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P-ASYMPTOTICALLY EQUIVALENT IN PROBABILITY

RICHARD F. PATTERSON AND EKREM SAVAS

ABSTRACT. In this paper we present the following definitions P-asymp-
totically equivalent probability of multiple L and P-asymptotically prob-
ability regular. In addition to these definitions we asked and provide

answers for the following questions.
Probabilit
(1) Ife ~" """y then what type of four dimensional matrices trans-

formation will satisfy the following u(Az) ~ " u(Ay)?

(2) If [z] and [y] are bounded double sequences that P-asymptotically
converges at the same rate, then what are the necessary and suf-
ficient conditions on the entries of any four dimensional matrix
transformation A that will ensure that A sums [z] and [y] at the
same P-asymptotic rate?

(3) What are the conditions on the entries of four dimensional matrices
that ensure the preservation of P-asymptotically convergence in
probability?

1. INTRODUCTION

In 1900 Pringsheim presented the following definition for convergence of
double sequences.

Definition 1.1 (Pringsheim, [10]). A double sequence x = [x},] has Pring-
sheim limit L (denoted by P-limx = L) provided that given € > 0 there exists
N € N such that |z, — L| < € whenever k,1 > N. We shall describe such
an x more briefly as “P-convergent”.

Throughout this paper we shall only examine properties of four dimen-
sional summability matrices via convergence in the Pringsheim sense. In
addition the following is a list of definitions and notations that we shall use
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in this paper. Let us define cg as follows: a double sequence [z] belongs to
the set cg provided that P — limy;x; = 0. The four dimensional matrix
transformation A is called an cg — cg if Az is in the set cg whenever z is in
¢y and z is bounded.
U= {ong s piS0 ) [kl < 00}
da = {zgy : P —limy, Zflgl Amon e Tk, €Xists. }
Es = {The set of all real double number sequences such that z;; > § > 0
for all k and [.}
Ep = {The set of all nonnegative sequences which have at most a finite
number of columns and/or rows with zero entries.}

In 1936 Hamilton presented the following four dimensional matrix char-
acterization of P-null sequences (i.e. double sequence that P-converges to
Z€ero).

"

Theorem 1.1 (Hamilton [2]). A four dimensional matriz A is an ¢y — cq
if and only if

(1) >paZiq lanipgl < oo for all k,1;

(2) let ¢ = qo then there exists Cy(k,l) such that ay;,q, = 0 whenever
q > Cy(k,1) for all k, 1, p;

(3) let p = po then there exists Cp(k,l) such that ap;p, = 0 whenever
p > Cp(k,l) for all k, 1, g;

(4) P —limgagpq =0 for all p, and q.

In 1980 Pobyvanets presented definitions for asymptotically equivalent
sequences and asymptotic regular matrices. Marouf in [4] extended Poby-
vanets’ notion of regularity to asymptotically conservative matrices and pre-
sented Silverman-Toeplitz characterization for asymptotically conservative
matrices. Using this definition Patterson in [8] and [7] generalized Marouf
definition of asymptotical equivalent sequences to double statistical asymp-
totical equivalent sequences, and asymptotically statistical regular. The
extensions are as follow: First, two nonnegative double sequences [z], and
[y] are said to be asymptotically equivalent, if

P —lim & —
kl Yk

(denoted by z £ y). Second, two nonnegative sequences [z] and [y] are said
to be asymptotically statistical equivalent of multiple L, provided that for
every € > 0,

1
lim{thenumberofkgn: xk—L‘ 26}20
non Yk
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(denoted by =z 2 y), and simply asymptotically statistical equivalent, if
L =1 which can be interpreted as the following

