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FP,~-CLOSEDNESS AND ITS GENERALIZATION WITH
RESPECT TO A GRILL

C. K. BASU AND B. M. UZZAL AFSAN

ABSTRACT. In this paper, a new kind of covering axiom pre-w-closedness
(P.-closedness, for short), stronger than p-closedness due to J. Dontchev
et. al. [7] is introduced in terms of pre-w-open sets [16]. Several char-
acterizations via filter bases and grills [23] along with various properties
of this concept are obtained. Grill generalizations of P,,-closedness and
associated concepts have also been investigated.

1. INTRODUCTION

The notion of w-open sets introduced by H. Z. Hdeib [8] has been studied
extensively in recent years by a good number of researchers. Some of the
recent research works related to w-open sets are found in the papers of H.
Z. Hdeib [8, 9], Noiri, Omari and Noorani [16, 17|, Omari and Noorani [18,
19], and Zoubi and Nashef [25].

For a long time, topologists have been interested in investigating prop-
erties closely related to compactness using different kinds of open-like sets,
some of which can be found in papers [2, 3, 4, 5, 6, 7, 11, 14, 20, 24]. Ev-
ery new invention neighboring compactness, at some stage or other, yields
tremendous applications not only within topology itself but also in other
branches of applied sciences. Keeping this in mind, a new kind of covering
property, P,,-closedness, stronger than the celebrated concept of p-closedness
due to J. Dontchev et. al. [7] is introduced in terms of w-open sets and al-
lied concepts. We have obtained several properties and investigated various
properties along with its grill generalization.

2. PREREQUISITES

Throughout this paper spaces (X,7) and (Y,0) (or simply X and Y)
represent non-empty topological spaces. The closure and the interior of
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a subset A of a space X are denoted by cl(A) and int(A) respectively.
Let A C X. A point z € X is called a condensation point of A if for
each open set U containing x, AN U is uncountable. A set A is called w-
closed [8] if it contains all of its condensation points and the complement
of an w-closed set is called an w-open set or equivalently, A C X is w-
open if and only if for each x € A there exists an open set U containing x
such that U — A is countable. The set of all w-open sets of a topological
space (X, 7) is denoted by 7,. It is to be noted that 7, is a topology on
(X, 7) finer than 7. The interior and the closure of a subset A of a space
X with respect to the topology 7, are denoted by int] (A) (or simply by
int,(A)) and cl](A) (or simply by cl,(A)) respectively. A subset A of a
space X is called semi-open [12] (resp. regular open, a-open [15], preopen
[13], B-open [1], semi-w-open [16], a-w-open [16], pre-w-open [16], f-w-open
[16]) if A C cl(int(A)) (resp. A = int(cl(A)), A C int(cl(int(A))), A C
int(cl(A)), A C cl(int(cl(A))), A C cl(int,(A)), A C inty(cl(int,(A))),
A C inty(cl(A)) and A C cl(inty(cl(A)))). The family of all semi-open
(resp. regular open, a-open, preopen, [-open, semi-w-open q-w-open, pre-
w-open, [-w-open) subsets of (X, 7) is denoted by SO(X) (resp. RO(X), 7%,
PO(X), BO(X), SwO(X), 75, PwO(X), fwO(X)). It is well known that
every preopen set is pre-w-open. The family of all preopen (resp. preclopen
i.e. preclosed as well as preopen) pre-w-open, regular open) subsets of X
containing € X is denoted by PO(X,z) (resp. PCO(X,z), PwO(X,x),
RO(X,z)). The complement of a pre-w-open set is called a pre-w-closed
set. pcl(S) is the intersection of all preclosed subsets of X containing S. 6-
preclosure [7] of a subset S of X is the set pclp(S) = {z € X : pcl(U)NS # 0
forall U € PO(X,z)}}. If S = pelp(S), then S is called a O-preclosed set [7].
The complement of a 6-preclosed set is called a 6-preopen set or equivalently,
S is @-preopen if for each x € S, there exists U € PO(X,x) such that
pel(U) C S. A subset S of a space X is called a p-closed set relative to X
[7] if every cover of S by preopen sets of X has a finite subfamily whose
pre-closures cover S. If S = X and S is p-closed set relative to X, then X is
called a p-closed space. A topological space X is called strongly irresolvable
if S € PO(X)= S e SO(X). A space (X,7) is called strongly compact
[10] if every cover of X by preopen sets has a finite subcover.

