QUASI-DIAGONAL OPERATORS

MUHIB LOHAJ AND SHQIPE LOHAJ

ABSTRACT. Let H be a separable complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. If T is a quasi-normal Fredholm operator we prove that $TT^* \in (QD)(P_n)$ if and only if $T^*T \in (QD)(P_n)$. We also show that if T is quasi-normal and $T(T^*T)$ is quasi-diagonal with respect to any sequence (P_n) in PF(H), such that $P_n \to I$ strongly, then T = N + K, where N is a normal operator and K is a compact operator.

1. INTRODUCTION

Let B(H) be the algebra of all bounded linear operators acting in a separable Hilbert space H and let PF(H) denote the set of all finite rank (orthogonal) projections on H. An operator T is said to be quasi-diagonal (block-diagonal), if there exists an increasing sequence $(P_n)_{n\in N}$ in PF(H)such that $P_n \to I$ strongly, as $n \to \infty$, and $\lim_{n\to\infty} ||TP_n - P_nT|| = 0$ $(TP_n = P_nT \text{ for all } n = 1, 2, \ldots, \text{ respectively}).$

The class of quasi-diagonal operators is denoted by (QD) whereas the class of block-diagonal operators is denoted by (BD). Denote by A(H) = B(H)/K(H) the quotient algebra, where K(H) is the ideal of all compact operators and let $\pi : B(H) \to A(H)$ be the canonical projection. A(H) is a Banach algebra with respect to the norm $||\pi(T)|| = inf\{||T - K|| : K \in K(H)\}$. π is a continuous linear map and A(H) is a C^* -algebra with respect to the involution $^* : \pi(T) \to [\pi(T)]^* = \pi(T^*)$, is called a Calkin Algebra.

We say that an operator $T \in B(H)$ is Fredholm if $\pi(T)$ is invertible element in the Calkin algebra A(H). Denote by F(H) the set of all Fredholm operators.

Further, we say that an operator T is essentially unitary (essentially normal) operator, if $\pi(T)$ is unitary element (normal element) in A(H).

The classes (QD) and (BD) were introduced and studied by P.R. Halmos in [3], and later on by many authors including R.A. Smucker, G.R. Luecke,

²⁰⁰⁰ Mathematics Subject Classification. 47Bxx, 47B20.

Key words and phrases. Quasi-diagonal operators.

D.A. Herrero, etc. From the definition of quasi-diagonal (block-diagonal) operators, it is easy to see that these classes are invariant under unitary transformations. However, operators similar to quasi-diagonal operators may fail to be quasi-diagonal, see [8]. R.A. Smucker has found a weaker condition for quasi-diagonality. He has shown that if (K_n) is a sequence (not necessary increasing) of compact operators converging strongly to the identity operator I, such that $||K_n - K_n^2|| \to 0$, $||K_n - K_n^*|| \to 0$ and $||TK_n - K_nT|| \to 0$ then $T \in (QD)$, see [7], [1].

Let $(P_n)_{n \in N}$ be in PF(H) such that $P_n \to I$ strongly. Denote by $(QD)(P_n) = \{T \in B(H) : ||TP_n - P_nT|| \to 0, n \to \infty\}$. This means that $(QD)(P_n)$ is the subset of (QD) containing those quasi-diagonal operators that are quasi-diagonal with respect to the same sequence (P_n) of finite (orthogonal) projections. For the properties of the class $(QD)(P_n)$ see [4].

In this article we show that if T is a quasi-normal and Fredholm operator, then $TT^* \in (QD)(P_n)$ if and only if $T^*T \in (QD)(P_n)$. We also show that if T is quasi-normal and $T(T^*T)$ is quasi-diagonal with respect to some sequence (P_n) in PF(H), such that $P_n \to I$ strongly, then T = N + K, where N is a normal operator and K is a compact operator. Further, we show that (QD) is invariant under certain similarities.

2. QUASI-DIAGONAL OPERATORS

Proposition 2.1. If $T \in (QD)(P_n)$ then $\sqrt{T^*T} \in (QD)(P_n)$.

Proof. If $T \in (QD)(P_n)$, and since $(QD)(P_n)$ is a C^* -algebra then $T^*T \in (QD)(P_n)$. Further, it is well known from the general theory of operators that

$$\sqrt{T^*T}x = \lim_{n \to \infty} p_n(T^*T)x,$$

for all x in H, where $(p_n(t))$ is a sequence of polynomials. Since $p_k(T^*T) \in (QD)(P_n)$ for every $k \in \mathbb{N}$ (see [4]), then

$$||p_k(T^*T)P_nx - P_np_k(T^*T)x|| = ||(p_k(T^*T)P_n - P_np_k(T^*T))x||$$

$$\leq ||p_k(T^*T)P_n - P_np_k(T^*T)||$$

for all $x \in H$, $||x|| \le 1$.

