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A STRICT FIXED POINT PROBLEM FOR

δ-ASYMPTOTICALLY REGULAR MULTIFUNCTIONS AND

WELL-POSEDNESS

MOHAMED AKKOUCHI

Abstract. In 2005, Lj. Ćirić has established a fixed point theorem for
asymptotically regular selfmappings of complete metric spaces. The pur-
pose of this paper is to extend this theorem to the case of δ-asymptotica-
lly regular multifunctions on an orbitally complete metric space X which

satisfy a variant of Ćirić’s contractive condition. The well-posedness of
the strict fixed point problem of these multifunctions is studied. We
provide also a general result when the metric space X is compact. Our

results are natural extensions to some recent results of Lj. B. Ćirić and
some old results obtained by Sharma and Yuel and Guay and Singh.

1. Introduction

Many authors have extended the Banach fixed point theorem (see [2]) by
introducing more general contractive conditions, which imply the existence
of a fixed point. Almost all of these conditions imply the asymptotic regu-
larity of the mappings under consideration. We recall that the notion of as-
ymptotic regularity for mappings was introduced by Browder and Petryshyn
(see [3]).

Definition 1.1. A selfmapping T on a metric space (X, d) is said to be
asymptotically regular at a point x in X, if

d(Tnx, TnTx)→ 0 as n→∞,

where Tnx denotes the n-th iterate of T at x.

So the investigation of the asymptotically regular maps plays an impor-
tant role in fixed point theory.
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Sharma and Yuel [16] and Guay and Singh [12] were among the first who
used concept of asymptotic regularity to prove fixed point theorems for a
wider class of mappings than a class of mappings introduced and studied by
Ćirić in [5]. In (2005), Ćirić (see [6]) has generalized the results of [16] and
[12] by the following result.

Theorem 1.1. Let R+ be the set of nonnegative reals and let Fi : R+ → R+

be functions such that Fi(0) = 0 and Fi is continuous at 0 (i = 1, 2).
Let (X, d) be a complete metric space and T be a selfmapping on X sat-

isfying the following condition:

d(Tx, Ty) ≤ a1F1[min{d(x, Tx), d(y, Ty)}] + a2F2[d(x, Tx), d(y, Ty)]

+a3d(x, y) + a4[d(x, Tx) + d(y, Ty)] + a5[d(x, Ty) + d(y, Tx)] (1.1)

for all x, y in X, where ai = ai(x, y) (i = 1, 2, 3, 4, 5) are nonnegative func-
tions for which there exist a constant K > 0 and 0 < λ1, λ2 < 1 such that:

a1(x, y), a2(x, y) ≤ K, (1.2)

a4(x, y) + a5(x, y) ≤ λ1, (1.3)

a3(x, y) + 2a5(x, y) ≤ λ2, (1.4)

for all x, y in X.
If T is asymptotically regular at some x0 in X, then T has a unique fixed

point in X and at this point T is continuous.

The purpose of this paper is to extend Theorem 1.1 to the case of mul-
tifunctions. To state our main result, we need to introduce some prelimi-
naries. These preliminaries are gathered in the second section. In the third
section, we present our main result (see Theorem 3.1) in which we inves-
tigate existence and uniqueness of strict fixed points for a multifunction
T : X → B(X), where B(X) is the set of all nonempty bounded sets of
a metric space (X, d) satisfying the contractive condition (3.1) when X is
T -orbitally complete (see Definition 2.4) and T is δ-asymptotically regular
(see Definition 3.1). Two other related general results (see Theorem 3.2
and Theorem 3.3) are also established in Section 3. In the fourth section
we establish the well-posedness of the strict fixed point problem for these
multifunctions.

2. Preliminaries

Throughout this paper, N will be the set of non negative integers. Let
(X, d) be a metric space and B(X) the set of all nonempty bounded sets of
X. As in [8], [9] and [10], we define the functions δ(A,B) and D(A,B) by

δ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B},
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D(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.
If A consists of single point “a” we write δ(A,B) = δ(a,B).
If B consists of single point “b”, we write δ(A,B) = δ(A, b). It follows
immediately from the definition of δ(A,B) that

δ(A,B) = δ(B,A), ∀A,B ∈ B(X),

and
δ(A,B) ≤ δ(A,C) + δ(C,B), ∀A,B,C ∈ B(X).

