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ABSTRACT. In this survey paper we present two classes of summation proce-
dures based on ideas related to Gaussian quadratures. Such summation/integra-
tion procedures can be applied to the summation of slowly convergent series.
Numerical examples are included.

1. INTRODUCTION

In this survey paper we consider some summation processes for series
+∞∑
k=1

f(k), (1.1)

with a given function f with certain properties, based on ideas related to Gauss-
Christoffel quadratures. The series (1.1) appears very often in mathematics, physics
and other sciences. In particular, slowly convergent series appear in many problems
in applied and computation sciences. There are several numerical methods based
on linear and nonlinear transformations. In general, starting from the sequence of
partial sums of the series, these transformations give other sequences with faster
convergence to the same limit (the sum of the series). Some summation meth-
ods can be found in the books of Henrici [14], Lindelöf [17], Levin [16], Wimp
[30], Mitrinović and Kečkić [26], Brezinski and Redivo Zaglia [1], Sidi [28], and
Mastroianni and Milovanović [18] (see also Jolley [15] for a collection of explicit
expressions of some sums).

The basic idea in our methods is to replace the sum (1.1) by a finite quadrature
sum

+∞∑
k=1

f(k) ≈
n∑

ν=1

Aνg(xν), (1.2)
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where the function g is connected with f in some way, and the weights Aν ≡ A
(n)
ν

and abscissae xν ≡ x
(n)
ν , ν = 1, . . . , n, are chosen in such a way as to approximate

closely the sum (1.1) for a large class of functions with a relatively small number
n. In our approach we take a Gaussian quadrature sum as the sum on the right-
hand side in (1.2). Regarding the relationship between the functions f and g, two
different methods are analyzed:

• methods of integral transforms;
• direct methods.

In the first kind of methods there is an integral transform between f and g, for
example, f is the Laplace transform of g, etc. A characterization of direct methods
is that g ≡ f .

The paper is organized as follows. Section 2 is devoted to methods of integral
transforms (the Laplace transform method and a method of contour integration
over a rectangle). Also, some series with irrational terms are treated. Some direct
methods are analyzed in Section 3.

2. METHODS OF INTEGRAL TRANSFORMS

Besides the series (1.1) we also consider the corresponding “alternating” series.
Namely, let

T =
+∞∑
k=1

f(k) and S =
+∞∑
k=1

(−1)kf(k) (2.1)

be convergent series. Methods of summation of slowly convergent series based on
integral representations of series and an application of the Gaussian quadratures
have been recently developed in [5, 6, 7], [9, 10], [11, pp. 239–253], [12], [13],
[20, 21, 22].

Two methods will be discussed. The first of them is related to an application of
the Laplace transform and the second one is connected with a contour integration
over a rectangle. At the end of this section we consider some series with irrational
terms.

2.1. The Laplace transform method. Suppose that the general term of T (and
S) is expressible in terms of the Laplace transform, or its derivative, of a known
function. Here, we consider two cases:

(a) Let

f(s) =

∫ +∞

0

e−st g(t) dt, Re s ≥ 1. (2.2)

Then

T =
+∞∑
k=1

f(k) =
+∞∑
k=1

∫ +∞

0

e−kt g(t) dt =

∫ +∞

0

( +∞∑
k=1

e−kt

)
g(t) dt,
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i.e.,

T =

∫ +∞

0

e−t

1− e−t
g(t) dt =

∫ +∞

0

t

et−1

g(t)

t
dt. (2.3)

Thus, the summation of series is now transformed to an integration problem.
Similarly, for the “alternating” series, we obtain

S =
+∞∑
k=1

(−1)kf(k) =

∫ +∞

0

1

et+1
(−g(t)) dt. (2.4)

The first idea for numerical calculation of the integrals (2.3) and (2.4) is an
application of the Gauss-Laguerre quadrature rule [18, p. 325], with the weight
w(t) = e−t, but the convergence of these Gauss-Laguerre rules can be very slow
because of the presence of poles on the imaginary axis at the points 2kπi (k =
±1,±2, . . .) and (2k + 1)πi (k = 0,±1,±2, . . .), respectively.

