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A STRICT FIXED POINT PROBLEM FOR
0-ASYMPTOTICALLY REGULAR MULTIFUNCTIONS AND
WELL-POSEDNESS

MOHAMED AKKOUCHI

ABSTRACT. In 2005, Lj. Ciri¢ has established a fixed point theorem for
asymptotically regular selfmappings of complete metric spaces. The pur-
pose of this paper is to extend this theorem to the case of d-asymptotica-
lly regular multifunctions on an orbitally complete metric space X which
satisfy a variant of Ciri¢’s contractive condition. The well-posedness of
the strict fixed point problem of these multifunctions is studied. We
provide also a general result when the metric space X is compact. Our
results are natural extensions to some recent results of Lj. B. Ciri¢ and
some old results obtained by Sharma and Yuel and Guay and Singh.

1. INTRODUCTION

Many authors have extended the Banach fixed point theorem (see [2]) by
introducing more general contractive conditions, which imply the existence
of a fixed point. Almost all of these conditions imply the asymptotic regu-
larity of the mappings under consideration. We recall that the notion of as-
ymptotic regularity for mappings was introduced by Browder and Petryshyn
(see [3]).

Definition 1.1. A selfmapping T on a metric space (X,d) is said to be
asymptotically regular at a point z in X, if

d(T"x, T"Tz) -0 as n— oo,
where T™x denotes the n-th iterate of T at x.

So the investigation of the asymptotically regular maps plays an impor-
tant role in fixed point theory.
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Sharma and Yuel [16] and Guay and Singh [12] were among the first who
used concept of asymptotic regularity to prove fixed point theorems for a
wider class of mappings than a class of mappings introduced and studied by
Ciri¢ in [5]. In (2005), Ciri¢ (see [6]) has generalized the results of [16] and
[12] by the following result.

Theorem 1.1. Let R be the set of nonnegative reals and let F; : RT — RT
be functions such that F;(0) =0 and F; is continuous at 0 (i = 1,2).

Let (X,d) be a complete metric space and T be a selfmapping on X sat-
isfying the following condition:

d(Tl‘, Ty) < (11F1 [mln{d(:z:, TLL‘), d(ya Ty)}] + a2F2 [d(l‘, Tl’), d(y7 Ty)]

+azd(z,y) + asld(z, Tx) + d(y, Ty)] + as[d(z, Ty) + d(y, Tz)] (1.1)
for all z,y in X, where a; = a;(z,y) (i = 1,2,3,4,5) are nonnegative func-
tions for which there exist a constant K > 0 and 0 < A1, Ao < 1 such that:

ai(r,y), az(z,y) < K, (1.2)
as(z,y) + as(z,y) < i, (1.3)
az(z,y) + 2a5(z,y) < A, (1.4)

for all z,y in X.
If T is asymptotically reqular at some xg in X, then T has a unique fized
point in X and at this point T is continuous.

The purpose of this paper is to extend Theorem 1.1 to the case of mul-
tifunctions. To state our main result, we need to introduce some prelimi-
naries. These preliminaries are gathered in the second section. In the third
section, we present our main result (see Theorem 3.1) in which we inves-
tigate existence and uniqueness of strict fixed points for a multifunction
T : X — B(X), where B(X) is the set of all nonempty bounded sets of
a metric space (X, d) satisfying the contractive condition (3.1) when X is
T-orbitally complete (see Definition 2.4) and T is d-asymptotically regular
(see Definition 3.1). Two other related general results (see Theorem 3.2
and Theorem 3.3) are also established in Section 3. In the fourth section
we establish the well-posedness of the strict fixed point problem for these
multifunctions.

2. PRELIMINARIES

Throughout this paper, N will be the set of non negative integers. Let
(X, d) be a metric space and B(X) the set of all nonempty bounded sets of
X. Asin [8], [9] and [10], we define the functions §(A, B) and D(A, B) by

0(A, B) :=sup{d(a,b) : a € A, b € B},
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D(A, B) :=inf{d(a,b) : a € A, b € B}.
If A consists of single point “a” we write (4, B) = d(a, B).
If B consists of single point “b”, we write §(A4, B) = §(A,b). It follows
immediately from the definition of §(A, B) that

8(A,B) =8(B,A), VA,B e B(X),

and

(A, B) < 3(A,C)+6(C,B), VA,B,C e B(X).

Definition 2.1. A sequence {A,} of nonempty subsets of X is said to con-
verge to a subset A of X if:

(i) Fach point a € A is the limit of a convergent sequence {ay}, where
an € Ay, for alln € N,

(ii) For arbitrary € > 0 there exists an integer m > 0 such that A, C A(e)
for all integer n > m , where

Ale):={r e X :Ja € A:d(x,a) < €}.
The set A is said to be the limit of the sequence {A,}.

