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QUASI-DIAGONAL OPERATORS

MUHIB LOHAJ AND SHQIPE LOHAJ

ABSTRACT. Let H be a separable complex Hilbert space and let B(H)
denote the algebra of all bounded linear operators on H. If T' is a quasi-
normal Fredholm operator we prove that 77" € (QD)(P,) if and only if
T*T € (QD)(P,). We also show that if T is quasi-normal and T'(T*T) is
quasi-diagonal with respect to any sequence (P,) in PF(H), such that
P, — I strongly, then T'= N + K, where N is a normal operator and
K is a compact operator.

1. INTRODUCTION

Let B(H) be the algebra of all bounded linear operators acting in a sep-
arable Hilbert space H and let PF(H) denote the set of all finite rank
(orthogonal) projections on H. An operator T is said to be quasi-diagonal
(block-diagonal), if there exists an increasing sequence (P,)nen in PF(H)
such that P, — I strongly, as n — oo, and lim, , |TP, — P,T| = 0
(TP, = P,T for all n = 1,2, ..., respectively).

The class of quasi-diagonal operators is denoted by (QD) whereas the
class of block-diagonal operators is denoted by (BD). Denote by A(H) =
B(H)/K(H) the quotient algebra, where K (H) is the ideal of all compact
operators and let 7 : B(H) — A(H) be the canonical projection. A(H) is
a Banach algebra with respect to the norm ||7(T)| = inf{||T — K| : K €
K(H)}. mis a continuous linear map and A(H) is a C*—algebra with respect
to the involution * : w(T") — [7(T)]* = 7(T™), is called a Calkin Algebra.

We say that an operator 7' € B(H) is Fredholm if #(T") is invertible
element in the Calkin algebra A(H). Denote by F'(H) the set of all Fredholm
operators.

Further, we say that an operator T is essentially unitary (essentially nor-
mal) operator, if 7(7") is unitary element (normal element) in A(H).

The classes (QD) and (BD) were introduced and studied by P.R. Halmos
in [3], and later on by many authors including R.A. Smucker, G.R. Luecke,
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D.A. Herrero, etc. From the definition of quasi-diagonal (block-diagonal)
operators, it is easy to see that these classes are invariant under unitary
transformations. However, operators similar to quasi-diagonal operators
may fail to be quasi-diagonal, see [8]. R.A. Smucker has found a weaker
condition for quasi-diagonality. He has shown that if (K,,) is a sequence
(not necessary increasing) of compact operators converging strongly to the
identity operator I, such that || K, — K2|| — 0, || K, — K}|| = 0 and ||TK, —
K, T| — 0 then T' € (D), see [7], [1].

Let (Py)nen bein PF(H) such that P, — I strongly. Denote by (QD)(F,)
={T € B(H) : |TP, — P,T|| - 0,n — oo}. This means that (QD)(P,)
is the subset of (QD) containing those quasi-diagonal operators that are
quasi-diagonal with respect to the same sequence (P,) of finite (orthogonal)
projections. For the properties of the class (QD)(P,,) see [4].

In this article we show that if T' is a quasi-normal and Fredholm operator,
then TT* € (QD)(FP,) if and only if 7*T € (QD)(FP,). We also show that
if T is quasi-normal and T'(T*T') is quasi-diagonal with respect to some
sequence (P,) in PF(H), such that P, — I strongly, then T = N + K,
where N is a normal operator and K is a compact operator. Further, we
show that (QD) is invariant under certain similarities.

2. QUASI-DIAGONAL OPERATORS
Proposition 2.1. If T € (QD)(P,) then VT*T € (QD)(P,).

Proof. If T € (QD)(P,), and since (QD)(P,) is a C*—algebra then T*T €
(QD)(P,). Further, it is well known from the general theory of operators
that

VT*Tx = lim p,(T*T)z,
n—oo

for all z in H, where (p,(t)) is a sequence of polynomials. Since pi(T*T) €
(QD)(P,) for every k € N (see [4]), then
lpr(T*T) Poe = Prpi(TT) || = [|(pr(T™T) P — Prpi(TT) )|
< lph(T*T) Po — Papi(T°T)|

forallz € H,||z|]| < 1.
Now, pi(T*T) € (QD)(P,) implies that for every ¢ > 0, there exists ng(e)
such that for all n > ng(e), we have

1pe(T"T) Pz — Popi(T™T) || < [|pe(T™T) Py — Popi(T*T)|| < e.
Taking limits on k in both sides of the last inequality we have

INT*T Py — P,NT*Tx| < &



QUASI-DIAGONAL OPERATORS 231

for all x € H, ||| <1, and consequently

IVT*TP, — P,VT*T|| < e.
This means that vVT*T € (QD)(P,). O

Theorem 2.2. If T, SS* are from the class (QD)(P,) and S is invertible,
then STITS*~1 is an element in the class (QD)(Qn), where Q, = UP,U*
and U is the unitary operator from the polar form of the operator S*.