Another approach was taken in [13] using Gaussian quadrature formulas on
(0,+∞), ∫ +∞

0
w(t)h(t) dt =

n∑
ν=1

Aνh(xν) +Rn(h), (2.5)

with respect to the weight functions w(t) = ε(t) = t/(et−1) (Einstein weight)
and w(t) = φ(t) = 1/(et+1) (Fermi weight) and applying them to (2.3) and
(2.4), respectively. These functions are widely used in solid state physics.

For example, applying the Gauss-Einstein formula (2.5) to (2.3), with w(t) =
ε(t) and h(t) = g(t)/t, we obtain

T =
+∞∑
k=1

f(k) =
n∑

ν=1

Aν
g(xν)

xν
+Rn(h).

If h is a smooth function, this quadrature formula converges rapidly.

Example 2.1. We consider two simple series

T =
+∞∑
k=1

1

(k + 1)2
=

π2

6
− 1 and S =

+∞∑
k=1

(−1)k

(k + 1)2
=

π2

12
− 1,

with the function f(s) = (s + 1)−2. According to (2.2) we have g(t) = t e−t.
Then, (2.3) and (2.4) reduce to

T =

∫ +∞

0
ε(t) e−t dt and S =

∫ +∞

0
φ(t)(−t e−t) dt,

respectively. Gauss-Einstein and Gauss-Fermi quadrature in n points can be used
for calculating these integrals, respectively. Table 2.1 shows the n-point approxi-
mations T (n) and S(n) together with the relative errors rn(T ) and rn(S). The first
digit in error is underlined and numbers in parentheses indicate decimal exponents.



188 GRADIMIR V. MILOVANOVIĆ

TABLE 2.1. Gaussian approximations of the sums T and S, with
the corresponding relative errors

q.f. Gauss-Einstein Gauss-Fermi
n T (n) rn(T ) S(n) rn(S)

5 .644742 3.0(−4) −.177753 1.2(−3)
10 .6449340594 1.1(−8) −.1775329780 6.5(−8)
15 .644934066848017 3.2(−13) −.17753296657625 2.1(−12)

As we can see the corresponding Gaussian rules converge rapidly. For example,
15-point Gauss-Einstein quadrature yields 12 correct decimal digits of the series
T . In contrast, 10 000 terms of this series would give only 3-digit accuracy. Also,
on the basis of Leibniz’ convergence criterion for the series S, notice that the same
accuracy as the one achieved for n = 15 would require the summation of approxi-
mately 690 000 terms.

(b) Also we can put

f(s) =

∫ +∞

0
t e−st g(t) dt, Re s ≥ 1. (2.6)

Then, after a short calculation, we obtain

T =

∫ +∞

0
ε(t)g(t) dt and S =

∫ +∞

0
φ(t)(−tg(t)) dt.

Example 2.2. Let f(s) = s−1 exp(−1/s). According to (2.6) we have that g(t) =
J0(2

√
t), where J0 is the Bessel function of the first kind and order zero. It can be

used for finding sums of the following series

(a)

+∞∑
k=1

(k − 1)k−3 exp(−1/k),

(b)

+∞∑
k=1

(−1)k−1(k − 1)k−3 exp(−1/k),

(c)

+∞∑
k=1

(−1)k−1k−1 exp(−1/k).

The first 10 000 terms of these series yield, respectively, 3, 7 and 4 correct decimal
digits.