Definition 2.1. A sequence {An} of nonempty subsets of X is said to con-
verge to a subset A of X if:
(i) Each point a ∈ A is the limit of a convergent sequence {an}, where
an ∈ An, for all n ∈ N.
(ii) For arbitrary ε > 0 there exists an integer m > 0 such that An ⊂ A(ε)
for all integer n ≥ m , where

A(ε) := {x ∈ X : ∃a ∈ A : d(x, a) < ε}.
The set A is said to be the limit of the sequence {An}.

Lemma 2.1. (Fisher ([8])). If {An} and {Bn} are two sequences in B(X)
converging to the sets A and B respectively in B(X), then the sequence
{δ(An, Bn)} converges to δ(A,B).

Lemma 2.2. (Fisher and Sessa ([10])). Let {An} be a sequence in B(X) and
y ∈ X such that limn→∞ δ(An, y) = 0. Then the sequence {An} converges
to {y} in B(X).

Definition 2.2. Let T : X → B(X) be a multifunction.
a) A point x ∈ X is a fixed point of F if x ∈ Tx.
b) A point x ∈ X is a strict fixed point of T if {x} = Tx.

In 1974, Ćirić (see [4]) has first introduced orbitally complete metric
spaces.

Definition 2.3. Let f : (X, d) → (X, d). If for any x ∈ X, every Cauchy
sequence of the orbit O(f, x) := {x, fx, f2x, . . .} is convergent in X, then
the metric space is said to be f -orbitally complete.

Remark 2.1. Every complete metric space is f -orbitally complete for any
f. An orbitally complete space may not be a complete metric space (see
[17]).

Let T : X → B(X) and x0 ∈ X. An orbit of T at point x0, is a sequence
{xn} given by

O(T, x0) := {xn : xn+1 ∈ T (xn), n = 0, 1, 2, . . .}.
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Definition 2.4. Let (X, d) be a metric space. Let T : X → B(X) be a
multifunction. (X, d) is said to be T -orbitally complete, if for all x ∈ X,
every Cauchy subsequence of the orbit O(T, x) converges to a point in X.

The notion of well-posednes of a fixed point problem has evoked much
interest to several mathematicians (see for example [15], [7], [11], [13], [14]
and [1]).

Definition 2.5. Let (X, d) be a metric space and T : (X, d) → (X, d) be a
mapping. The fixed point problem of T is said to be well posed if:
(i) T has a unique fixed point z in X,
(ii) for any sequence {xn} of points in X such that limn→∞ d(Txn, xn) = 0,
we have limn→∞ d(xn, z) = 0.

We extend Definition 2.5 for multifunctions.

Definition 2.6. Let (X, d) be a metric space and T : X → B(X) be a
multifunction. The strict fixed point problem of T is said to be well-posed if:
(i) T has a unique strict fixed point z in X,
(ii) for any sequence {xn} of points in X such that limn→∞ δ(Txn, xn) = 0,
we have limn→∞ d(xn, z) = 0.

3. Main result

To present our main result, we need to introduce the following class of
functions.

Let R+ be the set of nonnegative reals and let F be the set of functions
F : R+ × R+ → R+ satisfying the following properties:

(F 1) F (t, 0) = 0 = F (0, t) for all t ∈ R+.

(F 2) F is continuous at the point (0, 0).

(F 3) For all t ∈ R+, the functions F (., t) and F (t, .) are continuous at 0.

Examples of such functions are given below.

Example 3.1. F (s, t) = F1(min{s, t}) + F2(s t), where Fi : R+ → R+ are
functions such that Fi(0) = 0 and Fi is continuous at 0 for (i = 1, 2).

Example 3.2. F (s, t) = α[min{s, t}+ s t], where α ∈ [0,∞).

Example 3.3. F (s, t) = F (min{s, t} + s t), where F : R+ → R+ is a
function such that F (0) = 0 and F is continuous at 0.

Example 3.4. F (s, t) = min{s,t}+s t
1+s+t , for all s, t ∈ R+.