Th L‘ < € for almost all k (denoted a.a.k),

Yk

and finally, a summability matrix A is asymptotically statistical regular

provided that Az 2 Ay whenever x % y, [z] € Ey, and [y] € Ej for some
6 > 0. These definitions were used to present a four dimensional matrix
characterization of asymptotically equivalent double sequences. In addition,
Patterson in [7] presented the following notions of double sequence: for each
[z] € 1" the remainder sequence [Rz] is the double whose (m,n)-th term
18 Rinn® := Dy ;s [Tkl - Let [2] be a convergent double sequence with
limit L. Then the maximum remaining difference is given by pp, .z =
Maxy jsmn [Try — 1| . Also if [2] € 1" let [u(x)] denote the double sequence
given by fmn® = SUDk jspm.p [Tkl In this paper we shall generalize the
above definitions in the following manner:

Definition 1.2. Two nonnegative double sequences [x] and [y] are said to be
P-asymptotically equivalent probability of multiple L provided that for every
e >0,

x
P—lim P ("” —L’ < e> —1
k,l Yk,
Probability . . .
(denoted by x R~ y), and simply P-asymptotically equivalent proba-
bility if L = 1, which can be interpreted as ’% — L’ < € converges in the
Pringsheim sense in probability.

Definition 1.3. A four dimensional summability matriz A is P-asymptoti-
. . Probability Probability
cally probability regular provided that Ax ~ Ay whenever x ~

y, [z] € Eo, [y] € Es for some 6 > 0, and [x],[y] € L.

These definitions shall be used to present Silverman-Toeplitz type char-
acterization of P-asymptotically equivalent probability of multiple L and
present Silverman-Toeplitz type characterizations for the underlining se-
quence spaces.

2. MAIN RESULTS

We begin our analysis by presenting and answering the following question.
Probability . . . .
x = y then, what type of four dimensional matrices transformation

Probabili
will satisfy the following u(Az) " u(Ay)?
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Theorem 2.1. Let A be a nonnegative cg —cg summability matriz and let [x]
Probability

and [y] be member of I such that x =~  y with [x] € Ey, and [y] € Es
Probability
for some 6 > 0 then u(Azx) ~  u(Ay).
. Probability .
Proof. Since x ~ y there exists a P-null bounded double sequence [z]
Probability

such that = =  y(1+ z). For each m and n the following holds:
00,00
Mm,n(Ax) . Supp,qu,n(Aw)P#Z _ SUPp g>m,n Zk,l:l,l Ap,q,k1 Tk,
- - 00,00
Hm,n (Ay) SUPp, g>m,n (Ay)Paq SUPp, g>m,n Zk,l:l,l Ap,q.k, 1Ykl
7. m’w
Probability SUPp g>m.n Zk,l:l,l Qp. q.k,1 (yk,l + Zk,lyk,l)

00,00
Supp,qszﬂ Zk,lzl,l ap7q7k7lykal

00,00
SUPp g>m,n Zk,l:l,l ap,q,k,l(yk,l + Zk,lyk,l)
< 0,00
SUPp g>m,n Zk,l:l,l Gp,qk 1Yk,
00,00
SUPp, g>mon Dk =11 Cp.a.kd Ykl |2k,
0,00
SUPp g>m,n Zk,l:l,l Ap,q.k, 1Yk,
00,00
SUPp g>m,n Zk,lzl,l Ap,q k1 Yk | 28,1]

0,00
O SUPp g>mn Dok =11 Op.qkl

<1+

Since [y] and [2] are bounded real double sequences with [2] is in ¢, and A
is a nonnegative cg — cg matrix then the following holds:

o000
P —lim sup g ap .k dYkl |2k = 0.

m,n p,q>m,n kl=1,1
Hence
A
Hm,n (A) < 1; in probability.
Mm,n(Ay)
In a similar manner we can establish the following
A
pim.n(AT) > 1; in probability.
Hm,n(Ay)
Thus

p1(Azx) Probability )
1(Ay)

which implies
Probability
p(Az) = p(Ay).
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This theorem clearly presented the type of four dimensional matrices that
will preserve P-asymptotically equivalent probability of multiple L. We now
examine the question of rate-preserving. To that end we asked the following
question. If [z] and [y] are bounded double sequences that P-asymptotically
converges at the same rate, then what are the necessary and sufficient con-
ditions on the entries of any four dimensional matrix transformation A that
will ensure that A sums [z] and [y] at the same P-asymptotic rate? The
following theorem provides the answer to our question.