Now, $p_k(T^*T) \in (QD)(P_n)$ implies that for every $\varepsilon > 0$, there exists $n_0(\varepsilon)$ such that for all $n \ge n_0(\varepsilon)$, we have

$$||p_k(T^*T)P_nx - P_np_k(T^*T)x|| \le ||p_k(T^*T)P_n - P_np_k(T^*T)|| \le \varepsilon.$$

Taking limits on k in both sides of the last inequality we have

$$\|\sqrt{T^*TP_nx} - P_n\sqrt{T^*Tx}\| \le \varepsilon$$

for all $x \in H$, $||x|| \le 1$, and consequently

$$\|\sqrt{T^*T}P_n - P_n\sqrt{T^*T}\| \le \varepsilon$$

This means that $\sqrt{T^*T} \in (QD)(P_n)$.

Theorem 2.2. If T, SS^* are from the class $(QD)(P_n)$ and S is invertible, then $S^{-1}TS^{*-1}$ is an element in the class $(QD)(Q_n)$, where $Q_n = UP_nU^*$ and U is the unitary operator from the polar form of the operator S^* .

Proof. Since,
$$SS^* \in (QD)(P_n)$$
 then $\sqrt{SS^*} \in (QD)(P_n)$, which implies that $(\sqrt{SS^*})^{-1}T(\sqrt{SS^*})^{-1} \in (QD)(P_n)$

see [4]

$$U(\sqrt{SS^*})^{-1}T(\sqrt{SS^*})^{-1}U^* \in (QD)(UP_nU^*)$$

where U is from the polar form of the operator $S^* = U\sqrt{SS^*}$. From the above relations we have

$$(\sqrt{SS^*}U^*)^{-1}T(U\sqrt{SS^*})^{-1} = S^{-1}TS^{*-1} \in (QD)(UP_nU^*).$$

Theorem 2.3. Let T be a Fredholm operator with $\operatorname{ind} T = 0$ and let $T = V\sqrt{T^*T}$ be the polar form of the operator T. If the range $R(\sqrt{T^*T})$ is a closed set, then if T is in the class $(QD)(P_n)$ and V is in the class $(QD)(P_n)$.

Proof. Because $T \in F(H)$, $ind T = \dim \ker T - \dim \ker T^* = 0$ then it follows that there exists $K \in K(H)$ such that T + K is invertible operator. This implies that

$$T + K = U\sqrt{(T+K)^*(T+K)}$$
 (1)

where U is a unitary operator. Further more, since $(QD)P_n$ is a C^{*}-algebra then $T + K, (T + K)^*(T + K) \in (QD)P_n$. As in the proof of Proposition 2.1

$$\sqrt{(T+K)^*(T+K)}x = \lim_{n \to \infty} p_n ((T+K)^*(T+K))x$$

for some sequence $p_n(t)$ of polynomials. Therefore,

$$p_n((T+K)^*(T+K)) \in (QD)(P_n)$$

and

$$\sqrt{(T+K)^*(T+K)} \in (QD)(P_n).$$

From these facts we have

$$U = (T+K)(\sqrt{(T+K)^*(T+K)})^{-1} \in (QD)(P_n).$$
(2)

Further

$$(T+K) = (V\sqrt{T^*T} + K) \in (QD)(P_n).$$

231

Therefore

$$V\sqrt{T^*T} + K = U\sqrt{(T+K)^*(T+K)} \in (QD)(P_n).$$
 (3)

Now, since $\sqrt{T^*T}$ is self-adjoint operator and $R(\sqrt{T^*T})$ is closed set we conclude that $\sqrt{T^*T}$ is Fredholm operator (because ker $\sqrt{T^*T} = \ker T$). It is obvious that

$$ind\sqrt{T^*T} = \dim \ker \sqrt{T^*T} - \dim \ker (\sqrt{T^*T})^*$$
$$= \dim \ker T - \dim \ker T = 0,$$

which implies that $\sqrt{T^*T}$ is Fredholm operator with index zero. Therefore, there exists a compact operator K_1 , such that $\sqrt{T^*T} + K_1$ is invertible. Now, from (3) we have that

$$V\sqrt{T^*T} = U\sqrt{(T+K)^*(T+K)} - K_{\rm s}$$

is a Fredholm operator with index zero. Finally

$$V\sqrt{T^*T} + VK_1 = U\sqrt{(T+K)^*(T+K)} + VK_1 - K,$$

$$V(\sqrt{T^*T} + K_1) = U\sqrt{(T+K)^*(T+K)} + VK_1 - K,$$

$$V(\sqrt{T^*T} + K_1) = U\sqrt{(T+K)^*(T+K)} + K_2,$$

where $K_2 = VK_1 - K \in K(H)$. From the last equality we have

$$V = (U\sqrt{(T+K)^*(T+K)} + K_2)(\sqrt{T^*T} + K_1)^{-1},$$

and hence $V \in (QD)P_n$).

Remark 2.4. If $T \in \bigcap(QD)(P_n)$ and if $R(\sqrt{T^*T})$ is closed, then $V \in \bigcap(QD)(P_n)$, where V is taken from the polar form of the operator $T = V\sqrt{T^*T}$.