Lemma 2.1. (Fisher ([8])). If {An} and {B,} are two sequences in B(X)
converging to the sets A and B respectively in B(X), then the sequence
{6(An, Bpn)} converges to 6(A, B).

Lemma 2.2. (Fisher and Sessa ([10])). Let {A,} be a sequence in B(X) and
y € X such that limy,_,o 0(Ap,y) = 0. Then the sequence {Ay,} converges
to {y} in B(X).

Definition 2.2. Let T : X — B(X) be a multifunction.

a) A point x € X is a fized point of F if x € Tx.
b) A point x € X is a strict fized point of T if {x} = Tx.

In 1974, Ciri¢ (see [4]) has first introduced orbitally complete metric
spaces.

Definition 2.3. Let f : (X,d) — (X,d). If for any x € X, every Cauchy
sequence of the orbit O(f,x) = {z, fx, f>x,...} is convergent in X, then
the metric space is said to be f-orbitally complete.

Remark 2.1. Every complete metric space is f-orbitally complete for any
f. An orbitally complete space may not be a complete metric space (see
[17]).
Let T: X — B(X) and g € X. An orbit of T" at point z, is a sequence
{z,} given by
O(T,zo) :==A{xn : xpy1 € T(xy), n=0,1,2,...}.
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Definition 2.4. Let (X,d) be a metric space. Let T : X — B(X) be a
multifunction. (X,d) is said to be T-orbitally complete, if for all x € X,
every Cauchy subsequence of the orbit O(T, x) converges to a point in X.

The notion of well-posednes of a fixed point problem has evoked much
interest to several mathematicians (see for example [15], [7], [11], [13], [14]

and [1]).

Definition 2.5. Let (X,d) be a metric space and T : (X,d) — (X,d) be a
mapping. The fized point problem of T is said to be well posed if:

(i) T has a unique fized point z in X,

(i) for any sequence {xy} of points in X such that limy,_o d(T'xp, x,) =0,
we have limy,_,o d(xy, 2) = 0.

We extend Definition 2.5 for multifunctions.

Definition 2.6. Let (X,d) be a metric space and T : X — B(X) be a
multifunction. The strict fized point problem of T is said to be well-posed if:
(i) T has a unique strict fized point z in X,

(ii) for any sequence {zn} of points in X such that lim, o0 6(T'xp, x,) =0,
we have limy,_,o d(xy, 2) = 0.

3. MAIN RESULT

To present our main result, we need to introduce the following class of
functions.

Let R™ be the set of nonnegative reals and let F be the set of functions
F:R* x Rt — RT satisfying the following properties:

(F 1) F(t,0) = 0= F(0,¢t) for all t € RT.

(F 2) F is continuous at the point (0,0).

(F 3) For all t € RT, the functions F(.,t) and F(t,.) are continuous at 0.

Examples of such functions are given below.
Example 3.1. F(s,t) = Fi(min{s,t}) + Fy(st), where F; : Rt — RT are
functions such that F;(0) = 0 and F; is continuous at 0 for (i = 1,2).
Example 3.2. F(s,t) = a[min{s,t} + st], where a € [0, 00).
Example 3.3. F(s,t) = F(min{s,t} + st), where F : RT — RT is a
function such that F(0) = 0 and F is continuous at 0.

Example 3.4. F(s,t) = %, for all s,t € RT.
Example 3.5. F(s,t) = %, for all s,t € RT, where p,q,7,m €

(0, 00).
We generalize Definition 1.1 by the following definition.
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Definition 3.1. A selfmapping T on a metric space (X,d) is said to be
d-asymptotically regular at a point x in X, if
lim 0(zy,Tzy) =0,
n—oo
where {x,} denotes the sequence of points such that xn+1 € Tx, for each
non-negative integer n with xg := x.
The main result of this paper runs as follows.

Theorem 3.1. Let (X,d) be a metric space and T : X — B(X) a multi-
function such that

+ ard(z,y) + az(6(x, Tx) + 6(y, Ty)] + as[D(x,Ty) + D(y, Tx)] (3.1)
for all x,y in X, where F € F and a; = a;(x,y) (i =0,1,2,3) are nonnega-

tive functions for which there exist three constants K > 0 and A1, A2 € (0,1),
such that the following inequalities:

aﬂ(x7y) < K7 (32)
az(z,y) + az(x,y) < A1,
a1(z,y) + 2a3(z,y) < A2 (3.4)

are satisfied for all x,y in X.

If (X,d) is T-orbitally complete and if T is d-asymptotically regular at
some xq in X, then the multifunction T has an unique fized u point in X
which is strict fized point for T.

