutions and neutrix convolu-
tions involving the incomplete gamma function, Integral Transforms Spec. Funct., 15
(5) (2004), 404-415.

[6] B. Jolevska-Tuneska and A. Takaci, Results on the commutative neutrix convolution
of distributions, Hacet. J. Math. Stat., 37 (2)(2008), 135-141.

[7] I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press Chap.
1, 1964.

[8] D.S. Jones, The convolution of generalized functions, Quart. J. Math. Oxford (2), 24
(1973), 145-163.

(Received: March 21, 2011) B. Fisher
Department of Mathematics
University of Leicester, Leicester
LE1 7RH, England
E–mail: fbr@le.ac.uk

B. Jolevska-Tuneska
Faculty of Electrical Engineering and
Informational Technologies
Karpos II bb, Skopje, Republic of Macedonia
E–mail: biljanaj@feit.ukim.edu.mk

A. Takači
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