Example 3.5. F (s, t) = min{s,t}p+sq tr

1+(s+t)m , for all s, t ∈ R+, where p, q, r,m ∈
(0,∞).

We generalize Definition 1.1 by the following definition.



A STRICT FIXED POINT PROBLEM 127

Definition 3.1. A selfmapping T on a metric space (X, d) is said to be
δ-asymptotically regular at a point x in X, if

lim
n→∞

δ(xn, Txn) = 0,

where {xn} denotes the sequence of points such that xn+1 ∈ Txn for each
non-negative integer n with x0 := x.

The main result of this paper runs as follows.

Theorem 3.1. Let (X, d) be a metric space and T : X → B(X) a multi-
function such that

δ(Tx, Ty) ≤ a0F (δ(x, Tx), δ(y, Ty))

+ a1d(x, y) + a2[δ(x, Tx) + δ(y, Ty)] + a3[D(x, Ty) +D(y, Tx)] (3.1)

for all x, y in X, where F ∈ F and ai = ai(x, y) (i = 0, 1, 2, 3) are nonnega-
tive functions for which there exist three constants K > 0 and λ1, λ2 ∈ (0, 1),
such that the following inequalities:

a0(x, y) ≤ K, (3.2)

a2(x, y) + a3(x, y) ≤ λ1, (3.3)

a1(x, y) + 2a3(x, y) ≤ λ2 (3.4)

are satisfied for all x, y in X.
If (X, d) is T -orbitally complete and if T is δ-asymptotically regular at

some x0 in X, then the multifunction T has an unique fixed u point in X
which is strict fixed point for T .

Moreover, T is δ-continuous at the unique strict fixed point u in the fol-
lowing sense:

For each sequence {un} converging to u, we have limn→∞ δ(u, Tun) = 0.

Proof. We first show that {xn} is a Cauchy sequence, where {xn} denotes
the sequence of points such that xn+1 ∈ Txn for each non-negative integer
n with x0 := x. Denote

dn = δ(xn, Txn).

Using the triangle inequality, from (1.1) we have

d(xn, xm) ≤ dn + δ(Txn, Txm) + dm

≤ dn + dm + a0F (dn, dm) + a1d(xn, xm)

+ a2(dn + dm) + a3[D(xn, Txm) +D(xm, Txn)],

where ai = ai(xn, xm). Using again the triangle inequality, we get

d(xn, xm) ≤ (a1 + 2a3)d(xn, xm) + (1 + a2 + a3)(dn + dm) + a0F (dn, dm).
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Hence, because of (3.2), (3.3) and (3.4), we obtain

d(xn, xm) ≤ λ2d(xn, xm) + (1 + λ1)(dn + dm) +KF (dn, dm),

from which we get

d(xn, xm) ≤ 1 + λ1
1− λ2

(dn + dm) +
K

1− λ2
F (dn, dm).

Since T is δ-asymptotically regular and F is continuous at (0, 0), taking
the limit as m and n tend to infinity we obtain

lim
n,m→∞

d(xn, xm) = 0,

which implies that {xn} is a Cauchy sequence.
Since X is T -orbitally complete, there is some u in X such that

limxn = u.

For each non-negative integer n, we have

δ(u, Txn) ≤ d(u, xn) + δ(xn, Txn),

which implies that

lim
n→∞

δ(u, Txn) = 0. (3.5)

Now we show that u is a unique strict fixed point of T . Suppose δ(u, Tu) >
0. From (1.1) we have

δ(u, Tu) ≤ δ(u, Txn) + δ(Txn, Tu)

≤ δ(u, Txn) + a0F (dn, δ(u, Tu)) + a1d(xn, u)

+ a2[dn + δ(u, Tu)] + a3[D(xn, Tu) +D(u, Txn)],

where ai = ai(xn, u). Using the triangle inequality we get

δ(u, Tu) ≤ (1 + a3)δ(u, Txn) + a0F (dn, δ(u, Tu))

+ (a1 + a3)d(xn, u) + a2dn + (a2 + a3)δ(u, Tu).

Therefore, from (3.2), (3.3) and (3.4), we have

δ(u, Tu) ≤ (1 + λ1)δ(u, Txn) +KF (dn, δ(u, Tu))

+ λ2d(xn, u) + λ1dn + λ1δ(u, Tu).

