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P-ASYMPTOTICALLY EQUIVALENT IN PROBABILITY

RICHARD F. PATTERSON AND EKREM SAVAŞ

Abstract. In this paper we present the following definitions P-asymp-
totically equivalent probability of multiple L and P-asymptotically prob-
ability regular. In addition to these definitions we asked and provide
answers for the following questions.

(1) If x
Probability

≈ y then what type of four dimensional matrices trans-

formation will satisfy the following µ(Ax)
Probability

≈ µ(Ay)?
(2) If [x] and [y] are bounded double sequences that P-asymptotically

converges at the same rate, then what are the necessary and suf-
ficient conditions on the entries of any four dimensional matrix
transformation A that will ensure that A sums [x] and [y] at the
same P-asymptotic rate?

(3) What are the conditions on the entries of four dimensional matrices
that ensure the preservation of P-asymptotically convergence in
probability?

1. Introduction

In 1900 Pringsheim presented the following definition for convergence of
double sequences.

Definition 1.1 (Pringsheim, [10]). A double sequence x = [xk,l] has Pring-
sheim limit L (denoted by P-limx = L) provided that given ϵ > 0 there exists
N ∈ N such that |xk,l − L| < ϵ whenever k, l > N . We shall describe such
an x more briefly as “P-convergent”.

Throughout this paper we shall only examine properties of four dimen-
sional summability matrices via convergence in the Pringsheim sense. In
addition the following is a list of definitions and notations that we shall use
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in this paper. Let us define c
′′
0 as follows: a double sequence [x] belongs to

the set c
′′
0 provided that P − limk,l xk,l = 0. The four dimensional matrix

transformation A is called an c
′′
0 − c

′′
0 if Az is in the set c

′′
0 whenever z is in

c
′′
0 and z is bounded.

l
′′
= {xk,l :

∑∞,∞
k,l=1,1 |xk,l| < ∞.}

dA = {xk,l : P − limm,m
∑∞,∞

k,l=1,1 am,n,k,lxk,l exists.}
Eδ = {The set of all real double number sequences such that xk,l ≥ δ > 0
for all k and l.}
E0 = {The set of all nonnegative sequences which have at most a finite
number of columns and/or rows with zero entries.}

In 1936 Hamilton presented the following four dimensional matrix char-
acterization of P-null sequences (i.e. double sequence that P-converges to
zero).

Theorem 1.1 (Hamilton [2]). A four dimensional matrix A is an c
′′
0 − c

′′
0

if and only if

(1)
∑∞,∞

p,q=1,1 |ak,l,p,q| < ∞ for all k, l;

(2) let q = q0 then there exists Cq(k, l) such that ak,l,p,q = 0 whenever
q > Cq(k, l) for all k, l, p;

(3) let p = p0 then there exists Cp(k, l) such that ak,l,p,q = 0 whenever
p > Cp(k, l) for all k, l, q;

(4) P − limk,l ak,l,p,q = 0 for all p, and q.

In 1980 Pobyvanets presented definitions for asymptotically equivalent
sequences and asymptotic regular matrices. Marouf in [4] extended Poby-
vanets’ notion of regularity to asymptotically conservative matrices and pre-
sented Silverman-Toeplitz characterization for asymptotically conservative
matrices. Using this definition Patterson in [8] and [7] generalized Marouf
definition of asymptotical equivalent sequences to double statistical asymp-
totical equivalent sequences, and asymptotically statistical regular. The
extensions are as follow: First, two nonnegative double sequences [x], and
[y] are said to be asymptotically equivalent, if

P − lim
k,l

xk,l
yk,l

= 1

(denoted by x
P∼ y). Second, two nonnegative sequences [x] and [y] are said

to be asymptotically statistical equivalent of multiple L, provided that for
every ϵ > 0,

lim
n

1

n

{
the number of k ≤ n :

