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QUASI-DIAGONAL OPERATORS

MUHIB LOHAJ AND SHQIPE LOHAJ

Abstract. Let H be a separable complex Hilbert space and let B(H)
denote the algebra of all bounded linear operators on H. If T is a quasi-
normal Fredholm operator we prove that TT ∗ ∈ (QD)(Pn) if and only if
T ∗T ∈ (QD)(Pn). We also show that if T is quasi-normal and T (T ∗T ) is
quasi-diagonal with respect to any sequence (Pn) in PF (H), such that
Pn → I strongly, then T = N +K, where N is a normal operator and
K is a compact operator.

1. Introduction

Let B(H) be the algebra of all bounded linear operators acting in a sep-
arable Hilbert space H and let PF (H) denote the set of all finite rank
(orthogonal) projections on H. An operator T is said to be quasi-diagonal
(block-diagonal), if there exists an increasing sequence (Pn)n∈N in PF (H)
such that Pn → I strongly, as n → ∞, and limn→∞ ∥TPn − PnT∥ = 0
(TPn = PnT for all n = 1, 2, . . . , respectively).

The class of quasi-diagonal operators is denoted by (QD) whereas the
class of block-diagonal operators is denoted by (BD). Denote by A(H) =
B(H)/K(H) the quotient algebra, where K(H) is the ideal of all compact
operators and let π : B(H) → A(H) be the canonical projection. A(H) is
a Banach algebra with respect to the norm ∥π(T )∥ = inf{∥T −K∥ : K ∈
K(H)}. π is a continuous linear map and A(H) is a C∗–algebra with respect
to the involution ∗ : π(T ) → [π(T )]∗ = π(T ∗), is called a Calkin Algebra.

We say that an operator T ∈ B(H) is Fredholm if π(T ) is invertible
element in the Calkin algebra A(H). Denote by F (H) the set of all Fredholm
operators.

Further, we say that an operator T is essentially unitary (essentially nor-
mal) operator, if π(T ) is unitary element (normal element) in A(H).

The classes (QD) and (BD) were introduced and studied by P.R. Halmos
in [3], and later on by many authors including R.A. Smucker, G.R. Luecke,
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D.A. Herrero, etc. From the definition of quasi-diagonal (block-diagonal)
operators, it is easy to see that these classes are invariant under unitary
transformations. However, operators similar to quasi-diagonal operators
may fail to be quasi-diagonal, see [8]. R.A. Smucker has found a weaker
condition for quasi-diagonality. He has shown that if (Kn) is a sequence
(not necessary increasing) of compact operators converging strongly to the
identity operator I, such that ∥Kn−K2

n∥ → 0, ∥Kn−K∗
n∥ → 0 and ∥TKn−

KnT∥ → 0 then T ∈ (QD), see [7], [1].
Let (Pn)n∈N be in PF (H) such that Pn→I strongly. Denote by (QD)(Pn)

= {T ∈ B(H) : ∥TPn − PnT∥ → 0, n → ∞}. This means that (QD)(Pn)
is the subset of (QD) containing those quasi-diagonal operators that are
quasi-diagonal with respect to the same sequence (Pn) of finite (orthogonal)
projections. For the properties of the class (QD)(Pn) see [4].

In this article we show that if T is a quasi-normal and Fredholm operator,
then TT ∗ ∈ (QD)(Pn) if and only if T ∗T ∈ (QD)(Pn). We also show that
if T is quasi-normal and T (T ∗T ) is quasi-diagonal with respect to some
sequence (Pn) in PF (H), such that Pn → I strongly, then T = N + K,
where N is a normal operator and K is a compact operator. Further, we
show that (QD) is invariant under certain similarities.

2. Quasi-diagonal operators

Proposition 2.1. If T ∈ (QD)(Pn) then
√
T ∗T ∈ (QD)(Pn).