Moreover, T is §-continuous at the unique strict fized point u in the fol-
lowing sense:

For each sequence {u,} converging to u, we have lim,_,~ 6(u, T'uy) = 0.

Proof. We first show that {z,} is a Cauchy sequence, where {z,} denotes
the sequence of points such that z,11 € Tz, for each non-negative integer
n with zg := x. Denote

dp = 6(xp, Txy).
Using the triangle inequality, from (1.1) we have
d(Tp, xm) < dp + 6(Txp, Tay) + dny,
< dp+ dp + agF(dn,dm) + a1d(xn, )
+ as(dn + dpm) + as[D(xp, Txm) + D(m, Txy)],
where a; = a;(zy, ). Using again the triangle inequality, we get

d(xp, ) < (a1 + 2a3)d(xn, Tm) + (1 + a2 + a3)(dy + di) + aoF(dy, dpy).
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Hence, because of (3.2), (3.3) and (3.4), we obtain
d(Tpy Tm) < Aod(Tp, ) + (1 4+ A1) (dp, + dp) + KF(dy, dn),
from which we get
1+ XM
1— Ao 1— X
Since T is d-asymptotically regular and F' is continuous at (0,0), taking
the limit as m and n tend to infinity we obtain

d(Tp, Tm) < (dn + dm) + F(dy,dn).

lim d(xp,xm) =0,
n,M—00

which implies that {z,} is a Cauchy sequence.
Since X is T-orbitally complete, there is some u in X such that

lim z,, = u.
For each non-negative integer n, we have
S(u, Txy) < d(u,zy) + 6(xpn, Tzy),
which implies that
lim 6(u,Tz,) = 0. (3.5)

n—oo

Now we show that u is a unique strict fixed point of T". Suppose §(u, T'u) >
0. From (1.1) we have

S(u, Tu) < 6(u, Txy) + 0(Txy, Tu)
< O(u, Tay) + agF (dp, 0(u, Tw)) + ard(zy, u)
+ asldy, + 0(u, Tu)] + az[D(xp, Tu) + D(u, Txy)],
where a; = a;(zp,u). Using the triangle inequality we get
d(u, Tu) < (1+a3)d(u, Txy) + agF (dy, 6(u, Tu))
+ (a1 + az)d(zp, u) + a2d, + (a2 + a3)d(u, Tu).
Therefore, from (3.2), (3.3) and (3.4), we have
0(u, Tu) < (1+ M\1)o(u, Txy) + KF(dp, d(u, Tu))
+ Xod(xp,u) + Aidy, + A160(u, Tu).

Since F' is continuous at the point (0, §(u, Tw)) and since F'(0,t) = 0, then
by taking the limit we get

0(u, Tu) < A\d(u, Tu) < 6(u, Tu),

a contradiction. Therefore, d(u,Tu) = 0; hence Tuw = {u}. That is u is a
strict fixed point for T'.



A STRICT FIXED POINT PROBLEM 129

To prove the uniqueness of u, let us suppose that v and v are two strict
fixed points of T. From (3.1), with a; = a;(u,v),

d(u,v) = 0(Tu,Tv) < apF(0,0) + a1d(u, v)
+az - 0+ 2azd(u,v)
= (a1 + 2a3)d(u,v).
Hence, because of (3.4),
(1= A2)d(u,v) <0,

which implies v = u.
To prove that T is d-continuous at u, suppose that z,, — u. Then from
(3.1),

0(Txp,u) =0(Txp, Tu) < ag - F(6(xpn, Txzy),0) + ard(x,, u)
+ a20(zp, Txy) + azld(xy, u) + 0(Txy, u)]
< (a1 + ag + az)d(zp,u) + (az + az)o(u, Tx,),
where a; = a;(zn,u). Hence, using (3.3) and (3.4),
O0(u, Ty) < (A1 4+ Ao)d(zp,u) + A\d(u, Txy),

from which we obtain

A1+ A
O(u, Txy) < 11_ )\12
Letting n go to infinity, we obtain

lim 6(u, Tx,) =0,

n—oo

d(zp,u).

which implies that T is J-continuous at the point u. This completes the
proof. O

Remark 3.1. Theorem 3.1 generalizes Theorem 1.1 obtained by Lj. B.
Ciri¢ in [6].

The following corollary provides an extension of a result of Sharma and
Yuel [16].

Corollary 3.1. Let (X,d) be a metric space and T : X — B(X) be a
multifunction such that
1+d(z,y)
for all z,y in X, where o, 8 € [0,1).
If (X,d) is T-orbitally complete and if T is d-asymptotically regular at
some xo in X, then the multifunction T has a unique fized v point in X
which is strict fized point for T'. Moreover, T is é-continuous at the point u.

