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APPLICATION OF AN IMAGE REGISTRATION METHOD

TO NOISY IMAGES

M. A. AKINLAR AND R. N. IBRAGIMOV

Abstract. The purpose of this article is twofold: First to overview
the recently proposed 3D image registration algorithm presented in the
Ph.D. dissertation of the first author and secondly to apply the results
to the registration of images which have a certain level of noise. Our
method is developed by adjusting the divergence and curl of the image
displacement field by means of which we can control translation, rota-
tion, and deformations of image pixels. Our method incorporates sum of
squared differences as the similarity metric and uses the Lagrange mul-
tipliers method to solve the existing optimization problem from which
we obtain an optimality system that consists of four Poisson equations.
In the 2D case a finite-difference multigrid strategy is used to solve these
Poisson equations. Multi-level coarse-to-fine iterations allow us efficient,
accurate and robust registration even if one or both of the images to be
registered have a significant level of noise.

1. Introduction

In basic terms, image registration can be defined as a process of deter-
mining the optimal transform that maps points from one image to the corre-
sponding points in another image. In general the image registration problem
can be formulated as an optimization problem:

J [R,T;u] := min
{
Csim + βCreg

}
, (1.1)

where Csim is the similarity metric between template T and reference im-
ages R, and Creg is the regularization term due to cracks, folding or other
unwanted deformations and β is the regularization constant. We can sepa-
rate the image registration problem to three main components as transfor-
mation models (Rigid, non-rigid, hybrid), Similarity metrics (Intensity-
based, geometry-based) andOptimization procedure (Lagrange multipli-
ers method, gradient descent method, etc.) Detailed treatment for different
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image registration techniques and some applications of it can be seen in ([1],
[3]) and in the references therein.

In his Ph.D. dissertation [2] the first author introduced a 3D image reg-
istration method and applied this method to the registration of noise-free
images. In this paper we illustrate the results obtained upon applying this
image registration method to the registration of images which contain a
certain level of noise.

This paper is organized as follows: In the first section we briefly mention
the methodology behind image registration. The second section introduces
our image registration method. In the remaining three sections we introduce
the noise concept, present computational examples and finish the paper with
a summary and conclusion.

2. Our method for image registration

Given a reference image R(x) and a template image T(x), the image
registration problem can be cast as an optimization problem which is defined
as follows: find a mapping ϕ(x) that minimizes the L2-norm of the difference
between T

(
ϕ(x)

)
and R(x) over Ω. In order to achieve this, we define the

similarity functional

J (ϕ, f,g) =
1

2

∫
Ω

∣∣T(
ϕ(x)

)
−R(x)

∣∣2 dx
+

ω

2

∫
Ω
|f(x)|2 dx+

3∑
i=1

wi

2

∫
Ω
|gi(x)|2 dx, (2.1)

where

ϕ(x) = x+ u(x) (2.2)

with u satisfying

∇ · u = f − 1 and ∇× u = g in Ω and u = 0 on ∂Ω. (2.3)

In (2.1), ω and wi, i = 1, 2, 3, are penalty weights and gi, i = 1, 2, 3, denote
the components of the vector g. Let us note that the argument ∇·u = f−1
improves the conservation of the size. Then, we minimize J (ϕ, f,g) subject
to the constraints (2.2) and (2.3).

We use the Lagrange multiplier method to transform the constrained
minimization problem into an unconstrained saddle point problem. To this
end, we introduce the Lagrange multipliers q(x) and v(x) and define the
Lagrangian functional

L(u, f,g, q,v) = J
(
ϕ(u), f,g

)
+

∫
Ω
q(∇·u−f+1)dx+

∫
Ω
v ·(∇×u−g)dx.
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The constraint (2.2) is explicitly substituted into (2.1) and the state and co-
state functions are required to satisfy u = 0 and v = 0 on ∂Ω, respectively.
Saddle points of Lagrangian functional satisfy an optimality system that
consists of state equations, co-state equations, and optimality conditions; the
optimality system is obtained from the first-order necessary conditions for
the stationarity of L. The rigorous justification for the use of the Lagrange
multiplier method and the existence of solutions of the optimality system
was established in [4].
State Equations. Setting the variations of L(u, f,g, q,v) with respect to
the Lagrange multipliers q and v recovers the constraint system (2.3). For
example, for any variation δq, we have

δqL = lim
ε→0

d

dε
L(u, f,g, q + εδq,v) = lim

ε→0

d

dε

∫
Ω
(q + εδq)(∇ · u− f + 1)dx

so that invoking the first-order necessary condition δqL = 0 results in∫
Ω
δq(∇ · u− f + 1)dx = 0 for all δq

so that we recover the first equation in (2.3). The second equation in (2.3)
is recovered in a similar manner.
Co-state equations. The co-state equations are obtained by setting the
first variation of L(u, f,g, q,v) with respect to the state variable u to zero.