∣∣∣∣xkyk − L

∣∣∣∣ ≥ ϵ

}
= 0
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(denoted by x
SL∼ y), and simply asymptotically statistical equivalent, if

L = 1 which can be interpreted as the following∣∣∣∣xkyk − L

∣∣∣∣ < ϵ for almost all k (denoted a.a.k),

and finally, a summability matrix A is asymptotically statistical regular

provided that Ax
SL∼ Ay whenever x

SL∼ y, [x] ∈ E0, and [y] ∈ Eδ for some
δ > 0. These definitions were used to present a four dimensional matrix
characterization of asymptotically equivalent double sequences. In addition,
Patterson in [7] presented the following notions of double sequence: for each

[x] ∈ l
′′
the remainder sequence [Rx] is the double whose (m,n)-th term

is Rm,nx :=
∑

k,l≥m,n |xk,l| . Let [x] be a convergent double sequence with
limit L. Then the maximum remaining difference is given by ρm,nx :=

maxk,l>m,n |xk,l − l| . Also if [x] ∈ l
′′
let [µ(x)] denote the double sequence

given by µm,nx := supk,l>m,n |xk,l| . In this paper we shall generalize the
above definitions in the following manner:

Definition 1.2. Two nonnegative double sequences [x] and [y] are said to be
P-asymptotically equivalent probability of multiple L provided that for every
ϵ > 0,

P− lim
k,l

P

(∣∣∣∣xk,lyk,l
− L

∣∣∣∣ < ϵ

)
= 1

(denoted by x
Probability

≈ y), and simply P-asymptotically equivalent proba-

bility if L = 1, which can be interpreted as
∣∣∣xk,l

yk,l
− L

∣∣∣ < ϵ converges in the

Pringsheim sense in probability.

Definition 1.3. A four dimensional summability matrix A is P-asymptoti-

cally probability regular provided that Ax
Probability

≈ Ay whenever x
Probability

≈
y, [x] ∈ E0, [y] ∈ Eδ for some δ > 0, and [x], [y] ∈ l

′′
∞.

These definitions shall be used to present Silverman-Toeplitz type char-
acterization of P-asymptotically equivalent probability of multiple L and
present Silverman-Toeplitz type characterizations for the underlining se-
quence spaces.

2. Main Results

We begin our analysis by presenting and answering the following question.

If x
Probability

≈ y then, what type of four dimensional matrices transformation

will satisfy the following µ(Ax)
Probability

≈ µ(Ay)?
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Theorem 2.1. Let A be a nonnegative c
′′
0−c

′′
0 summability matrix and let [x]

and [y] be member of l
′′
such that x

Probability
≈ y with [x] ∈ E0, and [y] ∈ Eδ

for some δ > 0 then µ(Ax)
Probability

≈ µ(Ay).

Proof. Since x
Probability

≈ y there exists a P-null bounded double sequence [z]

such that x
Probability

≈ y(1 + z). For each m and n the following holds:

µm,n(Ax)

µm,n(Ay)
=

supp,q≥m,n(Ax)p,q

supp,q≥m,n(Ay)p,q
=

supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lxk,l

supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lyk,l

Probability
≈

supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,l(yk,l + zk,lyk,l)

supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lyk,l

≤
supp,q≥m,n

∣∣∣∑∞,∞
k,l=1,1 ap,q,k,l(yk,l + zk,lyk,l)

∣∣∣
supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lyk,l

≤ 1 +
supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lyk,l |zk,l|

supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lyk,l

≤ 1 +
supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,lyk,l |zk,l|

δ supp,q≥m,n

∑∞,∞
k,l=1,1 ap,q,k,l

.

Since [y] and [z] are bounded real double sequences with [z] is in c
′′
0 and A

is a nonnegative c
′′
0 − c

′′
0 matrix then the following holds:

P− lim
m,n

sup
p,q≥m,n

∞∞∑
k,l=1,1

ap,q,k,lyk,l |zk,l| = 0.