Theorem 2.2. If A is a nonnegative four dimensional summability matriz
that maps bounded double sequences into ! then the following are equivalent.

Probabilit
(1) If [x] and [y] are sequences such that x e y, [x] € Ey, and

[y] € Es for some 6 > 0 then

R(Ax) P'robg)ility

R(Ay).
(2)

Y e @
D,q=m,n D,q,0, 3

Z;,o(}o:om,n ZZ?Z’ZO:[,:L ap7q7k7l

m,n

P—limP(

< e> =1 for each a and p.

Proof. We begin by showing that (2) implies (1). Without loss of generality

Probability . . Tp
let L = 1 and observe that x ~ y implies P —limy,, ( i 1) < e) =

1. Thus P ((1 — €)yry < zx; < (1 +€)yx,;) = 1. Let us consider the following

Ryn(Az) = Z (Az)
kJl=mm

K-1,L-1

00,00
< Z Tp,q Z max {ak,ip,q}

D q:1 1 kl=m.n {1§p§z—1,1§q§f(—1}

00,00 ©00,L—1

00,00 00,00
+(1+¢€) Z Z Ak lp,qYpg + Z Z Ak,l,p,q%p,q

k’,l:m,’VLpg:K’E k},l:mﬂ’lp’qzk’]_

00,00 K—1,00

+ Z Z Qk1.p,qTp,q i probability.
k,l:m,npyq:L[_/
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Thus

K—-1,L—1 00,00

Ry n(Az) < Z Tp.q Z max _ {aripgq}

p.g=1,1 o A1<p<L-11<q<K-1}

oo, L—1 00,00

+ D wpe Y, oswp {agipg)

pg=K,1 k,l=mn { K <p<oo;l<q<L—1}

K—1,00

+ Z Tp,q Z sup {ak,l,p,q}

7(1717L k l m,n {L<q<00 1<p<K 1}

00,00 00,00

+(1+¢€) Z Z Ak 1.p.qYp,g 1D probability.
kl=m,npq=K,L

When the above inequalities is observed the following is implied.

K—-1,L—1 ,
Rinn(A2) _ Zpg=il Tpadkiomn X1 <pei1i<g<k 1) {0hina}
Ryn(Ay) — d Zk I=m,n Z;?q’iom Aklp,q

L—1
Zooq K1 qukl m,n SUP{K <p<oco;1<¢<L— 1}{akl,pq}
6 Zk)l m,n Zp,q=1,1 ak’lvp7q

K-1
Zp 4= 102 g Zk I=m,n SUP{L<q<oo;1<p<K— 1}{ak,l,p q)

6 Zk l=m ,n Zp,q=1,1 ak,l#’,q
+ 1 + € in probability.

Since A is nonnegative and (2) holds. Thus

P —limsup ——————= <1+ ¢ in probability.
m,n Rm,n(Ay>
In addition
Rpn(Az) = > (Az)y
k,l=m,n

K—-1,L—1

00,00
> Z _min {ak1p.q} Z

o IEPSL-1i1<g<R -1} i

00,L—1

00,00
+ Z _ inf  Aagipgt Z Zp,q

< 1<q<L—-1 pl
k,l=m,n {K_p<007 =4= } p,q=K,1



EQUIVALENT IN PROBABILITY 223

K—-1,00

00,00
+ Z inf {ak,l,p,q} Z Tp,q

L< A<p<K— _
k7l:m7n{L7q<oo,17p7K 1} oy

00,00 0,00

+(1—¢) Z Z Ak lp.qYp,q i probability
k’l:m’np7q:[_<7-z/

and

00,00 K—-1,L—1

Ry n(Az) > Z min {ar,1pq} Z Tpg

{1<p<L-11<q<R -1} il

00,L—1

00,00
+ Z inf {ak,l,p,q} Z Lp,q

K< 1<g<L— <
k7l:m7n{K7p<oo,liq7L 1} =K1

K—1,00

00,00
4 Z inf {ak1pq} Z Tp,q

{L<g<o0;1<p<K-1}

k,l=m,

k,l:m,n p7q:]_7i
00,00 00,00
+(1—¢) E E Ak,l,p,qYp,q-
k,l=m,n p,q=1,1
00,00 00,L—1