Since F is continuous at the point (0, δ(u, Tu)) and since F (0, t) = 0, then
by taking the limit we get

δ(u, Tu) ≤ λ1δ(u, Tu) < δ(u, Tu),

a contradiction. Therefore, δ(u, Tu) = 0; hence Tu = {u}. That is u is a
strict fixed point for T .
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To prove the uniqueness of u, let us suppose that u and v are two strict
fixed points of T . From (3.1), with ai = ai(u, v),

d(u, v) = δ(Tu, Tv) ≤ a0F (0, 0) + a1d(u, v)

+ a2 · 0 + 2a3d(u, v)

= (a1 + 2a3)d(u, v).

Hence, because of (3.4),

(1− λ2)d(u, v) ≤ 0,

which implies v = u.
To prove that T is δ-continuous at u, suppose that xn → u. Then from

(3.1),

δ(Txn, u) = δ(Txn, Tu) ≤ a0 · F (δ(xn, Txn), 0) + a1d(xn, u)

+ a2δ(xn, Txn) + a3[d(xn, u) + δ(Txn, u)]

≤ (a1 + a2 + a3)d(xn, u) + (a2 + a3)δ(u, Txn),

where ai = ai(xn, u). Hence, using (3.3) and (3.4),

δ(u, Txn) ≤ (λ1 + λ2)d(xn, u) + λ1δ(u, Txn),

from which we obtain

δ(u, Txn) ≤ λ1 + λ2
1− λ1

d(xn, u).

Letting n go to infinity, we obtain

lim
n→∞

δ(u, Txn) = 0,

which implies that T is δ-continuous at the point u. This completes the
proof. �

Remark 3.1. Theorem 3.1 generalizes Theorem 1.1 obtained by Lj. B.
Ćirić in [6].

The following corollary provides an extension of a result of Sharma and
Yuel [16].

Corollary 3.1. Let (X, d) be a metric space and T : X → B(X) be a
multifunction such that

δ(Tx, Ty) ≤ αmin{δ(x, Tx), δ(y, Ty)}+ δ(x, Tx) · δ(y, Ty)

1 + d(x, y)
+ βd(x, y),

for all x, y in X, where α, β ∈ [0, 1).
If (X, d) is T -orbitally complete and if T is δ-asymptotically regular at

some x0 in X, then the multifunction T has a unique fixed u point in X
which is strict fixed point for T . Moreover, T is δ-continuous at the point u.
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This corollary follows from Theorem 3.1, by the following considerations:

a0(x, y) =
1

1 + d(x, y)
, F (s, t) = α(min{s, t}+ st),

a1(x, y) = β, a2(x, y) = a3(x, y) = 0.

Clearly (3.2) (3.3) and (3.4) are realized by taking K = 1 and λ1 = λ2 =
β < 1.

The following corollary extends a result of Guay and Singh [12]

Corollary 3.2. Let (X, d) be a metric space and T : X → B(X) a multi-
function such that

δ(Tx, Ty) ≤ pd(x, y) + q[δ(x, Tx) + δ(y, Ty)] + r[D(x, Tx) +D(y, Ty)],

for all x, y in X, where p, q and r are fixed non-negative real numbers such
that q + r < 1 and p+ 2r < 1.

If (X, d) is T -orbitally complete and if T is δ-asymptotically regular at
some x0 in X, then the multifunction T has a unique strict fixed point u in
X at which T is δ-continuous.

This corollary follows from Theorem 3.1 by setting a0 = 0, F = 0; a1 = p,
a2 = q, a3 = r; λ1 = q + r and λ2 = p+ 2r.

Remark 3.2. An example of Yuel and Sharma [16] shows that assumption
of asymptotically regularity in the above theorems can not be dropped.

The following theorem unifies and generalizes two theorems obtained by
Sharma and Yuel in [16] and by Lj. Ćirić in [6].

Theorem 3.2. Let (X, d) be a metric space, not necessarily orbitally com-
plete, and let T be as in Theorem 3.1. If an orbit of T at some x0 has a
subsequence converging to a point u in X, then u is the unique strict fixed
point of T , and the sequence defined by xn+1 ∈ Txn also converges to u and
T is δ-continuous at u.