Hence
µm,n(Ax)

µm,n(Ay)
≤ 1; in probability.

In a similar manner we can establish the following

µm,n(Ax)

µm,n(Ay)
≥ 1; in probability.

Thus
µ(Ax)

µ(Ay)

Probability
≈ 1

which implies

µ(Ax)
Probability

≈ µ(Ay).

�
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This theorem clearly presented the type of four dimensional matrices that
will preserve P-asymptotically equivalent probability of multiple L. We now
examine the question of rate-preserving. To that end we asked the following
question. If [x] and [y] are bounded double sequences that P-asymptotically
converges at the same rate, then what are the necessary and sufficient con-
ditions on the entries of any four dimensional matrix transformation A that
will ensure that A sums [x] and [y] at the same P-asymptotic rate? The
following theorem provides the answer to our question.

Theorem 2.2. If A is a nonnegative four dimensional summability matrix
that maps bounded double sequences into l

′′
then the following are equivalent.

(1) If [x] and [y] are sequences such that x
Probability

≈ y, [x] ∈ E0, and
[y] ∈ Eδ for some δ > 0 then

R(Ax)
Probability

≈ R(Ay).

(2)

P − lim
m,n

P

(∣∣∣∣∣
∑∞,∞

p,q=m,n ap,q,α,β∑∞,∞
p,q=m,n

∑∞,∞
k,l=1,1 ap,q,k,l

∣∣∣∣∣ < ϵ

)
= 1 for each α and β.

Proof. We begin by showing that (2) implies (1). Without loss of generality

let L = 1 and observe that x
Probability

≈ y implies P− limk,l

(∣∣∣xk,l

yk,l
− 1
∣∣∣ ≤ ϵ

)
=

1. Thus P ((1− ϵ)yk,l ≤ xk,l ≤ (1 + ϵ)yk,l) = 1. Let us consider the following

Rm,n(Ax) =

∞,∞∑
k,l=m,n

(Ax)k,l

≤
K̄−1,L̄−1∑
p,q=1,1

xp,q

∞,∞∑
k,l=m,n

max
{1≤p≤L̄−1;1≤q≤K̄−1}

{ak,l,p,q}

+ (1 + ϵ)

∞,∞∑
k,l=m,n

∞,∞∑
p,q=K̄,L̄

ak,l,p,qyp,q +

∞,∞∑
k,l=m,n

∞,L̄−1∑
p,q=K̄,1

ak,l,p,qxp,q

+

∞,∞∑
k,l=m,n

K̄−1,∞∑
p,q=1,L̄

ak,l,p,qxp,q in probability.
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Thus

Rm,n(Ax) ≤
K̄−1,L̄−1∑
p,q=1,1

xp,q

∞,∞∑
k,l=m,n

max
{1≤p≤L̄−1;1≤q≤K̄−1}

{ak,l,p,q}

+

∞,L̄−1∑
p,q=K̄,1

xp,q

∞,∞∑
k,l=m,n

sup
{K̄≤p<∞;1≤q≤L̄−1}

{ak,l,p,q}

+

K̄−1,∞∑
p,q=1,L̄

xp,q

∞,∞∑
k,l=m,n

sup
{L̄≤q<∞;1≤p≤K̄−1}

{ak,l,p,q}

+ (1 + ϵ)

∞,∞∑
k,l=m,n

∞,∞∑
p,q=K̄,L̄

ak,l,p,qyp,q in probability.

When the above inequalities is observed the following is implied.

Rm,n(Ax)

Rm,n(Ay)
≤
∑K̄−1,L̄−1

p,q=1,1 xp,q
∑∞,∞

k,l=m,nmax{1≤p≤L̄−1;1≤q≤K̄−1}{ak,l,p,q}
δ
∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

+

∑∞,L̄−1
p,q=K̄,1

xp,q
∑∞,∞

k,l=m,n sup{K̄≤p<∞;1≤q≤L̄−1}{ak,l,p,q}
δ
∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

+

∑K̄−1,∞
p,q=1,L̄

xp,q
∑∞,∞

k,l=m,n sup{L̄≤q<∞;1≤p≤K̄−1}{ak,l,p,q}
δ
∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

+ 1 + ϵ in probability.