Since J0(2
√
t) is an entire function, we expect Gaussian quadratures (with re-

spect to Einstein and Fermi weights) to converge rapidly. This is confirmed in
Table 2.2, which shows the relative errors for the n-point rule, n = 2(2)12. The
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exact sums (to 24 significant digits), as determined by Gaussian quadratures, are
0.342918943844609780961838, −0.0441559381340836052736928, and
0.197107936397950656955672, respectively,

TABLE 2.2. Relative errors in Gaussian approximation of the
sums (a), (b) and (c)

n (a) (b) (c)

2 4.48(−2) 8.95(−1) 1.77(−2)
4 3.80(−6) 2.39(−4) 9.65(−7)
6 3.35(−11) 3.71(−9) 6.32(−12)
8 7.01(−17) 1.13(−14) 1.05(−17)

10 6.86(−23) 1.08(−20) 1.27(−23)
12 1.93(−23)

Thus, if the series T and S are slowly convergent and the respective functions in
the integral representations are smooth, then low-order Gaussian quadrature (2.5)
applied to the integrals on the right provides a possible summation procedure. Sev-
eral numerical examples were analyzed in [13, §4]. In particular, Gautschi [9] an-
alyzed examples with the general term f(k) = k−1/2/(k + a)m, where Re a ≥ 0
and m ≥ 1. The series T with a = m = 1 appeared in a study of spirals given by
Davis [4].

A problem which arises with this procedure is the determination of the original
function g for a given series. In the next subsection we give a simpler method.

2.2. Contour integration over a rectangle. We give an alternative summation/in-
tegration procedure for the series (2.1), when for k ≥ m, the function f is analytic
in the region {

z ∈ C
∣∣ Re z ≥ α, m− 1 < α < m

}
. (2.7)

In fact, we consider the series

Tm =
+∞∑
k=m

f(k) and Sm =
+∞∑
k=m

(−1)kf(k),

where m ∈ Z.
The method requires the indefinite integral F of f chosen so as to satisfy certain

decay properties ((C1) – (C3) below). Using contour integration over a rectangle
in the complex plane we are able to reduce Tm and Sm to a problem of Gaussian
quadrature rules on (0,+∞) with respect to the hyperbolic weight functions

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
, (2.8)
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respectively (see Milovanović [20]).
Assume that f and g are analytic functions in a certain domain D of the complex

plane with singularities a1, a2, . . . and b1, b2, . . . , respectively, in a region G =
int Γ (⊂ D), where Γ is a closed contour. Then by Cauchy’s residue theorem, we
have

1

2πi

∮
Γ
f(z)g(z) dz =

∑
ν

Res
z=aν

(
f(z)g(z)

)
+

∑
ν

Res
z=bν

(
f(z)g(z)

)
. (2.9)

Let

G =
{
z ∈ C | α ≤ Re z ≤ β, |Im z| ≤ δ

π

}
,

where m − 1 < α < m, n < β < n + 1 (m,n ∈ Z,m ≤ n), Γ = ∂G, and
g(z) = π/ tanπz. Then from (2.9) it immediately follows that

Tm,n =

n∑
ν=m

f(ν) =
1

2πi

∮
Γ
f(z)

π

tanπz
dz −

∑
ν

Res
z=aν

(
f(z)

π

tanπz

)
.

Similarly, for g(z) = π/ sinπz we have

Sm,n =
n∑

ν=m

(−1)νf(ν) =
1

2πi

∮
Γ
f(z)

π

sinπz
dz −

∑
ν

Res
z=aν

(
f(z)

π

sinπz

)
.

For a holomorphic function f in G, the last formulas become

Tm,n =
1

2πi

∮
Γ
f(z)

π

tanπz
dz and Sm,n =

1

2πi

∮
Γ
f(z)

π

sinπz
dz.

