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ON A REFINEMENT OF HARDY’S INEQUALITIES VIA
SUPERQUADRATIC AND SUBQUADRATIC FUNCTIONS

GHULAM FARID, KRISTINA KRULIĆ AND JOSIP PEČARIĆ

ABSTRACT. Let Ak be an integral operator defined by

Akf(x) :=
1

K(x)

∫
Ω2

k(x, y)f(y)dµ2(y),

where k : Ω1 × Ω2 → R is a general nonnegative kernel,and (Ω1,Σ1, µ1),
(Ω2,Σ2, µ2) are measure spaces with σ-finite measures and

K(x) :=

∫
Ω2

k(x, y)dµ2(y), x ∈ Ω1.

In this paper we define a functional as a difference between the right-hand side
and the left-hand side of the refined Hardy type inequality with general measures
and kernels using the notation of superquadratic and subquadratic functions in-
equality and study its properties, such as exponential and logarithmic convexity.

1. INTRODUCTION

In 1920 G.H. Hardy announced in [6] and proved in [7] the following result: Let
p > 1 and f ∈ Lp(0,∞) be a nonnegative function, then∫ ∞

0

(
1

x

∫ x

0
f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞

0
fp(x)dx, (1.1)

holds. This result is referred to as the classical Hardy’s integral inequality. Since
Hardy established inequality (1.1) it has been investigated and generalized in sev-
eral directions. Recent results concerning refinements of multidimensional Hardy-
type and Hardy’s inequalities via superquadratic functions are given in [12] and
[13]. Another important inequality is the following.

If p > 1 and f is a nonnegative function such that f ∈ Lp(R+), then∫ ∞

0

(∫ ∞

0

f(x)

x+ y
dx

)p
dy ≤

(
π

sin
(
π
p

))p ∫ ∞

0
fp(y) dy. (1.2)
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Inequality (1.2) is sometimes referred to as Hilbert’s or Hardy-Hilbert’s inequality.
Here we focus on a class of superquadratic functions to obtain new results con-
cerning Hardy-type inequalities. Our main tool in this paper is to use the notation
of superquadratic and subquadratic functions introduced by Abramovich, Jameson
and Sinnamon in [2] (see also[1] and [3]).

Definition 1. A function φ : [0,∞) → R is superquadratic provided that for all
x ≥ 0 there exists a constant Cx ∈ R such that

φ(y)− φ(x)− φ (|y − x|) ≥ Cx (y − x) for all y ≥ 0.

We say that f is subquadratic if −f is superquadratic.

Definition 2. A function f : [0,∞) → R is superadditive provided f(x + y) ≥
f(x) + f(y) for all x, y ≥ 0. If the reverse inequality holds, then f is said to be
subadditive.

Lemma 1.1. Supposeφ : [0,∞) → R is continuously differentiable andφ(0) ≤ 0.

If φ′ is superadditive or φ′(x)
x is non-decreasing, then φ is superquadratic.

In [8] K. Krulić et al. study some new weighted Hardy type inequalities on
(Ω1,Σ1, µ1), (Ω2,Σ2, µ2), measure spaces with σ-finite measures with an integral
operator Ak defined by

Akf(x) :=
1

K(x)

∫
Ω2

k(x, y)f(y)dµ2(y), (1.3)

where f : Ω2 → R is a measurable function, k : Ω1 × Ω2 → R is measurable and
nonnegative kernel and

0 < K(x) :=

∫
Ω2

k(x, y)dµ2(y) <∞, for all x ∈ Ω1. (1.4)

In [4] the following refined Hardy type inequality is given:

Theorem 1.1. Let u be a weight function, k(x, y) ≥ 0. Assume that k(x,y)K(x) u(x) is
locally integrable on Ω1 for each fixed y ∈ Ω2. Define v by

v(y) :=

∫
Ω1

k(x, y)

K(x)
u(x)dµ1(x) <∞. (1.5)

Suppose I = [0, c), c ≤ ∞, φ : I → R. If φ is a superquadratic function, then the
inequality∫

Ω1

φ(Akf(x))u(x)dµ1(x) +

∫
Ω2

∫
Ω1

φ (|f(y)−Akf(x)|)

· u(x)k(x, y)
K(x)

dµ1(x) dµ2(y) ≤
∫
Ω2

φ(f(y))v(y)dµ2(y) (1.6)
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holds for all measurable functions f : Ω2 → R, such that Imf ⊆ I , where Ak is
defined by (1.3)− (1.4).
If φ is subquadratic, then the inequality sign in (1.6) is reversed.