Proof. If T ∈ (QD)(Pn), and since (QD)(Pn) is a C∗–algebra then T ∗T ∈
(QD)(Pn). Further, it is well known from the general theory of operators
that √

T ∗Tx = lim
n→∞

pn(T
∗T )x,

for all x in H, where (pn(t)) is a sequence of polynomials. Since pk(T
∗T ) ∈

(QD)(Pn) for every k ∈ N (see [4]), then

∥pk(T ∗T )Pnx− Pnpk(T
∗T )x∥ = ∥(pk(T ∗T )Pn − Pnpk(T

∗T ))x∥
≤ ∥pk(T ∗T )Pn − Pnpk(T

∗T )∥

for all x ∈ H, ∥x∥ ≤ 1.
Now, pk(T

∗T ) ∈ (QD)(Pn) implies that for every ε > 0, there exists n0(ε)
such that for all n ≥ n0(ε), we have

∥pk(T ∗T )Pnx− Pnpk(T
∗T )x∥ ≤ ∥pk(T ∗T )Pn − Pnpk(T

∗T )∥ ≤ ε.

Taking limits on k in both sides of the last inequality we have

∥
√
T ∗TPnx− Pn

√
T ∗Tx∥ ≤ ε
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for all x ∈ H, ∥x∥ ≤ 1, and consequently

∥
√
T ∗TPn − Pn

√
T ∗T∥ ≤ ε.

This means that
√
T ∗T ∈ (QD)(Pn). �

Theorem 2.2. If T , SS∗ are from the class (QD)(Pn) and S is invertible,
then S−1TS∗−1 is an element in the class (QD)(Qn), where Qn = UPnU

∗

and U is the unitary operator from the polar form of the operator S∗.

Proof. Since, SS∗ ∈ (QD)(Pn) then
√
SS∗ ∈ (QD)(Pn), which implies that

(
√
SS∗)−1T (

√
SS∗)−1 ∈ (QD)(Pn)

see [4]

U(
√
SS∗)−1T (

√
SS∗)−1U∗ ∈ (QD)(UPnU

∗)

where U is from the polar form of the operator S∗ = U
√
SS∗. From the

above relations we have

(
√
SS∗U∗)−1T (U

√
SS∗)−1 = S−1TS∗−1 ∈ (QD)(UPnU

∗).

�

Theorem 2.3. Let T be a Fredholm operator with indT = 0 and let T =
V
√
T ∗T be the polar form of the operator T. If the range R(

√
T ∗T ) is a

closed set, then if T is in the class (QD)(Pn) and V is in the class (QD)(Pn).

Proof. Because T ∈ F (H), ind T = dimkerT − dimkerT ∗ = 0 then it
follows that there exists K ∈ K(H) such that T +K is invertible operator.
This implies that

T +K = U
√

(T +K)∗(T +K) (1)

where U is a unitary operator. Further more, since (QD)Pn is a C∗-algebra
then T +K, (T +K)∗(T +K) ∈ (QD)Pn. As in the proof of Proposition 2.1√

(T +K)∗(T +K)x = lim
n→∞

pn
(
(T +K)∗(T +K)

)
x

for some sequence pn(t) of polynomials. Therefore,

pn
(
(T +K)∗(T +K)

)
∈ (QD)(Pn)

and √
(T +K)∗(T +K) ∈ (QD)(Pn).

From these facts we have

U = (T +K)(
√

(T +K)∗(T +K))−1 ∈ (QD)(Pn). (2)

Further

(T +K) = (V
√
T ∗T +K) ∈ (QD)(Pn).
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Therefore

V
√
T ∗T +K = U

√
(T +K)∗(T +K) ∈ (QD)(Pn). (3)