—(1—¢) § : _ sup {agipgt Z Yp,q
kl=mmn {K<p<oo;1<¢q<L-1} p,q=f(,1
00,00 K—1,00

—(1-¢) Z sup {arip.q}t Z Ypaq

kl=mmn {L§q<oo;1§p§K71} p,qzl,f/

00,00 K—-1,L—1

—(1-¢) Z max {akp.qt Z Yp.a

o=, (1SPSLLiISe<K—1Y p.a=1,1

in probability.

These inequalities grant us the following

, . K-1,L—1
n(Az) 2okt I <p<t1<g< K1 % ipa} Dpamil Tpa

00,00 0,00

n(Ay) kl=mn Zp, =1,1 %k,l,p.q¥Yp.q
00,00 . B B 0o,L—1
k=m0 (R <p<ooi<q<i-1){0hipa} Zp,q=fﬂl TP

00,00 00,00
kl=m,n Zp,qzl,l Qk,l,p,qYp,q

R
R,
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K—1,00

biomn M2 <gcoon<pe -1 {Ohipa} 20 1T Tpa
00,00 00,00
k,l:m,n Zp,q=1,l ak1l7p)qyp7q
+(1—¢)
) JL—1
Ezoliomn Sup{f(gp<oo;1gqgffl}{ak’,lm,q} Z;,Oq:j{’l Yp,q
- (1 - 6) 00,00 00,00
kl=m,n Zp,q=1,1 Ak,l,p,qYp.q
) Rilv
EZoziomn Sup{i§q<oo;1§p§f(71}{ak’ylﬁl),q} Zp,q:f}j Ypq
- (1 - 6) 00,00 00,00
kl=m,n Zp,q=1,1 Qk,l,p,qYp,q
, K—-1,L—-1
—(1—¢) szliom,n max{lﬁpﬁifl;lﬁqél?fl}{a/alvp,q} Zp,q:m Yp.q
00,00

00,00
k,l=mn Zp,qzl,l Ak,l,p,qYp,q
in probability.
Thus
Ry n(Ax . .
—————= >1— € in probability.
R (Ay)

Thus
R(Ax) Probability .
R(Ay)

Probabili
and yields R(Az) =~ " R(Ay). To show that (1) implies (2) we can fix

K and L as positive integers and define x and y as follows
0, ifp<Korgq<L

xk,l =
1

, otherwise,

and yp 4 := 1 for all p and ¢. This implies that

00,00

Rnn(Az) = > (Az)py

k,l=mn

00,00 00,00
= E , E Qk,l,p,q

kl=mmnpq=K+1,L+1

00,00 00,00 00,00 ©00,L—1
= E , E , Ak,l,p,qYp,q — E , E , Ok,lp,q
k,l=m,n p,q=1,1 kil=mmn pq¢=K,1

00,00 oco,00 K—1,L—1

K—1,00
- E , E , Ak, lp,q — E : E , Ak,l,p,q

kl=m,np,qg=1,L kil=mmn pq=1,1
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Thus
00,00 oo, L—1
Rm,n(Aw) k,l=m,n an:f(’l Qk,l.p,q
- L= 50,00 0,00
Rm7n(Ay) k,l:m,n Zp,q=1,1 ak,l,l’:q
00,00 K—1,00 00,00 K—-1,L—1
k,l:m,n Zp7q:1’i ak7l7p7q k’l:m,n Z]Lq:l,l ak7l7p7q
00,00 Zoo,oo - 00,00 Zoo,oo
k,l:m,n p,q=1,1 ak,l,P,q k,l:m,n p’q:]_,]_ ak,l,p,q
0,00 o 00,00 _ _
<1 k,l=mn aKvL*Lp,q k,l=m,n a’K*,L,p,q
> 1 — 0,00 50,00 - 00,00 00,00
kvl:m>n ZP#IZLI akvlvpvq k,l:m,n Zp,qzl,l akapvq
00,00 B B
k,l=m,n aK—l,L—L}Lq
00,00 Zoo,oo y
k,l=m,n £~p,q=1,1 Qk,l,p,q
Therefore
00,00
. Ryn(Az . k=m,n OK,L—1
P — liminf 7m’n( ) <1- P —limsup =5x= m’noo’o’o ek
o Rmm Ay) m,n k,l=m,n Zp,qzl,l Qk,l,p,q
00,00