δuL = lim
ε→0

d

dε
L(u+ εδu, f,g, q,v)

= lim
ε→0

d

dε

{
1

2

∫
Ω

∣∣T(
x+ u+ εδu

)
−R(x)

∣∣2 dx
+

∫
Ω
q
(
∇ · (u+ ϵδu)− f + 1

)
dx+

∫
Ω
v ·

(
∇× (u+ ϵδu)− g

)
dx

}
=

∫
Ω
δu ·

(
Tϕ(x+ u)

(
T(x+ u)−R(x)

))
dx

−
∫
Ω
δu · ∇qdx+

∫
Ω
δu · (∇× v)dx

so that setting δuL = 0, we obtain the co-state equations

∇× v −∇q = Tϕ(x+ u)
(
T(x+ u)−R(x)

)
in Ω, (2.4)

where Tϕ denotes the Jacobian of T(ϕ).
Optimality conditions. The optimality conditions are obtained by setting
the first variation of L(u, f,g, q,v) with respect to the controls f and g to
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zero. For example, we have

δfL = lim
ε→0

d

dε
L(u, f ++εf,g, q,v)

= lim
ε→0

d

dε

{
ω

∫
Ω
fδfdx−

∫
Ω
q
(
∇ · u− f − εδf + 1

)
dx

}
=

∫
Ω
(ωf − q)δfdx

and similarly for δgL. Thus, setting δfL = 0 and δgL = 0, we obtain the
optimality conditions

f =
1

ω
q and gi =

1

wi
vi, i = 1, 2, 3, in Ω. (2.5)

Optimality system reformulated in terms of Poisson equations.
From the optimality system (2.3)–(2.5), we easily obtain∆u =

1

ω
∇q − 1

w
∇× v in Ω

u = 0 on ∂Ω
(2.6)

{
∆q = −∇ ·

(
Tϕ(x+ u)

(
T(x+ u)−R(x)

))
in Ω

q = 0 on ∂Ω
(2.7)

{
∆v = −∇×

(
Tϕ(x+ u)

(
T(x+ u)−R(x)

))
in Ω

v = 0 on ∂Ω,
(2.8)

where for (2.6) and (2.8) we have used the identity ∆v = ∇(∇·v)−∇×(∇×
v), for (2.6) we have set wi = w for i = 1, 2, 3, and for (2.8), we have adopted
the gauge ∇·v = 0. Next we briefly study numerical implementation of the
present method.

3. Numerical implementation

• Suppose we have control parameters.
• Obtain u from decoupled state equations (2.6).
• Obtain q, v from decoupled costate equations (2.7), (2.8).
• Next get new controls from the optimality conditions (2.5).
• Normalize controls and repeat the same process until the error con-
dition is satisfied or a present number of iterations is achieved.

Although there are several sophisticated numerical methods to solve these
Poisson equations, we use successive-over relaxation method in 3D case and
finite-difference multigrid method in 2D case. Because these two methods
are quite well-known in the solutions of the Poisson equations we skip their
details here.
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4. Noise

Noise constitutes an important limitation in the registration of images.
Typically, noise is assumed to be Gaussian, Laplacian or Poisson distributed.
We can separate the noisy image models as additive and multiplicative noise
models. In the additive noise model observed image u0(x) is sum of the true
image u(x) and noise η(x):

u0(x) = u(x) + η(x).

In this model of additive noise, in general, the noise η(x) is commonly mod-
eled by Gaussian noise of mean m and variance v. A multiplicative noise is
modeled as

u0(x) = u(x)η(x).

In this case, η(x) is uniformly distributed random noise with mean m and
variance v.

5. Some computational examples

Example 1. (Registration of the 3D noise-free images) Let Ω =
[0, 1] × [0, 1] × [0, 1] and the following discrete images have a resolution of
16 × 16 × 16 pixels. Let the reference image, R(x, y, z) and the template
image, T (x, y, z) be given as follows:

R(x, y, z) =

 10, d(x,y,z)≤ 0;
9.5 + 5(0.1 + 1.5d(x, y, z)), 0 ≤ d(x, y, z) ≤ 2;
25, 2 ≤ d(x, y, z).

where

d(x, y, z) =
√
(x− 8)2 + (y − 8)2 + (z − 9)2 − 3.

T (x, y, z) =

 10, d(x,y,z)≤ 0;
9.5 + 5(0.1 + 3d(x, y, z)), 0 ≤ d(x, y, z) ≤ 1;
25, 1 ≤ d(x, y, z).

where

d(x, y, z) =
√
(x− 8)2 + (y − 8)2 + (z − 9)2 − 2,

with Dirichlet boundary conditions.
Figures 3 illustrates the slices of the registered image. Table 1 demon-

strates the results of registration. Our method is quite fast and registers the
given 3D images with a good quality.