After integration by parts, these formulas reduce to

Tm,n =
1

2πi

∮
Γ

( π

sinπz

)2
F (z) dz (2.10)

and

Sm,n =
1

2πi

∮
Γ

( π

sinπz

)2
cosπz F (z) dz, (2.11)

where F is an integral of f .
Assume now the following conditions for the function F (cf. [17, p. 57]):

(C1) F is a holomorphic function in the region (2.7);

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫ +∞
−∞ e−c|t| ∣∣F (x+ it/π)

∣∣ dt = 0,

where c = 2 or c = 1, when we consider Tm,n or Sn,m, respectively.
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Setting α = m − 1/2, β = n + 1/2, and letting δ → +∞ and n → +∞
(i.e., β → +∞), we prove that the integrals in (2.10) and (2.11) over Γ reduce to
integrals along the line z = α+ iy (−∞ < y < +∞), so that

Tm = Tm,∞ = − 1

2πi

∫ α+i∞

α−i∞

( π

sinπz

)2
F (z) dz (2.12)

and

Sm = Sm,∞ = − 1

2πi

∫ α+i∞

α−i∞

( π

sinπz

)2
cosπz F (z) dz. (2.13)

Equality (2.12) can be reduced to

Tm = −1

2

∫ +∞

−∞
w1(t)F (α+ it/π) dt =

∫ +∞

0
w1(t)Φ (α, t/π)] dt, (2.14)

where w1 is defined in (2.8) and

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] .

Similarly, (2.13) reduces to

Sm =

∫ +∞

0
w2(t)Ψ (α, t/π) dt, (2.15)

where w2 is also defined in (2.8) and

Ψ(x, y) =
(−1)m

2i
[F (x+ iy)− F (x− iy)] .

Here, α = m − 1/2. Formulas (2.14) and (2.15) suggest that the Gaussian
quadrature is applied to the integrals on the right, using the weight functions w1

and w2, respectively (see [20]).

Example 2.3. Consider again the series from Example 2.1, denoted now as T1 and
S1, respectively. Here, f(z) = (z+1)−2, and F (z) = −(z+1)−1, the integration
constant being zero on account of condition (C3). Thus,

Φ(x, y) = Re
1

z + 1
=

x+ 1

(x+ 1)2 + y2
, Ψ(x, y) = Im

1

z + 1
=

−y

(x+ 1)2 + y2
.

Now, we apply Gaussian quadrature formulas with respect to the hyperbolic
weights w1 and w2 given in (2.8) to T1 and S1, respectively. Table 2.3 shows the
corresponding n-point Gaussian approximations T1(n) and S1(n) to T1 and S1,
respectively, together with the relative errors rn(T1) and rn(S1), for n = 5(5)25.

These results can be significantly improved if we apply this method to sum the
series Tm, m > 1. That is, we use

T1 =
m−1∑
k=1

1

(k + 1)2
+ Tm, Tm =

+∞∑
k=m

1

(k + 1)2
. (2.16)
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TABLE 2.3. Gaussian approximation of the sums T1 and S1 and
relative errors

n T1(n) rn(T1) S1(n) rn(S1)

5 .644934149 1.3(−7) −.1775520 1.1(−4)
10 .644934066776 1.1(−10) −.17753303 3.5(−7)
15 .644934066848158 1.1(−13) −.17753296569 5.0(−9)
20 .64493406684822733 1.4(−15) −.1775329665917 8.9(−11)
25 .6449340668482264405 6.2(−18) −.177532966575286 3.4(−12)

Then, for m = 2(1)5 we obtain results whose relative errors are presented in Table
2.4.

TABLE 2.4. Relative errors in Gaussian approximation of the sum
T1 expressed in the form (2.16) for m = 2(1)5

n m = 2 m = 3 m = 4 m = 5

5 5.4(−9) 1.9(−10) 8.6(−12) 3.7(−13)
10 1.1(−13) 1.7(−16) 7.9(−18) 2.0(−19)
15 3.8(−17) 3.7(−20) 1.1(−22) 3.8(−25)
20 4.0(−20) 1.2(−24) 1.9(−27) 2.3(−29)
25 1.1(−22) 2.0(−27) 2.6(−30) 2.5(−33)
30 1.4(−25) 1.1(−31) 2.2(−33)
35 3.2(−27) 2.4(−32)
40 3.6(−30)

The rapid speed of convergence of the summation process as m increases is due
to the poles ±i

(
m + 1/2

)
π of Φ

(
m − 1/2, t/π

)
moving away from the real line.