Now, we introduce some necessary notation and recall some basic facts about
convex, log-convex functions (see e.g. [9]) as well as exponentially convex func-
tions. This is a sub-class of convex functions introduced by Bernstein in [5] (see
also [10], [11]).

Definition 3. A function h : (a, b) → R is exponentially convex if it is continuous
and

n∑
i,j=1

titjh(xi + xj) ≥ 0, (1.7)

holds for every n ∈ N and all sequences (tn)n∈N and (xn)n∈N of real numbers,
such that xi + xj ∈ (a, b), 1 ≤ i, j ≤ n.

Proposition 1.1. Let h : (a, b) → R. The following are equivalent
(i) h is exponentially convex,

(ii) h is continuous and
n∑

i,j=1

titjh

(
xi + xj

2

)
≥ 0

for all n ∈ N, all sequences (tn)n∈N of real numbers, and all sequences
(xn)n∈N in (a, b),

(iii) h is continuous and

det

[
h

(
xi + xj

2

)]n
i,j=1

≥ 0,

for every xi ∈ (a, b), i = 1, 2, . . . , n.

Condition (iii) for n = 2 means that it holds

h(x1)h(x2)− h2
(
x1 + x2

2

)
≥ 0,

hence, exponentially convex function is log-convex in the Jensen sense, and, being
continuous, it is also a log-convex function.

Now, let us recall the Galvani theorem for log-convex functions.

Lemma 1.2. Let positive function f : I → R be log-convex and let a1, a2, b1, b2 ∈
I be such that a1 ≤ b1, a2 ≤ b2 and a1 ̸= a2, b1 ̸= b2. Then the following
inequality is valid [

f(a2)

f(a1)

] 1
a2−a1

≤
[
f(b2)

f(b1)

] 1
b2−b1

.
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The following lemma gives us a characterization of log-convex functions.

Lemma 1.3. The function Φ is log-convex on an interval I , if and only if for all
a, b, c ∈ I , a < b < c,

[Φ(b)]c−a ≤ [Φ(a)]c−b[Φ(c)]b−a holds.

The paper is organized as follows. After this introduction, in Section 2 we prove
the Lagrange and the Cauchy-type mean value theorems and in Section 3 we study
the exponential and logarithmic convexity of the difference between the left-hand
and the right-hand side of the generalized Hardy type inequality (1.6).

Notations and Conventions. Throughout this paper we use bold letters to denote
n−tuples of real numbers, e.g. x = (x1, . . . , xn) , or y = (y1, . . . , yn) . Also, we
set 0 =(0, . . . , 0) ∈ Rn and 1 =(1, . . . , 1) ∈ Rn. Furthermore, the relations <,
≤, >, and ≥ are, as usual, defined componentwise. For example, for x,y ∈ Rn
we write x < y if xi < yi, i = 1, . . . , n. Furthermore, all functions are assumed to
be measurable and expressions of the form 0 ·∞, ∞

∞ , and 0
0 are taken to be equal to

zero. Moreover, u(x) denotes a weight function, i.e. a nonnegative and measurable
function on the actual interval or more general set.

2. MEAN VALUE THEOREMS

Let us continue by defining a linear functional as a difference between the right-
hand side and the left-hand side of the refined Hardy type inequality (1.6):

A(φ) =

∫
Ω2

φ(f(y))v(y)dµ2(y)−
∫
Ω1

φ(Akf(x))u(x)dµ1(x)

−
∫
Ω2

∫
Ω1

φ (|f(y)−Akf(x)|)
u(x)k(x, y)

K(x)
dµ1(x) dµ2(y) (2.1)

It is clear, that if φ is superquadratic function, then A(φ) ≥ 0.
Now, we give a mean value theorem. First, we state and prove the Lagrange-type

mean value theorem.

