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ON A REFINEMENT OF HARDY’S INEQUALITIES VIA
SUPERQUADRATIC AND SUBQUADRATIC FUNCTIONS

GHULAM FARID, KRISTINA KRULIC AND JOSIP PECARIC

ABSTRACT. Let Ay, be an integral operator defined by

Aef(@) = ﬁ / k(e ) f (0)dpa (v),

where k : Q1 x Q2 — R is a general nonnegative kernel,and (1, X1, p1),
(Q2, 32, p2) are measure spaces with o-finite measures and

K(z) := k(z,y)dp2(y), =€ Q.

Qg

In this paper we define a functional as a difference between the right-hand side
and the left-hand side of the refined Hardy type inequality with general measures
and kernels using the notation of superquadratic and subquadratic functions in-
equality and study its properties, such as exponential and logarithmic convexity.

1. INTRODUCTION

In 1920 G.H. Hardy announced in [6] and proved in [7] the following result: Let
p > 1land f € LP(0,c0) be a nonnegative function, then

/Ooo (i /: f(t)dt)pdz < (pﬁly/ooo fP(x)d, (1.1)

holds. This result is referred to as the classical Hardy’s integral inequality. Since
Hardy established inequality (1.1) it has been investigated and generalized in sev-
eral directions. Recent results concerning refinements of multidimensional Hardy-
type and Hardy’s inequalities via superquadratic functions are given in [12] and
[13]. Another important inequality is the following.

If p > 1 and f is a nonnegative function such that f € LP(R.), then

/O"" ( OOO jf)y dw)p dy = (Smﬂ(g)y/f fPly)dy.  (1.2)
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Inequality (1.2) is sometimes referred to as Hilbert’s or Hardy-Hilbert’s inequality.
Here we focus on a class of superquadratic functions to obtain new results con-
cerning Hardy-type inequalities. Our main tool in this paper is to use the notation
of superquadratic and subquadratic functions introduced by Abramovich, Jameson
and Sinnamon in [2] (see also[1] and [3]).

Definition 1. A function ¢ : [0,00) — R is superquadratic provided that for all
x > 0 there exists a constant C, € R such that

e(y) — (@) —¢(ly —=[) = Co (y — ) forally > 0.
We say that f is subquadratic if — f is superquadratic.

Definition 2. A function [ : [0,00) — R is superadditive provided f(x + y) >
f(z) + f(y) for all z, y > 0. If the reverse inequality holds, then f is said to be
subadditive.

Lemma 1.1. Suppose ¢ : [0, 00) — R is continuously differentiable and ¢(0) < 0.

. .. o(x) . . .
If ¢ is superadditive or =~ is non-decreasing, then @ is superquadratic.

In [8] K. Kruli¢ et al. study some new weighted Hardy type inequalities on
(Q1, %1, 1), (Q2, X9, u2), measure spaces with o-finite measures with an integral
operator A, defined by

1
A (@) = s [ K ), (13)
K(z) Jo,

where f : 29 — R is a measurable function, k& : 1 x 25 — R is measurable and
nonnegative kernel and

0< K(z):= / k(x,y)dus(y) < oo, forall z € ;. (1.4)
Qo

In [4] the following refined Hardy type inequality is given:

Theorem 1.1. Let u be a weight function, k(x,y) > 0. Assume that kl((ﬁ’))u(x) is

locally integrable on Q) for each fixed y € Q. Define v by

v(y) == /Ql kl((x(’wy))u(:c)dul(m) < 0. (1.5)

Suppose I = [0,¢), c < oo, ¢ : I — R. If p is a superquadratic function, then the
inequality

/ﬂ S @) + /Q 2 /Q ) - Aef @)

'Wdﬂl(ﬂf)duz(y)ﬁ/ o(f(W)v(y)dua(y) (1.6)

Qo
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holds for all measurable functions f : Qo — R, such that Imf C I, where Ay, is
defined by (1.3) — (1.4).
If ¢ is subquadratic, then the inequality sign in (1.6) is reversed.

Now, we introduce some necessary notation and recall some basic facts about
convex, log-convex functions (see e.g. [9]) as well as exponentially convex func-
tions. This is a sub-class of convex functions introduced by Bernstein in [5] (see
also [10], [11]).

Definition 3. A function h: (a,b) — R is exponentially convex if it is continuous
and

n
> titjh(wi + ;) > 0, (1.7)
ij=1
holds for every n € N and all sequences (ty)nen and (zy)nen of real numbers,
such that z; + x; € (a,b), 1 <1i,j < n.
Proposition 1.1. Let h: (a,b) — R. The following are equivalent

(1) h is exponentially convex,
(i1) h is continuous and

n

S titsh (W) >0

= 2

i,j=1

for alln € N, all sequences (t,)nen of real numbers, and all sequences

(Zn)nen in (a,b),
(iii) & is continuous and

det [h <W>] >0,
2 ij=1

forevery x; € (a,b),i=1,2,...,n.