Proof. Since, SS* € (QD)(FP,) then v'SS* € (QD)(P,), which implies that
(VS5*)T'T(VSS*)~! € (QD)(Py)
see [4]
U(VSS5*)~'T(V/SS*)~1U* e (QD)(UP,U*)
where U is from the polar form of the operator S* = U+/SS*. From the
above relations we have
(VSS U 'T(UVSS*) ' = s7'1s* ! € (QD)(UP,U).
O

Theorem 2.3. Let T be a Fredholm operator with indT = 0 and let T =
VNVT*T be the polar form of the operator T. If the range R(VT*T) is a
closed set, then if T is in the class (QD)(Py) andV is in the class (QD)(P,,).

Proof. Because T' € F(H), indT = dimkerT — dimker7* = 0 then it
follows that there exists K € K(H) such that 7'+ K is invertible operator.
This implies that

T+K=U(T+K)*T +K) (1)
where U is a unitary operator. Further more, since (QD)P, is a C*-algebra
then T+ K, (T+ K)*(T'+ K) € (QD)P,. As in the proof of Proposition 2.1

V(T + KT + K)o = lim p, (T + K)"(T + K))x

for some sequence p,(t) of polynomials. Therefore,
pu((T + K)'(T + K)) € (QD)(Pn)

and

V(T +EK)*(T+ K) € (QD)(Py).
From these facts we have

U= (T+K)(/T+ KT +K)™" € (@QD)(P,). (2)

Further
(T+ K)=(VVT*T + K) € (@D)(F,).
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Therefore

VVT*T + K = U\/(T + K)*(T + K) € (QD)(P,). (3)

Now, since vVT*T is self-adjoint operator and R(VT*T) is closed set we
conclude that vT*T is Fredholm operator (because ker vVI*T = kerT'). 1
is obvious that
indVT*T = dimker VT*T — dim ker(VT*T)*
=dimkerT — dimkerT = 0,

which implies that vT*T is Fredholm operator with index zero. Therefore,
there exists a compact operator K1, such that 1T+ K7 is invertible. Now,
from (3) we have that

VVT*T =U/(T+ K)*(T + K) - K,

is a Fredholm operator with index zero. Finally
VVT*T + VK, =U\(T+K)*(T+ K) + VK, — K,
VWT*T + K1) = U/ (T + K)*(T + K) + VK, — K,
VVT*T + K1) = U\/(T + K)*(T + K) + K,
where Ko = VK — K € K(H). From the last equality we have
= (UV(T+ K)*(T + K) + Ko)(VT*T + K;) %,
and hence V € (QD)P,). O

Remark 2.4. If T € ((QD)(P,) and if R(vT*T) is closed, then V €
N(QD)(P,), where V is taken from the polar form of the operator T' =

VVT*T.

From the Remark 2.4. we observe that T is a thin operator if and only if
V is a thin operator.

A bounded operator T is called quasi-normal if 7" commutes with the
operator T*T.

Theorem 2.5. If T is quasi-normal and Fredholm operator, then TT* €
(QD)(P,) if and only if T*T € (QD)(P,).

Proof. For
A>r(T*T) = ||T*T|| = |TT*|| = »(TT*) = || T|?
it is easy to see that the equality

I 1
(M —TT*)™ = 3R TOI - T*T) T (4)
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holds true. Now, the quasi-normality of T" implies that
T —T*T)™' = (\[ - T*T)7'T,
hence from (4) we assume

I 1
(M —TT*)™! = 1M - T*T) T (5)

Now, since T is a Fredholm operator, TT™ is a Fredholm operator of index
zero, consequently there exists compact operator K, such that T7T* + K is
an invertible operator. Further more, from equality (5) we get

1

I 1
(M —TT*)" ! = 1M - T*T)"YTT* + K) N T*T) 'K
(M —TT*)™! = d + 1(AI —~T*T)"YTT* + K) - K1,

A
where K1 = (M — T*T) 'K € K(H). Thus

M =T*T)" ' =N -TT*) ™ - § + K1) (TT* + K)~' € (QD)(Py).

Because (QD)(P,) is a C*-algebra, (A\I — T*T) € (QD)(FP,) and finally
T*T € (QD)(Py).
(]

Theorem 2.6. Let T be quasi-normal operator. If T(T*T) € ((QD)(P,),
then T s an essentially normal operator.