Lemma 2.1. Let φ ∈ C2(I), I = (0,∞) such that

m ≤ ξφ′′(ξ)− φ′(ξ)

ξ2
≤M, for all ξ ∈ I

Consider the functions φ1, φ2 defined by

φ1(x) =
Mx3

3
− φ(x) , φ2(x) = φ(x)− mx3

3
.

Then φ′
1
x and φ′

2
x are increasing functions . If φi(0) = 0, i = 1, 2, then they are

superquadratic functions.
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Theorem 2.1. If φ
′

x ∈ C1(I) and φ(0) = 0, then the following equality holds

A(φ)=
1

3

ξφ′′(ξ)− φ′(ξ)

ξ2

(∫
Ω2

f3(y)v(y)dµ2(y)−
∫
Ω1

(Akf(x))
3u(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|3
u(x)k(x, y)

K(x)
dµ1(x) dµ2(y)

)
, (2.2)

where Akf, K are defined by (1.3)− (1.4), respectively.

Proof. Suppose φ′

x is bounded, that is min(φ
′

x ) = m and max(φ
′

x ) = M . Then
by applying Theorem 1.1 on functions φ2, φ2 from Lemma 2.1 the following two
inequalities hold:

A(φ) ≤ M

3

(∫
Ω2

f3(y)v(y)dµ2(y)−
∫
Ω1

(Akf(x))
3u(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|3
u(x)k(x, y)

K(x)
dµ1(x) dµ2(y)

)
(2.3)

and

A(φ) ≥ m

3

(∫
Ω2

f3(y)v(y)dµ2(y)−
∫
Ω1

(Akf(x))
3u(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|3
u(x)k(x, y)

K(x)
dµ1(x) dµ2(y)

)
.

By combining the above two inequalities we have that there exist ξ ∈ (0,∞) such
that we get (2.2). Moreover if (for example) φ′

x is bounded from above we have
that (2.3) is valid. Of course (2.3) holds if φ

′

x is not bounded. �

Theorem 2.2. If φ
′

x ,
ψ′

x ∈ C1(I), φ(0) = ψ(0) = 0, then we have that

A(φ)

A(ψ)
=
ξφ′′(ξ)− φ′(ξ)

ξψ′′(ξ)− ψ′(ξ)
, ξ ∈ I

provided the denominators are not equal to zero.

Proof. We consider a function k defined as k = c1φ−c2ψ, where c1, c2 are defined
by

c1 = A(ψ), c2 = A(φ).

Then
k′

x
= c1

φ′

x
− c2

ψ′

x
∈ C1(I),
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after a short calculation we obtain that A(k) = 0 and

(c1(ξφ
′′(ξ)− φ′(ξ))− c2(ξψ

′′(ξ)− ψ′(ξ)))

×
(∫

Ω2

f3(y)v(y)dµ2(y)−
∫
Ω1

(Akf(x))
3u(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|3
u(x)k(x, y)

K(x)
dµ1(x)dµ2(y)

)
= 0. (2.4)

Since the right expression in (2.4) is different from 0, we conclude that

c2
c1

=
ξφ′′(ξ)− φ′(ξ)

ξψ′′(ξ)− ψ′(ξ)
=
A(φ)

A(ψ)
,

provided that the denominator is not zero. This completes the proof. �

As a special case of Theorems 2.1 and 2.2 we obtain the following results:

Example 2.1. Let Ω1 = Ω2 = (0, b), 0 < b ≤ ∞, replace dµ1(x) and dµ2(y)
by the Lebesgue measures dx and dy, respectively, and k(x,y) = 1, 0 ≤ y ≤
x, k(x,y) = 0, y > x. Then K(x) = x1 · · ·xn and

Akf(x) =
1

x1 · · ·xn

x1∫
0

· · ·
xn∫
0

f(y)dy.