A filter base F on a topological space (X,7) is said to pre-6-converge
[7] to a point x € X if for each V € PO(X,x), there exists an F € F
such that F' C pcl(V). A filter base F is said to pre-f-accumulate [7] ( or
pre-6-adhere) at x € X if pcl(V) N F # () for every V € PO(X,z) and
every F' € F. The collection of all points of X at which a filter base F
pre-0-adheres is denoted by p-0-adF. Thron [23] has defined a grill as a
non-empty family G of non-empty subsets of X satisfying (a) A € G and
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ACB=BeGand (b) AUB € G = either A€ G or B €. Thron [23]
has also shown that F(G) ={AC X : ANF # 0,VF € G} is a filter on X
and that there exists an ultrafilter F such that F(G) C F C G. Let G be
a grill on a topological space (X,7) and ¢ : P(X) — P(X) be a mapping
defined by ¢(A) ={z € X :UNAe€ G, forall U € 7(x)}. B. Roy and M.
N. Mukherjee [21] proved that ¢ : P(X) — P(X), where ¢)(A) = AU ¢(A)
for all A € P(X), is a Kuratowski closure operator and hence induces a
topology 7 on X finer than 7.

3. pre-w-0-OPEN SETS

Definition 3.1. Let A be a subset of a topological space X. Then the pre-w-
interior (resp. pre-w-closure) of A is denoted by pint] (A) (resp. pcll(A))
and is defined as the set pintl(A) = U{G C A : G € PwO(X)} (resp.
pel,(A) ="{G D A: X —G e PwO(X)}). If no confusion arises, the pre-
w-interior (resp. pre-w-closure) of A is denoted by pint,,(A) (resp. pcl,(A)).

Now we state following theorem.

Theorem 3.2. For subsets A, B of a topological space X, the following
properties hold:

(a) pely(A) C pel(A) and pcly,(A) C cly,(A).

(b) A C B implies pcly,(A) C pely,(B) and pint,(A) C pint,(B).

(c) pelu(pclu(A)) = pclu(A) and pinty,(pint.,(A)) = pint,(A).

(d) A is pre-w-closed if and only if pcl,(A) = A.

(e) A is pre-w-open if and only if pint,(A) = A.

(f) pcly(X — A) = X — pint,(A).

(8) pinty,(X — A) = X — pcl,(A).

Remark 3.3. For a subset A of a topological space, pcl,(A) # pcl(A) in
general, which is reflected in the following example.

Example 3.4. Consider the space X = N with the topology generated by
the base B = {B,, : n € N} where B,, = {1,n}. Then the topology on
X is 7= {0} U{G C N: G contains 1} = PO(X). Since N is countable,
To = P(X) = PwO(X), where P(X) is the power set of X. Let A be a
subset of X containing 1. Then pcl,(A) = A and pcl(A) = N.

Definition 3.5. A point x € X is said to be a pre-w-0-accumulation point
of a subset A of a topological space (X, T) if pcl,(U) N A #£ 0 for every
U € PO(X,x). The set of all pre-w-0-accumulation points of A is called the
pre-w-0-closure of A and is denoted by p,clg(A). A subset A of a topological
space (X, T) is said to be pre-w-0-closed if p,clg(A) = A. The complement
of a pre-w-0-closed set is called a pre-w-0-open set.
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Lemma 3.6. A subset A of a space X is pre-w-0-open if and only if for
each x € A, there exists V € PO(X,z) such that pcl,(V) C A.

Proof. Let A be pre-w-6-open and x € A. Since X — A is pre-w-0-closed
then for x € A, there exists a V € PO(X, z) such that pel, (V)N (X —A) =0
and thus pcl, (V) C A.

Conversely, suppose that the condition does not hold. Then there exists
an x € A such that pcl,(V) ¢ A for all V € PO(X,z). Thus pcl,(V) N
(X —A) # 0 for all V € PO(X,z) and so x is a pre-w-f-accumulation point
of X — A. Hence X — A is not pre-w-0-closed. ([l

Theorem 3.7. Let A and B be any subsets of a space X. The following
properties hold:

(a) O-preclosed sets are pre-w-0-closed sets.

(b) pucly(A) C pclg(A),

(c) if A C B, then pyclg(A) C pucly(B),

(d) the intersection of an arbitrary family of pre-w-0-closed sets is pre-
w-0-closed in X.