Since A is nonnegative and (2) holds. Thus

P − lim sup
m,n

Rm,n(Ax)

Rm,n(Ay)
≤ 1 + ϵ in probability.

In addition

Rm,n(Ax) =

∞,∞∑
k,l=m,n

(Ax)k,l

≥
∞,∞∑

k,l=m,n

min
{1≤p≤L̄−1;1≤q≤K̄−1}

{ak,l,p,q}
K̄−1,L̄−1∑
p,q=1,1

xp,q

+

∞,∞∑
k,l=m,n

inf
{K̄≤p<∞;1≤q≤L̄−1}

{ak,l,p,q}
∞,L̄−1∑
p,q=K̄,1

xp,q
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+

∞,∞∑
k,l=m,n

inf
{L̄≤q<∞;1≤p≤K̄−1}

{ak,l,p,q}
K̄−1,∞∑
p,q=1,L̄

xp,q

+ (1− ϵ)

∞,∞∑
k,l=m,n

∞,∞∑
p,q=K̄,L̄

ak,l,p,qyp,q in probability

and

Rm,n(Ax) ≥
∞,∞∑

k,l=m,n

min
{1≤p≤L̄−1;1≤q≤K̄−1}

{ak,l,p,q}
K̄−1,L̄−1∑
p,q=1,1

xp,q

+

∞,∞∑
k,l=m,n

inf
{K̄≤p<∞;1≤q≤L̄−1}

{ak,l,p,q}
∞,L̄−1∑
p,q=K̄,1

xp,q

+

∞,∞∑
k,l=m,n

inf
{L̄≤q<∞;1≤p≤K̄−1}

{ak,l,p,q}
K̄−1,∞∑
p,q=1,L̄

xp,q

+ (1− ϵ)

∞,∞∑
k,l=m,n

∞,∞∑
p,q=1,1

ak,l,p,qyp,q.

− (1− ϵ)

∞,∞∑
k,l=m,n

sup
{K̄≤p<∞;1≤q≤L̄−1}

{ak,l,p,q}
∞,L̄−1∑
p,q=K̄,1

yp,q

− (1− ϵ)

∞,∞∑
k,l=m,n

sup
{L̄≤q<∞;1≤p≤K̄−1}

{ak,l,p,q}
K̄−1,∞∑
p,q=1,L̄

yp,q

− (1− ϵ)

∞,∞∑
k,l=m,n

max
{1≤p≤L̄−1;1≤q≤K̄−1}

{ak,l,p,q}
K̄−1,L̄−1∑
p,q=1,1

yp,q

in probability.

These inequalities grant us the following

Rm,n(Ax)

Rm,n(Ay)
≥
∑∞,∞

k,l=m,nmin{1≤p≤L̄−1;1≤q≤K̄−1}{ak,l,p,q}
∑K̄−1,L̄−1

p,q=1,1 xp,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,qyp,q

+

∑∞,∞
k,l=m,n inf{K̄≤p<∞;1≤q≤L̄−1}{ak,l,p,q}

∑∞,L̄−1
p,q=K̄,1

xp,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,qyp,q
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+

∑∞,∞
k,l=m,n inf{L̄≤q<∞;1≤p≤K̄−1}{ak,l,p,q}

∑K̄−1,∞
p,q=1,L̄

xp,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,qyp,q

+ (1− ϵ)

− (1− ϵ)

∑∞,∞
k,l=m,n sup{K̄≤p<∞;1≤q≤L̄−1}{ak,l,p,q}

∑∞,L̄−1
p,q=K̄,1

yp,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,qyp,q

− (1− ϵ)

∑∞,∞
k,l=m,n sup{L̄≤q<∞;1≤p≤K̄−1}{ak,l,p,q}

∑K̄−1,∞
p,q=1,L̄

yp,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,qyp,q

−(1− ϵ)

∑∞,∞
k,l=m,nmax{1≤p≤L̄−1;1≤q≤K̄−1}{ak,l,p,q}

∑K̄−1,L̄−1
p,q=1,1 yp,q∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,qyp,q

in probability.