Moreover, replace u(x) by u(x)/x1 · · ·xn and v(y) by v(y)/y1 · · · yn, then v co-
incides with

v(t) = t1 . . . tn

∫ b1

t1

. . .

∫ bn

tn

u(x)

x21 . . . x
2
n

dx, t ∈ (0,b)

and A which we now denote by Ã becomes

Ã(φ) =

∫ b1

0
· · ·
∫ bn

0
v(x)φ(f(x))

dx

x1 · · ·xn

−
∫ b1

0
· · ·
∫ bn

0
u(x)φ

(
1

x1 · · ·xn

∫ x1

0
· · ·
∫ xn

0
f(t)dt

)
dx

x1 · · ·xn

−
∫ b1

0
· · ·
∫ bn

0

∫ b1

t1

· · ·
∫ bn

tn

φ

(∣∣∣∣f(t)− 1

x1 · · ·xn

∫ x1

0
· · ·
∫ xn

0
f(t)dt

∣∣∣∣)
× u(x)

x21 · · ·x2n
dxdt
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and (2.2) takes the form

Ã(φ) =
1

3

ξφ′′(ξ)− φ′(ξ)

ξ2

(∫ b1

0
· · ·
∫ bn

0
v(x)f3(x)

dx

x1 · · · xn

−
∫ b1

0
· · ·
∫ bn

0
u(x)

(
1

x1 · · · xn

∫ x1

0
· · ·
∫ xn

0
f(t)dt

)3 dx

x1 · · · xn

−
∫ b1

0
· · ·
∫ bn

0

∫ b1

t1

· · ·
∫ bn

tn

∣∣∣∣f(t)− 1

x1 · · · xn

∫ x1

0
· · ·
∫ xn

0
f(t)dt

∣∣∣∣3
× u(x)

x21 · · · x2n
dxdt

)
.

Example 2.2. Let Ω1 = Ω2 = (b,∞), 0 ≤ b < ∞, replace dµ1(x) and dµ2(y)
by the Lebesgue measures dx and dy, respectively and k(x,y) = 1

y21 ··· y2n
, y ≥

x, k(x,y) = 0, b ≤ y < x. Then K(x) = 1
x1···xn and

Akf(x) = x1 · · · xn
∫ ∞

x1

· · ·
∫ ∞

xn

f(y)

y21 · · · y2n
dy.

Replacing u(x) by u(x)/x1 . . . xn and v(y) by v(y)/y1 . . . yn, we obtain

v(t) =
1

t1 · · · tn

∫ t1

b1

· · ·
∫ tn

bn

u(x)dx <∞, t ∈ (b,∞)

and A which we now denote by Â becomes

Â(φ) =

∫ ∞

b1

· · ·
∫ ∞

bn

v(x)φ(f(x))
dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

u(x)φ

(
x1 · · ·xn

∫ ∞

x1

· · ·
∫ ∞

xn

f(t)
dt

t21 · · · t2n

)
dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

∫ t1

b1

· · ·
∫ tn

bn

φ

(∣∣∣∣f(t)− x1 · · ·xn
∫ ∞

x1

· · ·
∫ ∞

xn

f(t)
dt

t21 · · · t2n

∣∣∣∣)
× u(x)dx

dt

t21 · · · t2n
and (2.2) takes the form

Â(φ) =
1

3

ξφ′′(ξ)− φ′(ξ)

ξ2

(∫ ∞

b1

· · ·
∫ ∞

bn

v(x)f3(x)
dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

u(x)

(
x1 · · ·xn

∫ ∞

x1

· · ·
∫ ∞

xn

f(t)
dt

t21 · · · t2n

)3 dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

∫ t1

b1

· · ·
∫ tn

bn

∣∣∣∣f(t)− x1 · · ·xn
∫ x1

0
· · ·
∫ xn

0
f(t)

dt

t21 · · · t2n

∣∣∣∣3
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×u(x)dx
dt

t21 · · · t2n

)
.

We state the following result concerning inequality (1.2) by applying Theorem
2.2 with φ(u) = up, p ≥ 2.