Proof. The proof is straightforward and is thus omitted. O

Remark 3.8. In a topological space, pyclg(A) # pcly(A) and a pre-w-
f-closed set may not be f-preclosed in general, which is reflected in the
following example.

Example 3.9. In Example 3.4, consider A = N — {1}. Then 1 ¢ p,clp(A)
because {1} € PO(X,1) and pcl,({1}) N A = 0 but pclp(A) = N. It is also
clear from this example that A is a pre-w-6-closed set but not a #-preclosed
set in X.

Definition 3.10. Let X be a topological space and A C X. Then A is
called a w-reqular (resp. mist-w-reqular) open set if A = int,(cl(A)) (resp.
A =int(cl,(A))). The family of all w-regular open sets of X is denoted by
RwO(X).

Lemma 3.11. The family RwO(X) of all w-regular open sets of X is a base
of some topology on X.

Proof. Let x € X. Suppose A and B are any two w-regular open sets of
X containing x. Consider C = AN B. Then C is w-open (so pre-w-open)
containing = and so int,(cl(C)) D C. On the other hand, C' = int, (cl(A))N
inty(cl(B)) = inty,(cl(A) Nel(B)) D inty,(cl(AN B)) = int,(cl(C)). Hence
the family RwO(X) of all w-regular open sets of X is a base of some topology
on X. U

In this paper, we consider 7r_, as the topology generated by the base
RwO(X).
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4. P,,-CLOSED SPACES

Definition 4.1. A topological space X is called P,,-closed (resp. quasi-H -
w-closed) iff every preopen cover of X has a finite subfamily whose pre-w-
closures (resp. w-closures) cover X.

Theorem 4.2. Let (X,7) be quasi-H-w-closed and strongly irresolvable.
Then (X, 1) is p-closed.

Proof. Let {U, : a € A} be a preopen cover of (X, 7). Since (X, 7) is quasi-
H-w-closed, there exist aq, aa, . .., apn € A such that X =U]" ¢l (Uy,). Since
X is strongly irresolvable then each U, € SO(X) and so cl,(U,) C cl(Uy) =
cl(int(Uy)) = pcl(Uy) for each o € A. Thus (X, 7) is p-closed. O

Definition 4.3. A filter base F (resp. a grill G) on a topological space (X, T)
is said to pre-w-0-converge to a point v € X if for each’ V€ PO(X, x), there
exists F' € F (resp. F € G) such that F' C pcl,(V). A filter base F is said
to pre-w-8-accumulate (or pre-w--adhere) at v € X if pcl,(V)NF # 0 for
every V € PO(X,x) and every F € F. The collection of all points of X at
which the filter base F pre-w-0-adheres is denoted by p,,-0-adF.

Theorem 4.4. For a topological space (X, T) the following conditions are
equivalent:

(a) (X,7) is P,-closed,

(b) every ultrafilter base pre-w--converges to some point of X,

(c) every filter base pre-w-0-accumulates at some point of X,

(d) for every family {Vy : a € A} of preclosed subsets such that N{V, :
a € A} =0, there exist a, g, ..., an € A such that NI pint,(Va,)
=0Q.

Proof. (a)=(b). Let (X,7) be P,-closed and F be an ultrafilter base on
X which does not pre-w-6-converge to any point of X. Since F is an ul-
trafilter base on X, then it can not pre-w-6-accumulate at any point of X.
Thus for each z € X, there is an F, € F and a V, € PO(X,x) such that
pcly,(Vy) N Fy = (. Then the family {V, : x € X} forms a cover of X by
preopen subsets. Since X is P,-closed, there exists a finite number of points
x1,22,...,T, € X such that X = U pcl,(Vy,). Since F is a filter base on
X, there exists an F’ € F such that ' C NI ,(F,,) and thus F’ = () which
is a contradiction.