Thus
Rm,n(Ax)

Rm,n(Ay)
≥ 1− ϵ in probability.

Thus
R(Ax)

R(Ay)

Probability
≈ 1.

and yields R(Ax)
Probability

≈ R(Ay). To show that (1) implies (2) we can fix
K̄ and L̄ as positive integers and define x and y as follows

xk,l :=

{
0, if p < K̄ or q < L̄

1, otherwise,

and yp,q := 1 for all p and q. This implies that

Rm,n(Ax) =

∞,∞∑
k,l=m,n

(Ax)k,l

=

∞,∞∑
k,l=m,n

∞,∞∑
p,q=K̄+1,L̄+1

ak,l,p,q

=

∞,∞∑
k,l=m,n

∞,∞∑
p,q=1,1

ak,l,p,qyp,q −
∞,∞∑

k,l=m,n

∞,L̄−1∑
p,q=K̄,1

ak,l,p,q

−
∞,∞∑

k,l=m,n

K̄−1,∞∑
p,q=1,L̄

ak,l,p,q −
∞,∞∑

k,l=m,n

K̄−1,L̄−1∑
p,q=1,1

ak,l,p,q
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Thus

Rm,n(Ax)

Rm,n(Ay)
= 1−

∑∞,∞
k,l=m,n

∑∞,L̄−1
p,q=K̄,1

ak,l,p,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

−
∑∞,∞

k,l=m,n

∑K̄−1,∞
p,q=1,L̄

ak,l,p,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

−
∑∞,∞

k,l=m,n

∑K̄−1,L̄−1
p,q=1,1 ak,l,p,q∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

≤ 1−
∑∞,∞

k,l=m,n aK̄,L̄−1,p,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

−
∑∞,∞

k,l=m,n aK̄−,L̄,p,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

−
∑∞,∞

k,l=m,n aK̄−1,L̄−1,p,q∑∞,∞
k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

.

Therefore

P − lim inf
m,n

Rm,n(Ax)

Rm,n(Ay)
≤ 1− P − lim sup

m,n

∑∞,∞
k,l=m,n aK̄,L̄−1,p,q∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

− P − lim sup
m,n

∑∞,∞
k,l=m,n aK̄−1,L̄,p,q∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

− P − lim sup
m,n

∑∞,∞
k,l=m,n aK̄−1,L̄−1,p,q∑∞,∞

k,l=m,n

∑∞,∞
p,q=1,1 ak,l,p,q

.

Since each nonconstant element of the last inequality has P-limit zero we
obtain the following

R(Ax)

R(Ay)

Probability
≈ 1.

�

We shall now examine the concepts of convergence in the Pringsheim sense
in probability. However, it is necessary to restrict our attention to bounded
double sequences since a P-convergent double sequence is not necessarily
bounded. Our goal now is to establish Robison and Hamilton type char-
acterization for P-asymptotically regular in probability. To accomplish this
goal we will provide answer to the following question. What are the condi-
tions on the entries of four dimensional matrices that ensure the preservation
of P-asymptotically convergence in probability? Let Bα,β the following set:

{(k, l) : {α+ 1 ≤ k < ∞∩ 1 ≤ l∞} ∪ {1 ≤ k < ∞∩ β + 1 ≤ l∞}} .