Example 2.3. Let Ω1 = Ω2 = (0,∞), φ(u) = up, p ≥ 2 and replace dµ1(x) and

dµ2(y) by the Lebesque measures dx and dy, respectively, let k(x, y) =
( y
x
)−1/p

x+y

and u(x) = 1
x . Then we find that K(x) = π

sin(π/p) and v(y) = 1
y . Replace f(x) by

f(x)x1/p, so A which is now denoted by Hf becomes

Hf =

∫ ∞

0
fp(y) dy −

(
sin
(
π
p

)
π

)p ∫ ∞

0

(∫ ∞

0

f(x)

x+ y
dx

)p
dy

−
sin
(
π
p

)
π

∫ ∞

0

∫ ∞

0

∣∣∣∣∣f(y)− sin
(
π
p

)
π

(
x

y

) 1
p
∫ ∞

0

f(y)

x+ y
dy

∣∣∣∣∣
p
x

1
p
−1

x+ y
dx dy

and (2.2) takes the form

Hf =
p(p− 2)ξp−3

3

×

(∫ ∞

0
f3(y)y

3
p
−1
dy −

(
sin
(
π
p

)
π

)3 ∫ ∞

0

(∫ ∞

0

f(y)

x+ y
dy

)3

x
3
p
−1
dx

−
sin
(
π
p

)
π

∫ ∞

0

∫ ∞

0

∣∣∣∣∣f(y)− sin
(
π
p

)
π

(
x

y

) 1
p
∫ ∞

0

f(y)

x+ y
dy

∣∣∣∣∣
3
x

1
p
−1

x+ y
dxdy

)
.

3. EXPONENTIAL CONVEXITY

Lemma 3.1. Consider the function φp for p > 0 defined as

φp(x) =

{
xp

p(p−2) , p ̸= 2

x2

2 log x, p = 2
(3.1)

Then, with the convention 0 log 0 = 0, it is superquadratic.

For linear functional A defined by (2.1) we have A(φp) ≥ 0 for all p > 0.

Lemma 3.2. Let us define the function

ϕp(x) =

{
pxepx−epx+1

p3
, p ̸= 0

x3

3 , p = 0.
(3.2)

Then
(
ϕ′p(x)

x

)′
= epx > 0, and ϕp(0) = 0, therefore ϕp is superquadratic.

Properties of the mapping p 7→ A(φp) are given in the following theorem:
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Theorem 3.1. For A as in (2.1) and φp as in (3.2) we have the following:
(i) the mapping p 7→ A(φp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pij =
pi+pj

2 , i, j = 1, 2, . . . , n, the matrix
[A(φpij )]

n
i,j=1 is a positive semi-definite, that is

det[A(φpij )]
n
i,j=1 ≥ 0,

(iii) the mapping p 7→ A(φp) is exponentially convex,
(iv) the mapping p 7→ A(φp) is log-convex,
(v) for pi ∈ R+, i = 1, 2, 3, p1 < p2 < p3,

[A(φp2)]
p3−p1 ≤ [A(φp1)]

p3−p2 [A(φp3)]
p2−p1 .

Proof. (i) Notice that

A(φp) =



1
p(p−2)

[∫
Ω2
fp(y)v(y)dµ2(y)−

∫
Ω1
(Akf(x))

pu(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|p u(x)k(x,y)K(x) dµ1(x) dµ2(y)
]
, p ̸= 2;

1
2

[∫
Ω2
f2(y) log(f(y))v(y)dµ2(y)

−
∫
Ω1
(Akf(x))

2 log(Akf(x)))u(x)dµ1(x)−
∫
Ω2

∫
Ω1

|f(y)
−Akf(x)|2 log |f(y)−Akf(x)|u(x)k(x,y)K(x) dµ1(x) dµ2(y)

]
, p=2.

It is obviously continuous for p > 0, p ̸= 2. Suppose p→ 2 :

lim
p→2

A(φp)= lim
p→2

1

p(p−2)

[∫
Ω2

fp(y)v(y)dµ2(y)−
∫
Ω1

(Akf(x))
pu(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|p
u(x)k(x, y)

K(x)
dµ1(x) dµ2(y)

]
.