Condition (iii) for n = 2 means that it holds

h(z1)h(zz) — h? (%”72) >0,

hence, exponentially convex function is log-convex in the Jensen sense, and, being
continuous, it is also a log-convex function.
Now, let us recall the Galvani theorem for log-convex functions.

Lemma 1.2. Let positive function f: I — R be log-convex and let a1, a2,b1, by €
I be such that a1 < by, ag < by and a1 # a9, by # ba. Then the following
inequality is valid

e < 1]
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The following lemma gives us a characterization of log-convex functions.

Lemma 1.3. The function ® is log-convex on an interval I, if and only if for all
a,bcel,a<b<eg

[@(0)]°* < [@(a)]**[@(c)]" holds.

The paper is organized as follows. After this introduction, in Section 2 we prove
the Lagrange and the Cauchy-type mean value theorems and in Section 3 we study
the exponential and logarithmic convexity of the difference between the left-hand
and the right-hand side of the generalized Hardy type inequality (1.6).

Notations and Conventions. Throughout this paper we use bold letters to denote
n—tuples of real numbers, e.g. x = (z1,...,2,),0ry = (y1,...,Yn) . Also, we
set 0 =(0,...,0) € R"and 1 =(1,...,1) € R™. Furthermore, the relations <,
<, >, and > are, as usual, defined componentwise. For example, for x,y € R"
we write x < y if x; < y;,% =1, ..., n. Furthermore, all functions are assumed to
be measurable and expressions of the form 0 - oo, 22, and 8 are taken to be equal to
zero. Moreover, u(x) denotes a weight function, i.e. a nonnegative and measurable
function on the actual interval or more general set.

2. MEAN VALUE THEOREMS

Let us continue by defining a linear functional as a difference between the right-
hand side and the left-hand side of the refined Hardy type inequality (1.6):

Alp) = /Q o(F())o(y)dpa(y) — / (A () u(w)dyn ()

2 O
_/Q2 /ngpﬂf(y) _Akf(x))Wdﬂl(x)dMQ(y) .1

It is clear, that if o is superquadratic function, then A(yp) > 0.
Now, we give a mean value theorem. First, we state and prove the Lagrange-type
mean value theorem.

Lemma 2.1. Let ¢ € C%(I), I = (0, 00) such that
1 /
O -9
Consider the functions @1, 2 defined by

$3 mxs
= T (@), pala) = pla) - "o

<M, forall§ € 1

p1(z)

/ /
Then % and % are increasing functions . If ;(0) = 0, i = 1,2, then they are
superquadratic functions.
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Theorem 2.1. If % € CY(I) and ¢(0) = 0, then the following equality holds

M- OO (

3 e o, Fy)oy)dpsa(y)— / (Apf(x))3u(x)dp ()

Q1

_ /Q2 o, |f(y) — Akf(m)|3 Wdﬂl(l‘) d,uz(y)> 22

where Ay f, K are defined by (1.3) — (1.4), respectively.

Proof. Suppose Z- is bounded, that is mln(“” ) = m and max(Z- ) M. Then
by applying Theorem 1.1 on functions s, @2 from Lemma 2.1 the following two
inequalities hold:

A <5 ([ Porwibem - [ A udn)

/92/91 — Al @) Wdul(x)duz(y)> (2.3)

and
A =5 ([ Pwrtidn - [ AP
L[ 1560 = At @ D o) dat))

By combining the above two inequalities we have that there exist £ € (0, c0) such
that we get (2.2). Moreover if (for example) is bounded from above we have
that (2.3) is valid. Of course (2.3) holds if ‘2 is not bounded. ]

Theorem 2.2. If £, Y € C(I), p(0) = ¢(0) = 0, then we have that

Alp) _ §0"(E) — ¢'(€)
A() &€ —¢'(8)

provided the denominators are not equal to zero.

el

Proof. We consider a function k defined as k = c¢1p—co1), where ¢y, ¢ are defined
by

Then
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after a short calculation we obtain that A(k) = 0 and

(c1(§0"(8) = ¢ (&) — ca&¥"(§) — ¢

©
x( P~ [ (4@ ule)im @
Qs Q
u( g

)
(
- [ [ 1w - A O b @) ) 0. @

Since the right expression in (2.4) is different from 0, we conclude that

e _ 0 - ¢ _ Alp)
a Q) -¢)  A)

provided that the denominator is not zero. This completes the proof. ([

As a special case of Theorems 2.1 and 2.2 we obtain the following results:

Example 2.1. Let Q1 = Q9 = (0,b), 0 < b < oo, replace du1(x) and dus(y)
by the Lebesgue measures dx and dy, respectively, and k(x,y) = 1,0 <y <
x, k(x,y) =0, y > x. Then K(x) = z1 - -z, and

A = [ [y
0 0

Moreover, replace u(x) by u(x)/x1 - - -z, and v(y) by v(¥)/y1 - - - Yn, then v co-

incides with
b1 bn
/ / da: t e (0,b)
t1 tn

and A which we now denote by A becomes

=/h~3/%wmwuwnmffw
L / : /f I ( S )

d:cdt

n

2
xl...x
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and (2.2) takes the form

i) =5 SO O ([T /b" 0 i)
)
/bl /b"/:1 /:" xn/o .../Oxnf(t)dt

Example 2.2. Let ; = Qy = (b,00), 0 < b < oo, replace dyu (z) and duz(y)
by the Lebesgue measures dx and dy, respectively and k(x,y) = ﬁ, y >
1 n

.f(,'l' '.’13
x, k(x,y) =0, b <y < x. Then K(x __l.xnand

Apf(x) / /oo Mzdy'

Replacing u(x) by u(x )/xl .xn and v(y) by v(y)/y1 . . . yn, We obtain

t1 tn
/ / x)dr < oo, t € (b,00)
“tn Jp, by

and A which we now denote by A becomes

_/bloo.../bn u(zc)w(t / / 0 7 >oo dmxn
_/bl ._./bn/ (I ey

w(@)de 35—

n

’U

)

t t2
and (2.2) takes the form

) = SO (7 [™ st o) 2
) /bn </ [ f<t>tf...t%>
_/bl / // f(t)_xl._.xn/oxl.._/o“f(t)t%dtt%‘”’
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dt
X u(z)dr—o——7rF | .
2.2
1 n

We state the following result concerning inequality (1.2) by applying Theorem
2.2 with p(u) = uP, p > 2.
Example 2.3. Let Q; = Qs = (0,00), ¢(u) = uP, p > 2 and replace dy;(z) and

yy-1/
dusa(y) by the Lebesque measures dz and dy, respectively, let k(z,y) = (II)TP

and u(z) = =. Then we find that K (z) = str7py and v(y) = % Replace f(x) by
f(z)x'/?, so A which is now denoted by H ¢ becomes

Lo CETE ()
=G0 () [ e

and (2.2) takes the form

p(p —2)¢P—3

dac dy

r+y

Hy =
00 sin (Z)\3 poo s/ roo 3
y (/ Al _ldy_< (,,)> / ( /) dy) S
™ 0 o T +vy
3

Sln / / sln(p) ( >11, % f(y) i x%—l Lody

y o T+y | x+y '
3. EXPONENTIAL CONVEXITY
Lemma 3.1. Consider the function o, for p > 0 defined as

miiv b 7£ 2
() ={ Py 3.0
G logx, p=2

Then, with the convention 0log(0 = 0, it is superquadratic.
For linear functional A defined by (2.1) we have A(y,) > 0 for all p > 0.

Lemma 3.2. Let us define the function

pacew‘"—epx—i-l 0
qﬁp(:r)—{ s P 7&0 (3.2)

xT

3 b
Then <¢p (= )) = eP* > 0, and ¢, (0) = 0, therefore ¢y, is superquadratic.

) =
Properties of the mapping p — A(y,) are given in the following theorem:
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Theorem 3.1. For A as in (2.1) and ¢, as in (3.2) we have the following:
(i) the mapping p — A(pp) is continuous for p > 0,
(ii) for everyn € Nand p; € Ry, p;j = p’;pj, 1,7 =1,2,...,n, the matrix
[A(ppi;)]} j=1 s a positive semi-definite, that is

det[A((pPij )mjzl > 07

(iil) the mapping p — A(pp) is exponentially convex,
(tv) the mapping p — A(ypp) is log-convex,
(V) fOl"pi € R+7 1= 1a2737 p1 < p2 < Dps3,

[App, )77 < [A(op, )12 772 [Alpps) ]2
Proof. (i) Notice that

55 oy PP W) diiz(y) =
= Jo, Jo, 1f () = Axf (@) u

Alen) = 1 [ o, 2108/ ()0 (m)dpa(y)

= Jo, (Arf (@) 10g(Af (@) u(@)dpn (@) = Jo, fo, 11y

— A f (@) log | f(y) — Arf (= >|#dm< ) dpa(y)| ,p—2.

