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SINGULAR CURVES ON K3 SURFACES

E. BALLICO, C. FONTANARI AND L. TASIN

Abstract. We investigate the Clifford index of singular curves on K3
surfaces by following the lines of [10]. As a consequence, we are able to
deduce from [3] that Green’s conjecture holds for all integral curves on
K3 surfaces.

1. Introduction

Let C be a complex integral projective curve of arithmetic genus g ≥ 2.
For any line bundle L ∈ Pic(C) and all integers p, q, let Kp,q(C,L) denote
the Koszul cohomology groups introduced in [9] as the cohomology of the
complex:

∧p+1H0(L)⊗H0(Lq−1) → ∧pH0(L)⊗H0(Lq) → ∧p−1H0(L)⊗H0(Lq+1).

Green’s conjecture states that Kp,1(C,ωC) = 0 if and only if p ≥ g −
Cliff(C)− 1, where

Cliff(C) =min{deg(A)− 2(h0(A)− 1) : A is a torsion free sheaf on C

with h0(A) ≥ 2, h1(A) ≥ 2}

is the Clifford index of C.
Green’s conjecture is known to hold for the general curve of genus g (see

[14] and [15]) and has been recently verified also for every smooth curve lying
on an arbitrary K3 surface (see [3], Theorem 1.2). In particular, [2] shows
that Green’s conjecture is satisfied for any smooth d-gonal curve verifying a
suitable linear growth condition on the dimension of Brill-Noether varieties
of pencils which holds for the general d-gonal curve. The arguments in [2],
taking the path opened in [14], rely on suitable degenerations to irreducible
nodal curves.
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This approach motivates a systematic investigation of Green’s conjecture
in the singular case. In our previous contribution [6] we already addressed
the case of k-gonal nodal curves, here instead we consider singular curves on
K3 surfaces. Following the standard terminology, by a K3 surface we mean
a smooth compact complex surface X with h1(OX) = 0 and KX

∼= OX .
Our main result is the following useful generalization of [10]:

Theorem 1. Let X be a K3 surface and let C ⊂ X be an integral curve of
arithmetic genus g ≥ 2. Then

Cliff(C ′) = Cliff(C)

for every integral curve C ′ ∈ |C|.

As a consequence of Theorem 1, we obtain the following remarkable ex-
tension of [3], Theorem 1.2:

Corollary 1. Green’s conjecture holds for every integral curve C of arith-
metic genus g ≥ 2 lying on an arbitrary K3 surface X.

We work over the field C of complex numbers.

2. The proofs

Let X be a regular smooth projective surface (i.e. h1(OX) = 0). Let C
be an integral curve on X and let A be a rank one torsion-free sheaf on C.
Assume that A is generated by its global sections. Then we have an exact
sequence

0 → F (C,A) → H0(C,A)⊗OX → A → 0,

where F (C,A) is locally free since it has depth 2 on a smooth surface (see
[11], Proposition 1.3 and Corollary 1.4).

By dualizing and setting E(C,A) := F (C,A)∨ we obtain the short exact
sequence

0 → H0(C,A)⊗OX → E(C,A) → Ext1OX
(A,OX) → 0. (1)

Thanks to Lemma 2 of [12] we have

Ext1OX
(A,OX) ∼= NC/X ⊗A∨. (2)

The corresponding local case is addressed in [8], Proposition 21.10 and in
[7], Corollary 3.1.15.

Moreover by adjunction we obtain

NC/X ⊗A∨ ∼= ωC ⊗OC(−KX)⊗A∨. (3)
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From the above formulae it follows that the properties of E(C,A) are the
same as for the classical Lazarsfeld-Mukai bundle (see [10], §2):

detE(C,A) = OX(C),

c2(E(C,A)) = degA,

rk(E(C,A)) = h0(A),

h1(E(C,A)) = h2(E(C,A)) = 0

h0(E(C,A)) = h0(A) + h0(NC/X ⊗A∨).

Since h1(OX) = 0, it follows that if NC/X⊗A∨ is globally generated away
from a finite set Σ then E(C,A) is globally generated away from Σ.

Proof of Theorem 1. If C is an integral curve of arithmetic genus g ≥ 2 on
the K3 surface X, then by adjunction we have C2 = 2g − 2 ≥ 2, hence X is
algebraic and projective (see for instance [13], Théorème 3.4 and Corollaire
3.6). Assume that C has minimal Clifford index among all integral curves
in its linear system. Let A be a rank one torsion-free sheaf computing
the Clifford index of C. We claim that both A and ωC ⊗ A∨ are globally
generated. Indeed, assume for instance that ωC⊗A∨ is not. Since h1(A) > 0,
then the image of the evaluation map H0(C,ωC ⊗A∨)⊗OC → ωC ⊗A∨ is
a torsion free sheaf B ( ωC ⊗ A∨ such that ωC ⊗ A∨/B has finite support.
In particular, we have h0(B) = h0(ωC ⊗ A∨) = h1(A), deg(B) = deg(ωC ⊗
A∨) − deg(ωC ⊗ A∨/B) < deg(ωC ⊗ A∨) = 2g − 2 − deg(A), h1(B) >
h1(ωC ⊗ A∨) = h0(A) (notice that (A∨)∨ = A since C is Gorenstein). It
follows that h0(B) ≥ 2, h1(B) ≥ 2, and deg(B) − 2(h0(B) − 1) < 2g − 2 −
deg(A) − 2(h0(ωC ⊗ A∨) − 1) = deg(A) − 2(h0(A) − 1), contradicting the
minimality of the Cliffford index of A. Hence we can freely use the auxiliary
results collected above. Furthermore we can assume Cliff(C) < [(g − 1)/2].
Indeed, integral curves on a smooth surface have planar singularities, which
are smoothable, hence the above inequality follows (see [1], Theorem 9 or
[5], Proposition 1.5). Now we can proceed exactly as in the proof of the
main theorem of [10] and deduce our statement. �

Proof of Corollary 1. As already pointed out in [4], a simple analysis of the
proof of [9], Theorem (3.b.7), shows that under our assumptions on C and
on X we have Kp,q(X,C) ∼= Kp,q(C,KC) for every p and q. Hence Corollary
1 follows from [3], Theorem 1.3, and Theorem 1 above. �
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