It is interesting to note that a similar approach with the Laplace transform method
does not lead to acceleration of convergence. For example, in the case of (2.16),
we have that

Tm =
+∞∑
k=1

1

(k +m)2
=

∫ +∞

0
ε(t)e−mt dt.

Example 2.4. The application of the Laplace transform method to the series

+∞∑
k=1

(k − 1)k−3 exp(−1/k) = .342918943844609780961837677902 (2.17)
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leads to an integration of the Bessel function J0(2
√
t) (see Example 2.2). Here,

however, we work with the exponential function F (z) = −e−1/z/z, i.e.,

Φ(x, y) =
1

r2
e−x/r2

(
x cos

y

r2
+ y sin

y

r2

)
, r2 = x2 + y2.

As for accuracy, a similar situation prevails as in the previous example. Table 2.5
shows the relative errors in Gaussian approximations for n = 2(4)18 and m =
1(1)3.

TABLE 2.5. Relative errors in Gaussian approximation of the sum (2.17)

n m = 1 m = 2 m = 3

2 2.9(−3) 1.2(−5) 2.1(−8)
6 1.3(−4) 3.7(−8) 1.2(−10)

10 1.8(−5) 3.7(−11) 9.9(−14)
14 1.2(−6) 1.2(−12) 1.2(−16)
18 1.3(−7) 8.5(−15) 6.6(−19)

Example 2.5. Consider now

T1(a) =

+∞∑
k=1

1√
k(k + a)

. (2.18)

This series with a = 1 appeared in a study of spirals (see Davis [4]) and defines the
“Theodorus constant.” The first 1 000 000 terms of the series T1(1) give the result
1.8580 . . ., i.e., T1(1) ≈ 1.86 (only 3-digit accuracy). Using the method of the
Laplace transform, Gautschi (see [9, Example 5.1]) calculated (2.18) for a = .5,
1, 2, 4, 8, 16, and 32. As a increases, the convergence of the Gauss quadrature
formula slows down considerably. For example, when a = 8, we have results with
relative errors presented in Table 2.6.

In order to achieve better accuracy, when a is large, Gautschi [9] used “strat-
ified” summation by letting k = λ + κa0 and summing over all κ ≥ 0 for
λ = 1, 2, . . . , a0, where a0 = ⌊a⌋ denotes the largest integer ≤ a (a = a0 + a1,
a0 ≥ 1, 0 ≤ a1 < 1). Now, we directly apply the method of contour integration

TABLE 2.6. Relative errors in the method of Laplace transform
for the series (2.18) with a = 8.

n = 5 n = 10 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

1.4(−1) 2.3(−2) 1.5(−3) 1.9(−4) 2.5(−5) 2.1(−6) 2.5(−7) 2.6(−8)
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over the rectangle to (2.18) with

F (z) =
2√
a

(
arctan

√
z

a
− π

2

)
,

where the integration constant is taken so that F (∞) = 0. For computing the
arctan function in the complex plane (z2 ̸= −1) we use the formula

arctan z =
1

2
arg(u+ iv) +

i

4
log

x2 + (y + 1)2

x2 + (y − 1)2
,

where z = x+ iy, u = 1− x2 − y2, v = 2x.

TABLE 2.7. Relative errors in Gaussian approximation of the sum
(2.19) for m = 4

n a = .5 a = 1. a = 2. a = 4.