(b)=(c). Let F be any filter base on X. Then there is an ultrafilter
base F’ containing F. By the hypothesis, ' pre-w-6-converges to some
point € X. Now consider V € PO(X,x) and every F' € F. Then there
exists an F' € F' such that F' C pcl,(V) and F N F’' # (). Hence () #
FNF' Cpcy,(V)NF. So the filter base F pre-w-f-accumulates at z € X.
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(c)=(d). Let {V, : a € A} be a family of preclosed subsets of X
such that N{V, : @ € A} = (. Let G be the family of all finite sub-
sets of A. Suppose N{pint,(Vp),B8 € 0} # O for each 6 € G. Then
F = {n{pint,(Vs),B € 6},0 € G} is a filter base on X. For, if Fy, Fy € F,
then Fy = N{pint,(V),B8 € 0} and F» = N{pint,(V,),y € ¢’} for some
§,0' € G and so F3 = F1 N Fy = N{pint,(Vy),A € 6 U’} € F. Then by (c),
F pre-w-f-accumulates at some point = of X. Since {X —V, : o € A} is
a preopen cover of X, x € X —V,, for some agp € A. Let G = X — V.
Then G € PO(X, z) and pint,(Va,) € F such that pel,(G) Npint,(Va,) = 0
which is a contradiction.

(d)=(a). Let {U, : a € A} be a family of preopen subsets of X covering
X. Then {X — U, : a € A} is a family of preclosed subsets of X having
empty intersection. Thus by (d), there exist aj,ag,...,a, € A such that
NP pint, (X —U,y,) = 0 ie. U pcl,(Us,) = X. So (X, 7) is P,-closed. O

Theorem 4.5. If the topological space X is P,,-closed, then every pre-w-0-
open cover of X has a finite subcover.

Proof. Let X be B,-closed. Let ¥ = {U, : @ € A} be a cover of X by
pre-w-B-open sets of X. Let x € X and = € U,, for some a, € A. Then by
the Lemma 3.6, there exists a V,,, € PO(X,x) such that pcl,(Va,) C U,
Therefore ¥ = {V,,, : © € X} is a preopen cover of X and hence there exist
z(1),2(2),...,z(n) € X such that X = Ui pcl(Va, ;). So X = Ui Ua, -
Hence {Ua,;, @ #(i) € X,i = 1,2,...,n} is the required finite subcover
of . O

It is clear that every P,-closed space is p-closed but the converse need
not be true.This fact has been established with the following example.

Example 4.6. Consider the space (X, 7) from Example 3.4. Then clearly,
X is p-closed because for any A € PO(X), pcl(A) = N. Now observe the
cover {4, ={1,n} : n € N} of X by preopen sets of X. Again it is noted
that pcl,(A,) = {1,n} and so {A,, : n € N} is a cover of X by pre-w-6-open
sets of X. But it has no finite subcover. Hence by theorem 4.5, X is not
P,-closed.

Definition 4.7. A topological space (X, T) is said to be strongly p,-regular
if for each point x € X and each preclosed set F such that x & F, there exist
V € PO(X,x) and W € PwO(X) such that F CW and VNW = (.

Theorem 4.8. A topological space X is strongly p,-reqular if and only
if for each x € X and for each preopen set U containing x, there exists

V € PO(X,x) such that x € V C pcl,(V) C U.

Proof. Let X be a strongly p,-regular space. Suppose x € X and U €
PO(X,z). Then F' = X — U is a preclosed set not containing x. Then
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there exist a V € PO(X,z) and a W € PwO(X) such that F C W and
VAW =0.SozeV Cpc,(V)CX-WcCX-F=U.

Conversely, let € X and F be preclosed with * ¢ F. Then there
exists V € PO(X,z) such that z € V C pcl,(V) € X — F. Consider
W = X —pcl,(V). Then F C W and VN W = . So X is strongly
po-regular. O

Theorem 4.9. If a topological space X is P,-closed and strongly p,,-regular,
then X is strongly compact.

Proof. Let X be P,-closed and strongly p,-regular. Suppose {U, : a € A}
is a preopen cover of X. For each z € X there exists a(x) € A such that
Un(z) € PO(X, ) and since X is strongly p,-regular by Theorem 4.8, there
exists V;, € PO(X, ) such that x € V,, C pely(Ve) C Uy(y). Then {V, 1z €
X} is a family of preopen subsets of X covering X and as X is P,-closed,
there exist z1,x2,...,7, € X such that X = UL pcl,(Vz,) C UL Uy(y,)-
Hence X is strongly compact. ([l

Definition 4.10. A subset S of a topological space (X, T) is said to be P,-
closed relative to X if every cover {Vy : a € A} of S by preopen subsets of
(X, 7) has a finite subfamily whose pre-w-closures cover S.