Example 2. (Registration in the presence of noise in the 3D case) In
this example we study the effect of noise on image registration. We register
the transformed template image with the noisy images. We determine the
approximate noise level at which our registration method fails. Initially, we
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Table 1: SSD and Average duration of implementation

Iterations SSD with SOR SOR Duration
1 1674.6 1 sec
5 209.9 2 sec
60 16.5 25 sec
200 3.5 1min

consider the registration problem in which template image is noise free but
the reference image contains certain level of noise. We added increasing level
of additive noises to the reference image described in the previous problem
with the noise densities of 0.22, 0.44, 0.74. Table 2 demonstrates the change
in the SSD versus noise. As we see from the table our method fails only
when the multiplicative noise level is 0.74.

Table 2: SSD with additive noise and Average durations of implementations

Iterations SSD-0.22 SSD-0.44 SSD-0.74 Average Duration
1 1893.5 2140.8 2900.5 1 sec
2 1342.9 1401.4 2906.1 3 sec
120 55.0 209.5 2900.1 1min
200 47.4 160.4 2900.1 2mins

Figure 1: 3D and 2D slices
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Example 3. (Registration in the presence of noise in the 2D case)
In this example we define reference and template images as follows:

R(x, y) =

 10, d(x,y)≤ 0;
9.5 + 5(0.1 + 1.5d(x, y)), 0 ≤ d(x, y) ≤ 2;
25, 2 ≤ d(x, y).

where

d(x, y) =
√

1.6(x− 30)2 + (y − 30)2 − 12.

T (x, y) =

 10, d(x,y)≤ 0;
9.5 + 5(0.1 + 3d(x, y)), 0 ≤ d(x, y) ≤ 1;
25, 1 ≤ d(x, y).

where

d(x, y) =
√

(x− 35)2 + 1.5(y − 35)2 − 7.

We add certain level of noise to both reference and template images. In
order to see the effect of the noise to the registration procedure, we multiplied
both reference and template images described above for the 2D case with
the noise densities of 0.22, 0.44, 0.66, 0.90. Figure 2 shows the noisy images
resulting from multiplying the reference image with the above mentioned
noise densities. Table 3 demonstrates the change in the SSD versus noise.
As we see from the table our method fails when the multiplicative noise level
is 0.90, which is quite good.

Table 3: SSD with additive noise and Average durations of implementations

Iterations SSD-0.22 SSD-0.44 SSD-0.66 SSD-0.90 Aver.Dur.
1 2106.4 2334.9 2576.1 2774.7 1 sec
5 1627.5 1874.3 2001.8 2672.3 3 sec
20 908.3 1174.7 1874.7 2672.3 6 sec
120 14.2 25.7 173.7 2672.3 34 sec
200 13.1 16.7 164.1 2672.3 1min

Notice that it is possible to make experiments for different situations: For
example, adding or multiplying reference and template images with the same
or different noise densities. Although we present the results of image reg-
istration experiments using only multiplicative and additive Gaussian noise
in this paper, we have also conducted numerous experiments using other
types of noise, including Salt-and-Pepper and Poisson distributed noises.
Obtained results are similar and for the sake of the brevity we omit showing
them here.
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Figure 2: Noisy images with noise densities: 0.44, 0.90.

Example 4. In this example we register the template image to rotated noisy
images shown in Figure 3. Since reference image is a rigid transformation of
the template image (shown in the leftmost side of Figure 3), we will restrict
the registration process to linear transformations which is easily taken care
of by the curl term with our method. Notice that rotated images shown in
Figure 3 were obtained by rotating the original image 35◦ counter clockwise.
We added increasing level of additive Gaussian noises to the template image
with the imaging densities of 0.10, 0.22, 0.44, 0.66, 0.90. Figure 3 shows the
resulting noisy images. Table 4 indicates the change in the SSD versus noise.
As we see from the table our method fails only when the additive Gaussian

Figure 3: Rotated noisy images with noise densities: 0.22, 0.66.

noise level is 0.90. Finally let us emphasize that we dropped the boundary
conditions in this case.



REGISTRATION OF NOISY IMAGES 143

Table 4: SSD with additive Gaussian noise and Duration of implementation

Iterations SSD-0.22 SSD-0.44 SSD-0.66 SSD-0.90 Aver.Dur.
1 1208.3 1955.8 2476.1 2774.7 1 sec
5 301.5 909.0 1430.4 2972.3 3 sec

120 5.4 12.5 27.0 2972.3 34 sec
200 5.1 11.9 23.3 2972.3 1min

6. Summary and conclusion

In this article we have presented a systematic method for the nonrigid im-
age registration. We applied our method to some 2D and 3D images which
contain a certain level of noise. We implemented our algorithm in Fortran
language on Intel Pentium D workstation running on the UNIX operating
system. Computational examples given in the previous section were used
to test the algorithm. We used discrete images which have a resolution of
64 × 64 pixels in the 2D case and 16 × 16 × 16 in the 3D case. Image
registration experiments demonstrate the accuracy and efficiency of the reg-
istration method. In a related future work we shall compare the results of
our method with some other well-known methods such as elastic, fluid, dif-
fusion and curvature-based techniques [1] for the registration of both noisy
and noise-free images. The programming codes used in the implementation
of the algorithms can be seen in [5].
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