0(Tx,Ty) < « + Bd(z,y),
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This corollary follows from Theorem 3.1, by the following considerations:

_ 1

C1+d(x,y)’
ai(z,y) = B, az(z,y) = a3(z,y) = 0.

Clearly (3.2) (3.3) and (3.4) are realized by taking K =1 and A\; = Ay =

B <1
The following corollary extends a result of Guay and Singh [12]

ap(z,y) F(s,t) = a(min{s,t} + st),

Corollary 3.2. Let (X,d) be a metric space and T : X — B(X) a multi-
function such that

6(Tx, Ty) < pd(z,y) + q[6(z, Tz) + 6(y, Ty)| + r[D(z, Tz) + D(y, Ty)],

for all x,y in X, where p,q and r are fired non-negative real numbers such
that q+r <1 and p+2r < 1.

If (X,d) is T-orbitally complete and if T is d-asymptotically regular at
some xq in X, then the multifunction T has a unique strict fized point u in
X at which T is §-continuous.

This corollary follows from Theorem 3.1 by setting ag = 0, F' = 0; a1 = p,
a2 =¢q,a3=7r; A\ =q+r and Ao =p+ 2r.

Remark 3.2. An example of Yuel and Sharma [16] shows that assumption
of asymptotically regularity in the above theorems can not be dropped.

The following theorem unifies and generalizes two theorems obtained by
Sharma and Yuel in [16] and by Lj. Ciri¢ in [6].

Theorem 3.2. Let (X, d) be a metric space, not necessarily orbitally com-
plete, and let T be as in Theorem 3.1. If an orbit of T at some zg has a
subsequence converging to a point u in X, then u is the unique strict fized
point of T, and the sequence defined by xn4+1 € Tx, also converges to u and
T is 6-continuous at u.

Proof. Suppose that T is d-asymptotically regular at some point z in X.
Let {z,} be an orbit of T at x such that
lim 6(xp, Txy) =0

n—oo

As it is shown in the proof of the Theorem 3.1, the sequence {z,} is a
Cauchy sequence. Since it contains a subsequence converging to u, then we
have

lim d(u,z,) =0 and lim §(u,Tz,) =0.
n—o0 n—oo

The rest of the result follows by the same method of proof as in the Theorem
3.1. So, we omit the details. O
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As a consequence, we have the following result for compact metric spaces.

Theorem 3.3. Let (X,d) be a compact metric space and let T be a multi-
function as in Theorem 3.1. Then T has a unique stricte fized point in X
at which T is §-continuous.

4. WELL-POSEDNESS

We end this paper by a result establishing the well-posedness of the strict
fixed point problem for a multifunction 7" on a metric space satisfying the
conditions of Theorem 3.1. More precisely, we have.

Theorem 4.1. Let (X,d) be a metric space and T : X — B(X) a multi-
function such that
+ard(z,y) + az[d (e, Tw) + 6(y, Ty)l + as[D(x, Ty) + D(y, Tz)] (4.1)

for all x,y in X, where F € F and a; = a;(x,y) (i =0,1,2,3) are nonnega-
tive functions for which there exist three constants K > 0 and A1, 2 € (0,1),
such that the following inequalities:

ao(x,y) < K7 (42)
a2($7y) + ag(x,y) < )‘h
a1(z,y) + 2a3(z,y) < A2 (4.4)

are satisfied for all x,y in X.
If (X,d) is T-orbitally complete and if T is d-asymptotically reqular at
some xq in X, then the strict fived point problem for T is well posed.
Moreover, T is §-continuous at its unique strict fixed point.

Proof. By Theorem 2.1, T has a unique strict fixed point v in X. Let {u,}
be a sequence in X such that

lim 0(up, Tuy) = 0.

n—o0

We have to show that lim,, o d(uy,u) = 0. To this end, we use the inequal-
ity (4.1). Then (by using the triangle inequality) we have

S(tn, u) < 0(tp, Tup) + 0(Tuy, Tu)
< O(up, Tuy) + aoF (0 (up, Tuy),0) + ard(un, w)
+ a20(un, Tuy) + a3[2d(up, w) + §(upn, Tuy)]
< (a1 + 2a3)d(up,u) + (1 + a2 + a3)d(un, Tuy),
where a; = a;(un,u). Hence, using (4.3) and (4.4),
O (un,u) < Aod(up,w) + (1 4+ )6 (up, Tuy),
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from which we obtain

14+ X\

<

O (U, Tuig).

Letting n go to infinity, we obtain

lim §(u,u,) =0,

n—o0

which implies that the strict fixed point problem for 7" is well posed.
The remainder follows from Theorem 2.1. This completes the proof. [
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