Theorem 4.11. For a topological space (X, T) and for a subset S of X, the
following conditions are equivalent:

(a) S is P,-closed relative to X,

(b) every ultrafilter base on X which meets S pre-w-0-converges to some
point of S,

(c) every filter base on X which meets S pre-w-0-accumulates at some
point of S,

(d) for every family {V, : a € A} of pre-closed subsets of (X, T) such
that [ {Vy : « € A} NS =0, there exists a finite number of indices
ay, g, ..., a, € A such that [Ny pint,(Va,)] NS = 0.

Proof. The proof is quite similar to the proof of the Theorem 4.4 and is thus
omitted. O

Theorem 4.12. For a topological space (X, T) and for a subset S of X the
following two conditions are equivalent:

(a) S is P,-closed relative to X,

(b) every grill G on X containing S pre-w-0-converges to some point

of S.

Proof. (a)=(b). Let G be a grill on X containing S which does not pre-
w-6-converge to any point of S. Then for each x € S and for each U, €
PO(X,z), F ¢ pcl,(Uy) for all F € G. Thus pel,(Uy) € G. Now consider
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the cover {U, : x € S} of S. Since S is P,-closed relative to X, there exist
x1,22,...,T, € S such that S C U pcl,(Uy,). Then U pcl,(Uy,) € G is
a contradiction.

(b)=(a). Let S not be P,-closed relative to X. Then there exists a cover
{Uq € PO(X) : a € A} of S such that F = {S — U 1pcly,(Uy,) 1 n < Ro} is
a filterbase on X. Now consider G, an ultrafilter base containing F. Then
G is a grill containing S and hence by (b), G converges at some point x € S.
Now let z € U, for some o € A, there exists F' € G such that F' C pcly,(Uy).
So pel,(Uy) € G. But S — pel,(Uy) € G which is a contradiction. O

Corollary 4.13. A topological space X is P,,-closed if and only if every grill
on X pre-w-0-converges to some point of X.

Theorem 4.14. Let A, B be subsets of a space X. If A is pre-w-0-closed
and B is P,-closed relative to X, then AN B is P,,-closed relative to X.

Proof. Let {U, : « € A} be a cover of AN B by preopen subsets of X. Since
A is pre-w-6-closed, then for each © € B — A there exists V, € PO(X, )
such that pcl,(V;)NA = (). Then the family {U, : « € A}U{V, : x € B—A}
is a cover of B by preopen subsets of X. Since B is P,-closed relative to
X, then there exist a finite number of points x1,x2,...,2, € B— A and a
finite number of indices v, g, . .., oy, € A such that B C (Ul pcly,(Vy,)) U
(UJLypcly(Ua,)) and so AN B C UM pcly(Us,). So AN B is p,-closed
relative to X. (]

Corollary 4.15. If X is a P,,-closed space, then every pre-w-0-closed subset
of X is P,-closed relative to X.

Definition 4.16. Let X be a topological space and A C X. Then mist-w-
boundary of A is the set w-Fr(A) = cl,(A) —int(A).

Definition 4.17. A topological space X is called mist-w-nearly compact if
every cover of X by mist-w-regular open sets has a finite subcover.

Definition 4.18. For an infinite cardinal number k, a topological space X is
called w-k-extremely disconnected if the cardinality of the mist-w-boundary
of every mist-w-reqular open set is less than k.

Theorem 4.19. If a topological space X is P,-closed and w-Rgy-extremely
disconnected, then X is mist-w-nearly compact.

Proof. Let ¥ = {U, : @ € A} be a cover of X by mist-w-regular open sets
of X. Since Uy = int(cly,(Us)) C int(cl(Uy)) for each aw € A, ¥ is a preopen
cover of X. Since X is P,-closed, there exists a finite set Ag C A such
that X = Ugenopcly(Ua) C Uaen,cly(Uy). Therefore X = Ugen,clow(Uy).
Now for each a € Ay, cl,(Uy) = Uy U Fy, where F, = cl,(Uy,) — Uy =
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clw(Uy) —int(cly,(Uy)) = clw(Uy) —int(int(cly,(Uy))) = cly(Uy) —int(Uy) is
the mist-w-boundary of U,. Since X is w-Nyp-extremely disconnected, then
each F, is finite and so F' = U{F,, : « € Ag} is a finite subset of X. Thus
{Uq : @ € Ag} covers X — F and so X is mist-w-nearly compact. U

Theorem 4.20. A P,,-closed set G relative to a Ty space X is pre-w-0-closed
if G is pre-w-open.