Proof. Suppose that T is δ-asymptotically regular at some point x in X.
Let {xn} be an orbit of T at x such that

lim
n→∞

δ(xn, Txn) = 0

As it is shown in the proof of the Theorem 3.1, the sequence {xn} is a
Cauchy sequence. Since it contains a subsequence converging to u, then we
have

lim
n→∞

d(u, xn) = 0 and lim
n→∞

δ(u, Txn) = 0.

The rest of the result follows by the same method of proof as in the Theorem
3.1. So, we omit the details. �
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As a consequence, we have the following result for compact metric spaces.

Theorem 3.3. Let (X, d) be a compact metric space and let T be a multi-
function as in Theorem 3.1. Then T has a unique stricte fixed point in X
at which T is δ-continuous.

4. Well-posedness

We end this paper by a result establishing the well-posedness of the strict
fixed point problem for a multifunction T on a metric space satisfying the
conditions of Theorem 3.1. More precisely, we have.

Theorem 4.1. Let (X, d) be a metric space and T : X → B(X) a multi-
function such that

δ(Tx, Ty) ≤ a0F (δ(x, Tx), δ(y, Ty))

+ a1d(x, y) + a2[δ(x, Tx) + δ(y, Ty)] + a3[D(x, Ty) +D(y, Tx)] (4.1)

for all x, y in X, where F ∈ F and ai = ai(x, y) (i = 0, 1, 2, 3) are nonnega-
tive functions for which there exist three constants K > 0 and λ1, λ2 ∈ (0, 1),
such that the following inequalities:

a0(x, y) ≤ K, (4.2)

a2(x, y) + a3(x, y) ≤ λ1, (4.3)

a1(x, y) + 2a3(x, y) ≤ λ2 (4.4)

are satisfied for all x, y in X.
If (X, d) is T -orbitally complete and if T is δ-asymptotically regular at

some x0 in X, then the strict fixed point problem for T is well posed.
Moreover, T is δ-continuous at its unique strict fixed point.

Proof. By Theorem 2.1, T has a unique strict fixed point u in X. Let {un}
be a sequence in X such that

lim
n→∞

δ(un, Tun) = 0.

We have to show that limn→∞ d(un, u) = 0. To this end, we use the inequal-
ity (4.1). Then (by using the triangle inequality) we have

δ(un, u) ≤ δ(un, Tun) + δ(Tun, Tu)

≤ δ(un, Tun) + a0F (δ(un, Tun), 0) + a1d(un, u)

+ a2δ(un, Tun) + a3[2d(un, u) + δ(un, Tun)]

≤ (a1 + 2a3)d(un, u) + (1 + a2 + a3)δ(un, Tun),

where ai = ai(un, u). Hence, using (4.3) and (4.4),

δ(un, u) ≤ λ2d(un, u) + (1 + λ1)δ(un, Tun),
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from which we obtain

δ(un, u) ≤ 1 + λ1
1− λ2

δ(un, Tun).

Letting n go to infinity, we obtain

lim
n→∞

δ(u, un) = 0,

which implies that the strict fixed point problem for T is well posed.
The remainder follows from Theorem 2.1. This completes the proof. �
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Acad. Sci. Paris, 308 (1989), 51–54.

[8] B. Fisher, Common fixed points of mappings and set valued mappings, Rostock Math.
Kolloq., 18 (1981), 69–77.

[9] B. Fisher, Common fixed points on a metric space, Kyungpook Math. J., 25 (1985),
35–42.

[10] B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting
mappings, Period. Math. Hung., 20 (3) (1989), 207–218.

[11] B.K. Lahiri and P. Das, Well-posednes and porosity of certain classes of operators,
Demonstratio Math., 38 (2005) 170–176.

[12] M. D. Guay, and K. L. Singh, Fixed points of asymptotically regular mappings, Mat.
Vesnik., 35 (1983), 101–106.

[13] V. Popa, Well-posedness of fixed point problem in orbitally complete metric spaces,
Stud. Cerc. St. Ser. Mat. Univ. Bacǎu, 16 (2006), Suppl. 209–214.
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