It is obviously continuous for p > 0, p # 2. Suppose p — 2 :

)Pu(e)dp (x)

rf(x
M) 1y () dpa (y )}7 p#2

(A
(e
K(x)

\

lm A= lim, [ PP~ [ ()i

, u(@)k(z,y)
- [ 15 - acsor SR i ) st
Since
P2 ()o(y)dpa(y) — / (A (2))?u(z)dps ()
QQ Ql

- [ 1500 = s MR i ) disty) =0

applying L’Hospital rule we obtain after a simple calculation that
lim A(pp) = A(p2).
p—2

Hence, the mapping p — A(yp,) is continuous for p > 0.
(i) Define the function F'(x) = 377", uju;pp,;(2), where p;j = @ then

(7)< S (B) = (B0 0

7,7=1
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and F'(0) = 0. This implies F' is superquadratic so using this F in the place of ¢
n (1.6) we have

n
= wiujA(py,) =0 (3.3)
ij=1
and from this we have that the matrix B = [A(pp;+»; )|} j_;, is positive-semidefi-
nite 7.e. detB > 0. ’

(iii), (iv) and (v) are trivial consequences of (i), (ii) and the definition of exponen-
tially convex and log-convex functions. O

Using the function ¢,, instead of ¢,, the following result follows.

Theorem 3.2. For A as in (2.1) and ¢, as in (3.2) we have the following:

(i) the mapping p — A(¢p) is continuous on R,

(i1) for everyn € N and p; € R,p;; = pﬁp] , 1,7 = 1,2,...,n, the matrix
[A(bp;;)]7 =1 is a positive semi-deﬁmte that is

det[A((Z)pi]. )]ijl Z 0,

(iil) the mapping p — A(p) is exponentially convex,
(iv) the mapping p — A(¢y) is log-convex,
(V) forpi € R, i =1,2,3, p1 < p2 < p3,

[A(@p )PP < [Algp) [P T2 [Alpg) 72777

4. CAUCHY MEANS

Theorem 2.2 enables us to define new means, because if on the right hand side
the function of ¢ is denoted by K () and is invertible, then by Theorem 2.2 we

()

which presents a new Cauchy’s mean.
Specially, if we choose ¢ = ¢s,9 = @,, where r,s € Ry, r # s, r,8 # 2, we
obtain

g = rir—2)

s(s— 2)
o, £2(w)v(y)dpsa(y) fgl flz SU(SE)dm(x)*szfQICS(SE,y)g(x,y)dul(w)duz(y)
Ja, Fr@)v(@)dpz(y)—[o,(Arf (@) u(@)dp (2)=[q, [o,C7 (. y)g(z, y)dui (x)dps (y)’

k
where C(z,y) = [f(y) — Axf(z)| and g(z,y) = %
Now we can give the following definition.
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Definition 4. For r,s € R we define the new mean M,. s as follows

M, — (r(r—Z)x

s(s—2)
f oy)duz(y) — fﬂl s,0(x)dp () fQ2 le s,0(@, y)dpa () dpa(y) \ *
f y)dpﬂ(y le TO :17 I’ sz le T 0 PJ (I)dNQ(y) ’

Taking a limit we define exluded cases. For r # 2 we have

7’(7’—2)><

Mr,2 - MQ,T - (

Ja, A2,1(y)dpa(y ) Ja, Bz,l(x)d = Ja, Ja, C2a( )d,ul(x)dug(y) =

Jo, AroW)diz(y) = Jo, Bro(@)din (@) = fo, Jo, Cro(@,y)du (z)dp(y)

Mr,r =

ox Ja, Ara(W)dpa(y) — [o, Bra(@)dui(z) — [, fo, Cra(@, y)dp (z)dpsz(y)

P sz Aro(y)dpa(y) — le B, o(w)dp (v) — fQ2 le Crolz w1 (z)dpa(y)
_2r-2 )
rir—2))’

and forr =2
Mo =

11(2) = fo, Jo, Coa(

log(f(y))"

(@)= o, Ja, C2a(

z,y)du(x)dpz(y) 1
z,y)dps (z)dpa(y) 2 )’

y)(lo v(y),
f( )P (log (A f(z))™
(y) — Arf(x)[Plog™ [ f(y)

u(x),
- Akf(m)\g(l’,y), n = 07 1727

Note that these means are symmetric and we can easily check that the special
cases in the above definition are limits of the general case. That is,

M, , = lim M,
’ ST ’

My, = M, = limM;, = lim M, ,,
’ ’ 52 ’ 52 ’

MQ 2 = limMM.
’ r—2

The monotonicity of the above defined means is given in the following theorem.

Theorem 4.1. Let s,t,u,v € Ry be such that s < u,t <wv,s #t,u # v. Then

Mt,s S Mv,u-

.1
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Proof. Since the function s — A(py) is log-convex, then by Lemma 1.2 for any
s,t,u,v € Ry, suchthat s < u,t <w,s#t,u# v, we have
<A<<pt>>¢s - (A(W)viu
A(SOS) ~ \Alpu)
which is equivalent to (4.1).
For s = t and u = v we can consider the limiting case. ([l
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