Theorem 2.3. In order for a four dimensional summability matrix A to be
P-asymptotically regular in probability it is necessary and sufficient that for
each fixed positive integer (α, β)
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(1)

α,β∑
k,l=1,1

am,n,k,l is bounded for each (m,n),

(2)

P− lim
m,n

P

(∣∣∣∣∣
∑

(k,l)∈Bα,β
am,n,k,l∑∞,∞

k,l=1,1 am,n,k,l

∣∣∣∣∣ < ϵ

)
= 1.

Proof. The necessary part of this theorem is clearly similar to that of the
last theorem. Thus it is omitted. Let us now consider the sufficient part.

Let ϵ > 0, x
Probability

≈ y, [x] ∈ E0, and [y] ∈ Eδ for some δ > 0. These
conditions imply that

P− lim
k,l

P ((L− ϵ)yk+α,l+β ≤ xk+α,l+β

≤ (L+ ϵ)yk+α,l+β) = 1, k, for α, β = 1, 2, . . . . (2.1)

Let us partition (Ax)m,n as follows:

(Ax)m,n =

α,β∑
k,l=1,1

am,n,k,lxk,l +

α+1,∞∑
k,l=1,β+1

am,n,k,lxk,l

+

∞,β+1∑
k,l=α+1,1

am,n,k,lxk,l +

∞,∞∑
k,l=α+1,β+1

am,n,k,lxk,l

and let us denote the above sums as follows

1∑
x

=

α,β∑
k,l=1,1

am,n,k,lxk,l,

2∑
x

=

α+1,∞∑
k,l=1,β+1

am,n,k,lxk,l,

3∑
x

=

∞,β+1∑
k,l=α+1,1

am,n,k,lxk,l,

and
4∑
x

=

∞,∞∑
k,l=α+1,β+1

am,n,k,lxk,l.

Similar to the above notation let us denote (Ay) as follows:

(Ay)m,n =

1∑
y

+

2∑
y

+

3∑
y

+

4∑
y

.
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Also let us consider the following

(Ax)m,n

(Ay)m,n
=

∑1
x+

∑2
x+

∑3
x+

∑4
x∑1

y +
∑2

y +
∑3

y +
∑4

y

=

∑1
x∑4
y

+
∑2

x∑4
y

+
∑3

x∑4
y

+
∑4

x∑4
y∑1

y∑4
y

+
∑2

y∑4
y

+
∑3

y∑4
y

+ 1
.

Inequality (2.1) implies that

P − lim
m,n

P

(∣∣∣∣∣
∑∞,∞

k,l=α+1,β+1 am,n,k,lxk,l∑∞,∞
k,l=α+1,β+1 am,n,k,lyk,l

− L

∣∣∣∣∣ < ϵ

)
= 1.

Since [x] ∈ E0, [y] ∈ Eδ, [x] ∈ l
′′
∞ and condition (2) holds we obtain the

following

P − lim
m,n

P

(∣∣∣∣∣
∑1

x∑4
y

∣∣∣∣∣
)

= 1

P − lim
m,n

P

(∣∣∣∣∣
∑2

x∑4
y

∣∣∣∣∣
)

= 1

P − lim
m,n

P

(∣∣∣∣∣
∑3

x∑4
y

∣∣∣∣∣
)

= 1

P − lim
m,n

P

(∣∣∣∣∣
∑1

y∑4
y

∣∣∣∣∣
)

= 1

P − lim
m,n

P

(∣∣∣∣∣
∑2

y∑4
y

∣∣∣∣∣
)

= 1

and

P − lim
m,n

P

(∣∣∣∣∣
∑3

y∑4
y

∣∣∣∣∣
)

= 1.

Thus
(Ax)m,n

(Ay)m,n

Probability
≈ L.

This implies that Ax
Probability

≈ Ay whenever x
Probability

≈ y, [x] ∈ E0, [y] ∈ Eδ

for some δ > 0, and [x], [y] ∈ l
′′
∞. �
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