Now, since
√
T ∗T is self-adjoint operator and R(

√
T ∗T ) is closed set we

conclude that
√
T ∗T is Fredholm operator (because ker

√
T ∗T = kerT ). It

is obvious that

ind
√
T ∗T = dimker

√
T ∗T − dimker(

√
T ∗T )∗

= dimkerT − dimkerT = 0,

which implies that
√
T ∗T is Fredholm operator with index zero. Therefore,

there exists a compact operatorK1, such that
√
T ∗T+K1 is invertible. Now,

from (3) we have that

V
√
T ∗T = U

√
(T +K)∗(T +K)−K,

is a Fredholm operator with index zero. Finally

V
√
T ∗T + V K1 = U

√
(T +K)∗(T +K) + V K1 −K,

V (
√
T ∗T +K1) = U

√
(T +K)∗(T +K) + V K1 −K,

V (
√
T ∗T +K1) = U

√
(T +K)∗(T +K) +K2,

where K2 = V K1 −K ∈ K(H). From the last equality we have

V = (U
√

(T +K)∗(T +K) +K2)(
√
T ∗T +K1)

−1,

and hence V ∈ (QD)Pn). �

Remark 2.4. If T ∈
∩
(QD)(Pn) and if R(

√
T ∗T ) is closed, then V ∈∩

(QD)(Pn), where V is taken from the polar form of the operator T =

V
√
T ∗T .

From the Remark 2.4. we observe that T is a thin operator if and only if
V is a thin operator.

A bounded operator T is called quasi-normal if T commutes with the
operator T ∗T.

Theorem 2.5. If T is quasi-normal and Fredholm operator, then TT ∗ ∈
(QD)(Pn) if and only if T ∗T ∈ (QD)(Pn).

Proof. For

λ ≥ r(T ∗T ) = ∥T ∗T∥ = ∥TT ∗∥ = r(TT ∗) = ∥T∥2

it is easy to see that the equality

(λI − TT ∗)−1 =
I

λ
+

1

λ
T (λI − T ∗T )−1T ∗ (4)
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holds true. Now, the quasi-normality of T implies that

T (λI − T ∗T )−1 = (λI − T ∗T )−1T,

hence from (4) we assume

(λI − TT ∗)−1 =
I

λ
+

1

λ
(λI − T ∗T )−1TT ∗. (5)

Now, since T is a Fredholm operator, TT ∗ is a Fredholm operator of index
zero, consequently there exists compact operator K, such that TT ∗ +K is
an invertible operator. Further more, from equality (5) we get

(λI − TT ∗)−1 =
I

λ
+

1

λ
(λI − T ∗T )−1(TT ∗ +K)− 1

λ
(λI − T ∗T )−1K

(λI − TT ∗)−1 =
I

λ
+

1

λ
(λI − T ∗T )−1(TT ∗ +K)−K1,

where K1 =
1
λ(λI − T ∗T )−1K ∈ K(H). Thus

(λI − T ∗T )−1 = λ
(
(λI − TT ∗)−1 − I

λ
+K1

)
(TT ∗ +K)−1 ∈ (QD)(Pn).

Because (QD)(Pn) is a C∗-algebra, (λI − T ∗T ) ∈ (QD)(Pn) and finally
T ∗T ∈ (QD)(Pn).

�

Theorem 2.6. Let T be quasi-normal operator. If T (T ∗T ) ∈
∩
(QD)(Pn),

then T is an essentially normal operator.

Proof. Let T be quasi-normal operator and let T (T ∗T ) ∈
∩
(QD)(Pn), then

T (T ∗T ) is uniformly quasi-diagonal, which implies that

T (T ∗T ) = λI +K1 (6)

see [5]. Now, let π : B(H) → B(H)/K(H), be the canonical map. Because
T is quasi-normal operator we have

π(T )π(T ∗T ) = π(T ∗T )π(T ) = λπ(I). (7)

From the above equality, we conclude that π(T ∗T ) is invertible element in
B(H)/K(H). On the other hand

π(T ∗T )(π(T )π(T ∗))−1 = π(T ∗T )(π(T ∗)−1π(T )−1)

= π(T ∗)−1π(T ∗T )π(T )−1 = π(T ∗)−1π(T ∗)π(T )π(T )−1 = π(I).