Proof. Let x € X — G. Then for each g € G, there exist two open sets Uy
and V; such that z € U, and g € V; and U, NV, = 0. Then {V, : g € G} is
a cover of G by open (and so preopen) sets of X. Since G is a p,-closed set
relative to X, there exist g1, g2,...,9n € G such that G C U_;pcl,(Vy,) C
pely, (U1 (Vy,)). Now consider U = NU,, and V = UV,,. Then UNV =0
and so pcl, (V) C cly, (V) C (V) € X — U. Therefore pel,(V)NU = ) and
so pint,(pcl,(V)) NU = 0. Hence pint,(pcly,(V)) Npcl,(U) = O and since
G is pre-w-open, G N pcl,(U) = 0. Thus G is pre-w-6-closed. O

Theorem 4.21. A quasi-H-w-closed set G relative to a Ty space X is closed
in the topological space (X, 7r,) if G is open in (X, T).

Proof. Let x € X — G. Then for each g € G, there exist two open sets
U, and V, such that z € Uy and g € V; and U, NV, = 0. Then {V} :
g € G} is cover of G by open (and so preopen) sets of X. Since G is
quasi- H-w-closed set relative to X, there exist g1, 92,...,9n € G such that
G C U cly(Vy,) C clow(UP_y(Vy,)). Now consider U = NI Uy, and V =
U? V. Then UNV = 0 and so cl,(V) C (V) C X — U. Therefore
cl,(V)NU =0 and so int(cl,(V)) NU = 0. Hence int(cl,(V))Nel(U) =0
and so G Nint,(cl(U)) = 0. Hence G is closed in (X, 7gr,). O

Definition 4.22. A topological space X is called P,-closed (resp. quasi-
H-w-closed) with respect to a grill G if every preopen cover {Vy : o € A}
of X has a finite subfamily {Va, : a; € Ayi = 1,2,...,n} such that X —
Uim1pclo (Vo) € G (resp. X — Ui clu(Va,) € G).-

Theorem 4.23. Fvery P,-closed (resp. quasi-H-w-closed) space X is P, -
closed (resp. quasi-H-w-closed) with respect to any grill G on X.

Proof. Let (X, 1) be P,-closed and {U, : « € A} be any preopen cover of
X. Then there exists a finite subset Ag of A such that X = U{pcl,,(Uy,) :
a € Ao} resp. X = U{cl,(Uy) : a € Ag}). Since 0 ¢ G, X — U{pcl,(Uy,) :
a€ Ao} &G (resp. X —U{clw(U,) : @ € Ag} € G). O

Remark 4.24. It is obvious that if G is the grill of all nonempty subsets
of any topological space X, then the concepts of X being P,-closed (resp.
quasi- H-w-closed) and P,-closed (resp. quasi-H-w-closed) with respect to
the grill G are equivalent.
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Theorem 4.25. Let G be a grill on a topological space (X, T) containing all
nonempty w-open sets and X be quasi-H-w-closed with respect to the grill
G. Then X is quasi-H-w-closed.

Proof. Let X be quasi-H-w-closed with respect to the grill G and {U, :
a € A} be a cover of X by the preopen sets of X. Then there ex-
ist a1, 00,...,0n € A such that X — U cl,(Uy,) € G. If int, (X —
U (Uy,;)) # 0, then int,(X — U1 (Uy,)) € G. But int,(X —U(Uy,)) =
X — (U Uy,) = X — U e, (Uy,). So X — U cly(Uy,) € G, which is
a contradiction. Hence () = int,(X — U (Uy,)) = X — UL cly,(Uy,). Thus
X =U" cly(Us,). Therefore X is quasi-H-w-closed. O

Definition 4.26. A topological space X is called weakly P,-closed (resp.
strongly P,,-closed, strongly compact) with respect to a grill G if every preopen
(resp. open, preopen) cover {V, : a € A} of X has a finite subfamily
Vo, 1 € Ayi = 1,2,...,n} such that X — U} jint,(Va,) &€ G (resp.
X = U?ledw(vai) ¢g, X - U?:lvai Zg )

Definition 4.27. A topological space X is called strongly pre-w-regular with
respect to a grill G if for each x € X and preclosed set F' not containing x.
Then there exist disjoint sets U € PO(X,z) and V € PwO(X) such that
F-V&g.

Theorem 4.28. A P,,-closed strongly pre-w-reqular space with respect to a
grill G is strongly compact with respect to the grill G.