Since∫
Ω2

f2(y)v(y)dµ2(y)−
∫
Ω1

(Akf(x))
2u(x)dµ1(x)

−
∫
Ω2

∫
Ω1

|f(y)−Akf(x)|2
u(x)k(x, y)

K(x)
dµ1(x) dµ2(y) = 0

applying L’Hospital rule we obtain after a simple calculation that

lim
p→2

A(φp) = A(φ2).

Hence, the mapping p 7→ A(φp) is continuous for p > 0.
(ii) Define the function F (x) =

∑n
i,j=1 uiujφpij(x), where pij =

pi+pj
2 then(

F ′(x)

x

)′
=

n∑
i,j=1

uiuj

(
φ′
pij

(x)

x

)′

=

(
n∑
i=1

uix
pi−3

2

)2

≥ 0
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and F (0) = 0. This implies F is superquadratic so using this F in the place of φ
in (1.6) we have

A(F ) =

n∑
i,j=1

uiujA(φpij ) ≥ 0 (3.3)

and from this we have that the matrix B = [A(φ pi+pj
2

)]ni,j=1, is positive-semidefi-

nite i.e. detB ≥ 0.
(iii), (iv) and (v) are trivial consequences of (i), (ii) and the definition of exponen-
tially convex and log-convex functions. �

Using the function ϕp instead of φp, the following result follows.

Theorem 3.2. For A as in (2.1) and ϕp as in (3.2) we have the following:

(i) the mapping p 7→ A(ϕp) is continuous on R,
(ii) for every n ∈ N and pi ∈ R, pij =

pi+pj
2 , i, j = 1, 2, . . . , n, the matrix

[A(ϕpij )]
n
i,j=1 is a positive semi-definite, that is

det[A(ϕpij )]
n
i,j=1 ≥ 0,

(iii) the mapping p 7→ A(ϕp) is exponentially convex,
(iv) the mapping p 7→ A(ϕp) is log-convex,
(v) for pi ∈ R, i = 1, 2, 3, p1 < p2 < p3,

[A(ϕp2)]
p3−p1 ≤ [A(ϕp1)]

p3−p2 [A(ϕp3)]
p2−p1 .

4. CAUCHY MEANS

Theorem 2.2 enables us to define new means, because if on the right hand side
the function of ξ is denoted by K(ξ) and is invertible, then by Theorem 2.2 we
have

ξ = K−1

(
A(φ)

A(ψ)

)
,

which presents a new Cauchy’s mean.
Specially, if we choose φ = φs, ψ = φr, where r, s ∈ R+, r ̸= s, r, s ̸= 2, we

obtain

ξs−r =
r(r − 2)

s(s− 2)
×∫

Ω2
fs(y)v(y)dµ2(y)−

∫
Ω1
(Akf(x))

su(x)dµ1(x)−
∫
Ω2

∫
Ω1
Cs(x, y)g(x, y)dµ1(x)dµ2(y)∫

Ω2
fr(y)v(y)dµ2(y)−

∫
Ω1
(Akf(x))ru(x)dµ1(x)−

∫
Ω2

∫
Ω1
Cr(x, y)g(x, y)dµ1(x)dµ2(y)

,

where C(x, y) = |f(y)−Akf(x)| and g(x, y) = u(x)k(x,y)
K(x) .

Now we can give the following definition.
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Definition 4. For r, s ∈ R+ we define the new mean Mr,s as follows

Ms,r =

(
r(r − 2)

s(s− 2)
×∫

Ω2
As,0(y)dµ2(y)−

∫
Ω1
Bs,0(x)dµ1(x)−

∫
Ω2

∫
Ω1
Cs,0(x, y)dµ1(x)dµ2(y)∫

Ω2
Ar,0(y)dµ2(y)−

∫
Ω1
Br,0(x)dµ1(x)−

∫
Ω2

∫
Ω1
Cr,0(x, y)dµ1(x)dµ2(y)