Therefore

(π(T )π(T ∗))−1 = (π(T ∗)π(T ))−1

and thus

π(T )π(T ∗) = π(T ∗)π(T ),
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thus proving that π(T ) is a normal element in B(H)/K(H), hence T is
essentially normal operator. �
Corollary 2.7. If a quasi-normal operator T is quasi-diagonal operator with
respect to some sequence (Pn) in PF (H), such that Pn → I strongly, then
T = N +K, where N is a normal operator and K is a compact operator.

Proof. The proof of this corollary is a direct consequence of Theorem 2.6.
and the fact that every essentially-normal quasi-diagonal operator is in the
class (N +K)(H), see Theorem 6.5 in [6]. �
Theorem 2.8. If the operators T, SS∗ are in the class (QD)(Pn) and S is
a quasi-normal operator, then

(1) S−1TS ∈ (QD)
(2) (S∗)−1TS−1 ∈ (QD).

Proof. The result in (1) was proven in [4]. Since T, SS∗ ∈ (QD)(Pn) and
S is quasi-normal operator from Theorem 2.5, we conclude that S∗S =
S∗(S∗)∗ ∈ (QD)(Pn). Now, by Theorem 2.2. we have (S∗)−1TS−1 ∈ (QD).
Hence (2) holds true. �
Corollary 2.9. If T is a quasi-diagonal operator and S = λU + K is an
invertible operator, then

(1) (λU +K)−1T (λU +K) ∈ (QD)
(2) (λU +K)−1T (λU∗ +K∗)−1 ∈ (QD)
(3) (λU∗ +K∗)−1T (λU +K)−1 ∈ (QD).

Proof. The proof of the Corollary is a direct consequence of the Theorem
2.8, Theorem 2.5 and the fact that if S = λU +K, then

SS∗ = (λU +K)(λU∗ +K∗) = |λ|2I + λUK∗ + λKU∗ +KK∗,

S∗S = (λU∗ +K∗)(λU +K) = |λ|2I + λU∗K + λK∗U +K∗K.

From the above equalities we see that SS∗ and S∗S are thin operators.
Therefore SS∗, S∗S ∈

∩
(QD)(Pn). �

Theorem 2.10. Let T ∈ (QD)(Pn). If λU
∗ + λU ∈ (QD)(Pn), where U is

a unitary operator, λ ∈ C, then
T ′ = (λI + U +K)−1T (λI + U +K) ∈ (QD).

Proof. Let T ∈ (QD)(Pn) and let λU∗ + λU ∈ (QD)(Pn). Denote by

Kn = (λI + U +K)−1Pn(λI + U +K).

Since Pn are orthogonal projections of finite rank, Kn are compact operators
with finite rank. Now, Kn → I strongly because Pn → I strongly and
obviously K2

n = Kn. Further, to prove our result, we need only to show that

∥Kn −K∗
n∥ → 0, n → ∞
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and
∥T ′Kn −KnT

′∥ → 0, n → ∞
see [7]. From the inequality

∥T ′Kn −KnT
′∥ =

= ∥(λI +U +K)−1TPn(λI +U +K)− (λI +U +K)−1PnT (λI +U +K)∥
≤ ∥(λI + U +K)−1∥ · ∥TPn − PnT∥ · ∥λI + U +K∥

we observe that
∥T ′Kn −KnT

′∥ → 0, n → ∞.

Next,
∥Kn −K∗

n∥
= (λI + U +K)−1Pn(λI + U +K)− (λI + U +K)∗Pn(λI + U +K)∗−1∥

≤ ∥(λI + U +K)−1∥ · ∥Pn(λI + U +K)(λI + U +K)∗

−(λI + U +K)(λI + U +K)∗∥ · ∥λI + U +K∥
≤ M∥Pn(λI + U +K)(λI + U +K)∗ − (λI + U +K)(λI + U +K)∗Pn∥.
Now, it is easy to see that the right hand of the last equality tends to zero,
as n → ∞. �
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