Proof. Let T be quasi-normal operator and let T(T*T') € ((QD)(FP,), then
T(T*T) is uniformly quasi-diagonal, which implies that

T(T*T) = M + K, (6)

see [5]. Now, let 7 : B(H) — B(H)/K(H), be the canonical map. Because
T is quasi-normal operator we have

m(T)m(T*T) = n(T*T)n(T) = A (). (7)

From the above equality, we conclude that 7(7*T) is invertible element in
B(H)/K(H). On the other hand

w(T*T) (x(T)m(T*) ™" = n(T*T)(x(T*) "= (T) 1)
=0T 'n(T*T)n(T) ™ = n(T*) L n(T*)7(T)x(T)* = =(I).
Therefore
(n(T)m(T*) ™! = (x(T*)m(T)) ™
and thus
m(T)w(T") = =(T")x(T),
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thus proving that 7(7") is a normal element in B(H)/K(H), hence T is
essentially normal operator. O

Corollary 2.7. If a quasi-normal operator T is quasi-diagonal operator with
respect to some sequence (Py,) in PF(H), such that P, — I strongly, then
T = N+ K, where N is a normal operator and K is a compact operator.

Proof. The proof of this corollary is a direct consequence of Theorem 2.6.
and the fact that every essentially-normal quasi-diagonal operator is in the
class (N + K)(H), see Theorem 6.5 in [6]. O

Theorem 2.8. If the operators T, SS* are in the class (QD)(F,) and S is
a quasi-normal operator, then
(1) S~'TS € (QD)
(2) (S*)~'TS~! € (QD).
Proof. The result in (1) was proven in [4]. Since T,55* € (QD)(P,) and
S is quasi-normal operator from Theorem 2.5, we conclude that S$*S =
S*(5*)* € (@D)(Py). Now, by Theorem 2.2. we have (S*)~'TS~! € (QD).
Hence (2) holds true. O
Corollary 2.9. If T is a quasi-diagonal operator and S = AU + K is an
invertible operator, then
(1) WU+ K)"'T(A\U + K) € (@D)
(2) WU+ K)"'T(AU* + K*)~! € (QD)
(3) AU* + K*)~'T(\U + K)~! € (QD).
Proof. The proof of the Corollary is a direct consequence of the Theorem
2.8, Theorem 2.5 and the fact that if S = \U + K, then
SS8* = (WU + K)ANU* + K*) = NI+ \UK* + AKU* + KK*,
S*S = (AU* + K*)(\U + K) = |\*I + \U*K + \K*U + K*K.
From the above equalities we see that SS5* and S*S are thin operators.
Therefore S5*,5*S € (QD)(Fy). O

Theorem 2.10. Let T € (QD)(P,). If \U* + AU € (QD)(P,), where U is
a unitary operator, A € C, then

T'=\M+U+K)'TO\ + U+ K) € (QD).
Proof. Let T € (QD)(P,) and let A\U* + AU € (QD)(P,). Denote by
K,=WMN+U+K)'P,M+U+K).

Since P, are orthogonal projections of finite rank, K, are compact operators
with finite rank. Now, K, — I strongly because P, — [ strongly and
obviously K2 = K,,. Further, to prove our result, we need only to show that

| K, — K| = 0,n — o0



QUASI-DIAGONAL OPERATORS 235

and

|T'K,, — K,,T'|| = 0,n — oo
see [7]. From the inequality

|IT'K,, — K, T'| =
= |M+U+EK) ' TP, M +U+K)-M+U+K)'P, T\ +U + K)||
<N +U+K) Y- |TP, — P.T| - M +U + K|

we observe that

|IT'K,, — K,,T'|| = 0,n — .
Next,

[ K — K|
=MN4+U+K)'PM+U+K)—M+U+K)'P,M+U+K)
<A+ U+K) PN+ U+ K)M +U + K)*
—M+U+EK)M+U+EK)"-|M+U+K|
<M|P,AM4+U+K)YM+U+K)"—M+U+K)M+U+ K)" P,
Now, it is easy to see that the right hand of the last equality tends to zero,
as n — 0o. ]

REFERENCES

[1] D. A. Herrero, Approzimation of Hilbert Space Operators, I., Research Notes in Math.,
Vol.72 (London-Boston-Melbourne: Pitman Books Ltd.,1982).

[2] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.

[3] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970),
887-933.

[4] Muhib R. Lohaj, Necessary conditions for quasidiagonality of some special nilpotent
operators, Rad. Mat., 10 (2001),209-217.

[5] G. R. Luecke, A note on quasidiagonal and quasitriangular operators, Pacific. J.
Math., 56 (1975), 179-185.

[6] Carl M. Pearcy, Some recent developments in operator theory, Conference Board
Math. Sci., Vol 36, 1978.

[7] R. A. Smucker, Quasidiagonal and Quasitriangular Operators, Disertation, Indiana
Univ., 1973.

[8] R. A. Smucker, Quasidiagonal weighted shifts, Pacific. J. Math., 98 (1982), 173-182.

(Received: November 2, 2009) Department of Math. and Computer Sciences,
(Revised: February 6, 2010) Avenue “Mother Theresa” 5
Prishting, 10000, Kosova
E-mail: muhib_ lohaj@yahoo.com
shqipe_ lohaj@hotmail.com