Proof. Let {U,, : @ € A} be a cover of X by preopen sets of X. Then for each
v € X, there exists a(x) € A such that z € Uy(,y. Since X is strongly pre-w-
regular with respect to the grill G, there exist disjoint sets Py, € PO(X, )
and Qq(z) € PwO(X) such that (X — Uy (s)) — Qaz) € G- Here {Py ) v €
X} is a cover of X by preopen sets of X. Since X is B,-closed, there exist
r(1),2(2),...,z(n) € X such that X = U pcly,(Py(x(i)))-Consider Sy, =
(X_Ua(w))_Qa(a:)- Here Pa(x)ﬂQa(gg) = (D implies that pclw(Pa(z))ﬂQa(x) =
0. Now we claim that pely,(Puz)) € Sa(z) U Ua(e)- In fact ¢ € pely,(Pa,,)
but ¢ ¢ U,y implies that ¢ € X — Qu() and so ¢ € (X — Uyy)) —
Qa(x)) = Sa(x). Thus X = U?:1pdw(Pa(x(z‘))) C U?Zl(Sa(m(i)) U Ua(z(i))) and
so X — UL 1 Uya(i)) C Uiy (Sa(m(i))‘ But for each ¢t =1,2,...,n, Sa(x(i)) Z¢G
and so X — U1 Uy ((i)) € G- Hence X is strongly compact with respect to
the grill G. |

Theorem 4.29. A T, weakly P,-closed space with respect to a grill G is
strongly pre-w-reqular with respect to the grill G.

Proof. Consider x € X and a preclosed set F' not containing x. Then for
each y € F, there exist disjoint open sets U, and V, containing x and y
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respectively. Therefore {V, : y € F'} U{X — F} is a preopen cover of X.
Since X is a weakly P,-closed space with respect to the grill G, there exist
Y1,Y25 - - -, Yn € F such that X — [U int,(V,,) Uint (X — F))] € G. Now
consider U = X — pcl(U1(V,,)) and V = U (V,,). Then UNV = 0,
U e POX,z), V € POX) C PoO(X)and F—-V = FN((X -V) =
X - UL (V) U(X = F))] € X = [ULint,(V,,) Uint,(X — F))] and so
F—-V & G. Hence X is strongly pre-w-regular with respect to the grill G. [

Theorem 4.30. Let G be a grill on a topological space (X, 7) and (X, )
be strongly compact with respect to the grill G. Then (X,71g) is strongly
P,,-closed with respect to the grill G.

Proof. Let (X, 7) be strongly compact with respect to the grill G and con-
sider ¥ to be a cover of X by open sets of (X,7g). Then for each z € X,
there exists U, € X such that z € U,. Then there exist a B, € 7 and a
Ve & G such that x € B, — V, C U,. Then {B, : x € X} is cover of X
by open (and so preopen) sets of the space (X, 7). Since (X, 7) is strongly
compact with respect to the grill G, there exist z(1),z(2),...,z(n) € X
such that X — U B,y € G. Now X — U peli? (Uy)) € X — UL Uyy C
X = ULy (Bagi) = Vawy) C© (X = Uil (Bagiy)) U (Uin (Vo)) ¢ G- Hence
(X, 1g) is strongly P,-closed with respect to the grill G. O

Theorem 4.31. Let G be a grill on X. A topological space (X,T) is P,-
closed with respect to the grill G if and only if every pre-w-0-closed subset
of X is P,-closed with respect to the grill G and the space X.

Proof. Let (X,7) be P,-closed with respect to the grill G and A be a
pre-w-0-closed subset of X and let ¥ = {V,, : o« € A} be a cover of
A by preopen sets of X. Since X — A is a pre-w-0-open set, for each
x € X — A, by the Lemma 3.6, there exists U, € PO(X,z) such that
pely(Uz) € X — A. Hence X U{U, : © € X — A} is a preopen cover of
X and so there exist aq,9,...,a, € A and z1,29,...,T,m € X — A such
that X — (UL pcl (V) U (Ui pele (Uz,))) € G- So A — Ui pely(Va,) =
A= (U el (Va, DU(X = A))) © A (U pelo(Va, ) U (U pelen(Us, ) ©
X — (U ypcly,(Va,) U (U pcly, (Uy,))) € G. Therefore A—UP pcly,(Va,) €
G and hence A is P,-closed with respect to the grill G and X. Again since
X is a pre-0-w-closed subset of X, the converse part of the theorem is obvi-
ous. [l
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