5 1.4(−11) 8.4(−12) 4.5(−12) 2.6(−12)
10 6.8(−18) 4.4(−18) 2.2(−18) 1.2(−18)
15 5.4(−22) 2.7(−22) 1.6(−22) 1.0(−22)
20 1.2(−25) 5.9(−26) 3.3(−26) 2.0(−26)
25 1.0(−28) 5.2(−29) 3.0(−29) 1.9(−29)
30 1.1(−31) 5.7(−32) 3.3(−32) 2.0(−32)

n a = 8. a = 16. a = 32. a = 64.

5 1.7(−12) 1.1(−12) 7.6(−13) 5.2(−13)
10 7.7(−19) 5.1(−19) 3.4(−19) 2.4(−19)
15 6.7(−23) 4.5(−23) 3.0(−23) 2.1(−23)
20 1.3(−26) 8.7(−27) 5.9(−27) 4.1(−27)
25 1.2(−29) 8.1(−30) 5.5(−30) 3.8(−30)
30 1.3(−32) 9.0(−33) 6.2(−33) 3.6(−33)

TABLE 2.8. The exact sums T1(a)

a T1(a)

1/2 2.13441664298623726110148952804
1 1.86002507922119030718069591572
2 1.53968051235330201287501841998
4 1.21827401466989084582915976291
8 9.31372934003103871685751389665(−1)

16 6.94931714641045590163046071669(−1)
32 5.09926517027211348036131967602(−1)
64 3.69931698249671132209942364907(−1)
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As before, we can represent (2.18) in the form

T1(a) =

m−1∑
k=1

1√
k(k + a)

+ Tm(a), Tm(a) =

+∞∑
k=m

1√
k(k + a)

, (2.19)

and then use Gaussian quadrature formula to calculate Tm(a). Relative errors in
approximations for T1(a), when m = 4 and a = pν , ν = 0(1)7, where p0 = .5
and pν+1 = 2pν , are displayed in Table 2.7.

As we can see from Table 2.7, the method presented is very efficient. Moreover,
its convergence is slightly faster if the parameter a is larger. The exact sums T1(a)
(to 30 significant digits), as determined by Gaussian quadrature, are presented in
Table 2.8.

Numerical experiments show that it is enough to use only the quadrature with
respect to the first weight w1(t) = 1/ cosh2 t. Namely, in the series Sm we can
include the hyperbolic sine as a factor in the corresponding integrand so that

Sm =

∫ +∞

0
w1(t)[Ψ (m− 1/2, t/π) sinh(t)] dt.

Such an application was given in [22] to summation of slowly convergent series

Tm(ν, a, p) =

+∞∑
k=m

kν−1

(k + a)p
and Sm(ν, a, p) =

+∞∑
k=m

(−1)k
kν−1

(k + a)p
,

where m ∈ Z, 0 < ν ≤ 1, and a and p are such as to ensure convergence of these
series.

Numerical methods for summation of certain slowly convergent power series
were considered by Gautschi [10], [11, pp. 249–253], Dassiè, Vianello, and Zanov-
ello [2, 3], Dahlquist [7], etc.

2.3. Series with irrational terms. In this subsection we consider some series of
the form

U±(a, ν) =

+∞∑
k=1

(±1)k−1

(k2 + a2)ν+1/2
.

In 1916 Kapteyn (see [29, p. 386]) proved the formula

U+(a, ν) =
+∞∑
k=1

1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et − 1
Jν(at) dt

which is valid when Re ν > 0 and |Im a| < 1. Here, Jν is the Bessel function of
the order ν. Since for F (p) = 1/(p2 + a2)ν+1/2

(
Re ν > −1/2, Re p > |Im a|

)
the original function is

f(t) =

√
π

(2a)νΓ(ν + 1/2)
tνJν(at),
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using the Laplace transform method we find

U−(a, ν) =

+∞∑
k=1

(−1)k−1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et + 1
Jν(at) dt.

Thus, this method leads to an integration of the Bessel function Jν(at) with Ein-
stein’s weight ε(t) or Fermi’s weight φ(t). For some special values of ν, we can
use also quadratures with respect to the weights t±1/2ε(t) and t±1/2φ(t) (see [13]
and [9]).