aw -
. k,l=m,n “K—1,Lp,
— P — limsup == dien Pa

50,00
m,n k,l=m,n Ep,qzl,l Ak,l,p,q
00,00 B
. kJ:m’n K—LL—I, s
— P —limsup =<5 55,5 Pa_
m,n k,l:m,n Zp,q=1,1 akl,lhq

Since each nonconstant element of the last inequality has P-limit zero we
obtain the following

R(Az) Probability .

R(Ay)

O

We shall now examine the concepts of convergence in the Pringsheim sense
in probability. However, it is necessary to restrict our attention to bounded
double sequences since a P-convergent double sequence is not necessarily
bounded. Our goal now is to establish Robison and Hamilton type char-
acterization for P-asymptotically regular in probability. To accomplish this
goal we will provide answer to the following question. What are the condi-
tions on the entries of four dimensional matrices that ensure the preservation
of P-asymptotically convergence in probability? Let B, g the following set:

{(k,)) i {a+1<k<oonNl<loc}U{l<k<oonpf+1<loo}}.

Theorem 2.3. In order for a four dimensional summability matriz A to be
P-asymptotically reqular in probability it is necessary and sufficient that for
each fized positive integer (o, B)
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a’IB
Z Am.n k1 15 bounded for each (m,n),

k,l=1,1
6) =1.

Proof. The necessary part of this theorem is clearly similar to that of the

last theorem. Thus it is omitted. Let us now consider the sufficient part.

Probability
Let € > 0, x ~ y, [z] € Ep, and [y] € Ej for some 6 > 0. These

conditions imply that

m,n

Cl/ b 7k7l
P—limP (‘ 2B i

0,00
zk‘,l:l,l am,mk,l

P—Im P ((L = €)Ykral+s < Thtal+s
< (L4 €)Yktaitp) =1, k, for o, =1,2,... . (2.1)

Let us partition (Ax),, as follows:

a+1,00

Zamnklxkl“‘ Z A,k 1Tk,

k,il=1,1 k,l=1,5+1
00,B+1 00,00

+ E Ak, 1Tk, + E Ak, 1Tk,

kl=a+1,1 kJl=a+1,+1

and let us denote the above sums as follows

a+1,00 00,8+1
Z E amnklajklv§ § amnkll’klpz Z Am.n,k, 1Tk,
T kJl=1,1 T k,l=1,6+1 x kl=a+1,1

and

4 00,00
§ = § Ay, k1 Lk,

T kl=a+1,+1

Similar to the above notation let us denote (Ay) as follows:

APma=> +> +> +> .
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Also let us consider the following

(AT)mn _ S+ Do+ Yo+

(AY)m,n 21 +22 +30 +z4
3

1 3

+1

<e>—1.

Since [z] € Ey, [y] € Ej, [x] € ., and condition (2) holds we obtain the
following

Inequality (2.1) implies that

0,00
kl=a+1,54+1 Amnk, Tkl

Zkl a+1,8+1 Am,n,k 1Ykl

P—hmP( — L

—hmP(%) =
Yy
—hmP(%) =1
2y
—hmP(?}) =1
1
—hmP(%i) =
Yy
2
—hmP(%) =
and ;
—hmP(‘%ZD
Thus

(ACC)mm Probability

(AYmm

Probabilit Probabilit
This implies that Ax P Ay whenever x P i y, [x] € Eo, [y] € Es

for some 6 > 0, and [z], [y] € I... O
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