) 1
s−r

,

Taking a limit we define exluded cases. For r ̸= 2 we have

Mr,2 =M2,r =

(
r(r − 2)

2
×∫

Ω2
A2,1(y)dµ2(y)−

∫
Ω1
B2,1(x)dµ1(x)−

∫
Ω2

∫
Ω1
C2,1(x, y)dµ1(x)dµ2(y)∫

Ω2
Ar,0(y)dµ2(y)−

∫
Ω1
Br,0(x)dµ1(x)−

∫
Ω2

∫
Ω1
Cr,0(x, y)dµ1(x)dµ2(y)

) 1
2−r

Mr,r =

exp

(∫
Ω2
Ar,1(y)dµ2(y)−

∫
Ω1
Br,1(x)dµ1(x)−

∫
Ω2

∫
Ω1
Cr,1(x, y)dµ1(x)dµ2(y)∫

Ω2
Ar,0(y)dµ2(y)−

∫
Ω1
Br,0(x)dµ1(x)−

∫
Ω2

∫
Ω1
Cr,0(x, y)dµ1(x)dµ2(y)

− 2r − 2

r(r − 2)

)
,

and for r = 2

M2,2 =

exp

(∫
Ω2
A2,2(y)dµ2(y)−

∫
Ω1
B2,2(x)dµ1(x)−

∫
Ω2

∫
Ω1
C2,2(x, y)dµ1(x)dµ2(y)∫

Ω2
A2,1(y)dµ2(y)−

∫
Ω1
B2,1(x)dµ1(x)−

∫
Ω2

∫
Ω1
C2,1(x, y)dµ1(x)dµ2(y)

−1

2

)
,

where
Ap,n(y) = fp(y)(log(f(y))nv(y),
Bp,n(x) = (Akf(x))

p(log(Akf(x))
nu(x),

Cp,n(x, y) = |f(y)−Akf(x)|p logn |f(y)−Akf(x)|g(x, y), n = 0, 1, 2,
p > 0.

Note that these means are symmetric and we can easily check that the special
cases in the above definition are limits of the general case. That is,

Mr,r = lim
s→r

Ms,r

M2,r =Mr,2 = lim
s→2

Ms,r = lim
s→2

Mr,s,

M2,2 = lim
r→2

Mr,r.

The monotonicity of the above defined means is given in the following theorem.

Theorem 4.1. Let s, t, u, v ∈ R+ be such that s ≤ u, t ≤ v, s ̸= t, u ̸= v. Then

Mt,s ≤Mv,u. (4.1)
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Proof. Since the function s 7→ A(φs) is log-convex, then by Lemma 1.2 for any
s, t, u, v ∈ R+, such that s ≤ u, t ≤ v, s ̸= t, u ̸= v, we have(

A(φt)

A(φs)

) 1
t−s

≤
(
A(φv)

A(φu)

) 1
v−u

which is equivalent to (4.1).
For s = t and u = v we can consider the limiting case. �
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[11] D. S Mitrinović and J. E. Pečarić, On some inequalities for monotone functions, Boll. Unione.

Mat. Ital. VII, Ser. B, 5 (2) (1991), 407–416
[12] J. A. Oguntuase and L.-E. Persson, Refinement of Hardy’s inequalities via superquadratic and

subquadratic functions, J. Math. Anal. Appl., 339 (2008), 1305–1312.
[13] J. A. Oguntuase, L.-E. Persson, E. K. Essel and B. A. Popoola, Refined multidimensional

Hardy-type inequalities via superquadracity, Banach J. Math. Anal., 2 (2) (2008), 129– 139.

(Received: October 15, 2010) Ghulam Farid
(Revised: February 17, 2011) Abdus Salam School of Mathematical Sciences

GC University, Lahore, Pakistan
E–mail: faridphdsms@hotmail.com



ON A REFINEMENT OF HARDY’S INEQUALITIES VIA SUPERQUADRATIC FUNCTIONS 175
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10000 Zagreb, Croatia
E–mail: kkrulic@ttf.hr

pecaric@element.hr