In order to sum the series U−(a, 0), a > 0, we can integrate the function F (z) =

g(z)/
√
z2 + a2, with g(z) = π/ sinπz, over the circle

Cn =
{
z ∈ C

∣∣∣ |z| = n+
1

2

}
, n > a,

with cuts along the imaginary axis, so that the critical singularities ia and −ia are
eliminated (cf. [26, p. 217]). Precisely, the contour of integration Γ is given by
Γ = C1

n ∪ l1 ∪ γ1 ∪ l2 ∪ C2
n ∪ l3 ∪ γ2 ∪ l4, where C1

n and C2
n are parts of the

circle Cn, γ1 and γ2 are small circular parts of radius ε and centres at ±ia, and lk
(k = 1, 2, 3, 4) are the corresponding line segments.

Let F ∗(z) be the branch of F (z) which corresponds to the value of the square
root which is positive for z = 1. Since∮

Γ
F ∗(z) dz = 2πi

n∑
k=−n

(−1)k√
k2 + a2

,

and
∫
γ1

→ 0,
∫
γ2

→ 0, when ε → +0, and
∫
C1

n∪C2
n
→ 0, when n → +∞, we

obtain
+∞∑
k=1

(−1)k√
k2 + a2

= − 1

2a
+

∫ +∞

a

du

sinhπu
√
u2 − a2

,

i.e.,
+∞∑
k=1

(−1)k−1

√
k2 + a2

=
1

2a
− 1

2

∫ +1

−1

(
t sinh

πa

t

)−1 dt√
1− t2

.

Thus, we reduced U−(a, 0) to a problem of Gauss-Chebyshev quadrature. Since
t 7→

(
t sinh(πa/t)

)−1 is an even function we can apply the (2n)-point Gaussian
approximations with only n functional evaluations, so that we have

U−(a, 0) ≈ GC(n) =
1

2a
− π

2n

n∑
k=1

(
τk sinh

πa

τk

)−1
,

where τk = cos
(
(2k − 1)π/(4n)

)
, k = 1, . . . , n.
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Remark 2.1. The same method can be applied to the summation of the series
+∞∑

k=−∞
f(k,

√
k2 + a2) and

+∞∑
k=−∞

(−1)kf(k,
√

k2 + a2) (a > 0),

where f is a rational function. Then we integrate the function z 7→ F (z) =

f(z,
√
z2 + a2)g(z), with g(z) = π/ tanπz and g(z) = π/ sinπz, respectively,

over the circle Cn with the cuts.

Some examples of series with irrational terms were given in [21].

3. DIRECT METHODS

These kinds of methods have been recently introduced by Milovanović and
Cvetković [23]. Namely, they were primarily interested in a linear functional of
the form

Lp,q
a (f) =

+∞∑
k=0

1

pk
f

(
a

qk

)
=

∫
R
f(t) dµ(t), (3.1)

which is a direct generalization of the q-integral defined by∫ a

0
f(x)d1/qx := a(1− 1/q)

+∞∑
k=0

1

qk
f

(
a

qk

)
.

There is a simple connection between the q-integral and Lp,q
a ,∫ a

0
f(x)d1/qx = a(1− 1/q)Lq,q

a (f).

For arbitrary (possibly complex values of p and q) it can be proved that polyno-
mials orthogonal with respect to Lp,q

a exist under the conditions

|pqk| > 1 (k ∈ N0) and qk ̸= 1 (k ∈ N). (3.2)

Theorem 3.1. The polynomials {pk}k∈N0 , orthonormal with respect to Lp,q
a , ex-

ist under the conditions given in (3.2), and they satisfy the following three-term
recurrence relation

xpk(x) = βk+1pk+1 + αkpk(x) + βkpk−1(x),

where

αk = aqk
p+ q − 2pqk(1 + q) + pq2k(p+ q)

(pq2k−1 − 1)(pq2k+1 − 1)
, k ≥ 0,

β2
0 =

p

p− 1
, (3.3)

β2
k = a2p q2k

(qk − 1)2(pqk−1 − 1)2

(pq2k−2 − 1)(pq2k−1 − 1)2(pq2k − 1)
, k ≥ 1.
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To any two uniformly bounded sequences of complex numbers αk, βk, k ∈ N0,
we associate the infinite (possibly) complex Jacobi matrix

J =


α0 β1 0 . . .
β1 α1 β2 . . .
0 β2 α2 . . .
...

...
...

. . .

 . (3.4)

This Jacobi matrix can be interpreted to be a linear operator acting on the Hilbert
space ℓ2 of all complex square-summable sequences with the usual scalar product
⟨u, v⟩ =

∑
i∈N0

uivi. The value of the operator can be defined as the result of
matrix multiplication of the infinite matrix given in (3.4) with an infinite vector
representing an element from ℓ2. We refer to the Jacobi matrix when we mean to
refer to the associated linear operator and vice versa.

For the functional Lp,q
a , the symbol Jp,q

a represents a complex Jacobi matrix
and/or a linear operator acting on ℓ2 related to it and constructed with the sequences
given in (3.3).

It is known that all zeros of orthogonal polynomials lie in the closure of the
numerical range of the operator Jp,q

a . We recall that the numerical range of an
operator J is defined by

Θ(J) = {⟨Jx, x⟩ | x ∈ ℓ2, ||x|| = 1}
and its closure is denoted by Γ(J) = Θ(J).

In [23] we proved the following result:

Theorem 3.2. Under the condition |q| > 1, the linear operator Jp,q
a is compact,

indeed even of trace class. In the case when |q| = 1, with qn ̸= 1, n ∈ N, and
|p| > 1, the linear operator Jp,q

a is bounded but not compact. All zeros of the
related orthogonal polynomials lie in the set

Γ(Jp,q
a ) ⊂ {z||z| ≤ |β1|+ |α0|},

when |q| > 1. In the second case, all zeros of the related orthogonal polynomials
lie in the set

Γ(Jp,q
a ) ⊂

{
z

∣∣∣∣ |z| ≤ |a|
|p|2 + 6|p|+ 1 + 4

√
|p|(|p| − 1)

(|p| − 1)2

}
.

The corresponding quadratures of Gaussian type for (3.1) and a few numerical
examples can be also found in [23]. The convergence of Gaussian quadrature rules
for approximating certain series was investigated by Milovanović and Cvetković
[24].

Very recently Monien [27] has considered the linear functional given by

L(f) =
+∞∑
k=1

1

k2
f

(
1

k2

)
.
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The corresponding (monic) orthogonal polynomials {πn}+∞
n=0 satisfy the three-term

recurrence relation πn+1(t) = (t− an)πn(t)− bnπn−1(t), p0(t) = 1, p−1(t) = 0,
with

an =
2π2

(4n+ 1)(4n+ 5)
, bn =

π4

(4n− 1)(4n+ 1)2(4n+ 3)
, n ∈ N,

and a0 = π2/15. These polynomials are orthogonal with respect to the following
scalar product

⟨πn, πm⟩ =
+∞∑
k=1

1

k2
πn

(
1

k2

)
πm

(
1

k2

)
=

(4n+ 3)π3

24n+5Γ2(2n+ 5/2)
δnm

and they can be expressed in terms of Bessel polynomials with an imaginary argu-
ment. It is interesting to mention that these polynomials appear in some extremal
problems of Markov type in the L2−norm on (−1, 1) (see Milovanović [19], as
well as the monograph [25, pp. 574–582]).

Using available software tools the corresponding Gaussian quadrature rules have
been constructed [27]. Also, two nice examples have been presented.
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