From the Remark 2.4. we observe that T is a thin operator if and only if V is a thin operator.

A bounded operator T is called quasi-normal if T commutes with the operator T^*T .

Theorem 2.5. If T is quasi-normal and Fredholm operator, then $TT^* \in (QD)(P_n)$ if and only if $T^*T \in (QD)(P_n)$.

Proof. For

$$\lambda \ge r(T^*T) = \|T^*T\| = \|TT^*\| = r(TT^*) = \|T\|^2$$

it is easy to see that the equality

$$(\lambda I - TT^*)^{-1} = \frac{I}{\lambda} + \frac{1}{\lambda}T(\lambda I - T^*T)^{-1}T^*$$
(4)

holds true. Now, the quasi-normality of T implies that

$$T(\lambda I - T^*T)^{-1} = (\lambda I - T^*T)^{-1}T,$$

hence from (4) we assume

$$(\lambda I - TT^*)^{-1} = \frac{I}{\lambda} + \frac{1}{\lambda} (\lambda I - T^*T)^{-1}TT^*.$$
 (5)

Now, since T is a Fredholm operator, TT^* is a Fredholm operator of index zero, consequently there exists compact operator K, such that $TT^* + K$ is an invertible operator. Further more, from equality (5) we get

$$(\lambda I - TT^*)^{-1} = \frac{I}{\lambda} + \frac{1}{\lambda} (\lambda I - T^*T)^{-1} (TT^* + K) - \frac{1}{\lambda} (\lambda I - T^*T)^{-1} K$$
$$(\lambda I - TT^*)^{-1} = \frac{I}{\lambda} + \frac{1}{\lambda} (\lambda I - T^*T)^{-1} (TT^* + K) - K_1,$$

where $K_1 = \frac{1}{\lambda} (\lambda I - T^*T)^{-1} K \in K(H)$. Thus

$$(\lambda I - T^*T)^{-1} = \lambda \big((\lambda I - TT^*)^{-1} - \frac{I}{\lambda} + K_1 \big) (TT^* + K)^{-1} \in (QD)(P_n).$$

Because $(QD)(P_n)$ is a C^* -algebra, $(\lambda I - T^*T) \in (QD)(P_n)$ and finally $T^*T \in (QD)(P_n)$.

Theorem 2.6. Let T be quasi-normal operator. If $T(T^*T) \in \bigcap(QD)(P_n)$, then T is an essentially normal operator.

Proof. Let T be quasi-normal operator and let $T(T^*T) \in \bigcap (QD)(P_n)$, then $T(T^*T)$ is uniformly quasi-diagonal, which implies that

$$T(T^*T) = \lambda I + K_1 \tag{6}$$

see [5]. Now, let $\pi : B(H) \to B(H)/K(H)$, be the canonical map. Because T is quasi-normal operator we have

$$\pi(T)\pi(T^*T) = \pi(T^*T)\pi(T) = \lambda\pi(I).$$
(7)

From the above equality, we conclude that $\pi(T^*T)$ is invertible element in B(H)/K(H). On the other hand

$$\pi(T^*T)(\pi(T)\pi(T^*))^{-1} = \pi(T^*T)(\pi(T^*)^{-1}\pi(T)^{-1})$$

= $\pi(T^*)^{-1}\pi(T^*T)\pi(T)^{-1} = \pi(T^*)^{-1}\pi(T^*)\pi(T)\pi(T)^{-1} = \pi(I).$

Therefore

$$(\pi(T)\pi(T^*))^{-1} = (\pi(T^*)\pi(T))^{-1}$$

and thus

$$\pi(T)\pi(T^*) = \pi(T^*)\pi(T),$$

thus proving that $\pi(T)$ is a normal element in B(H)/K(H), hence T is essentially normal operator.

Corollary 2.7. If a quasi-normal operator T is quasi-diagonal operator with respect to some sequence (P_n) in PF(H), such that $P_n \to I$ strongly, then T = N + K, where N is a normal operator and K is a compact operator.

Proof. The proof of this corollary is a direct consequence of Theorem 2.6. and the fact that every essentially-normal quasi-diagonal operator is in the class (N+K)(H), see Theorem 6.5 in [6]. \square

Theorem 2.8. If the operators T, SS^* are in the class $(QD)(P_n)$ and S is a quasi-normal operator, then

- (1) $S^{-1}TS \in (QD)$
- (2) $(S^*)^{-1}TS^{-1} \in (QD).$

Proof. The result in (1) was proven in [4]. Since $T, SS^* \in (QD)(P_n)$ and S is quasi-normal operator from Theorem 2.5, we conclude that $S^*S =$ $S^*(S^*)^* \in (QD)(P_n)$. Now, by Theorem 2.2. we have $(S^*)^{-1}TS^{-1} \in (QD)$. Hence (2) holds true.

Corollary 2.9. If T is a quasi-diagonal operator and $S = \lambda U + K$ is an invertible operator, then

- (1) $(\lambda U + K)^{-1}T(\lambda U + K) \in (QD)$
- (2) $(\lambda U + K)^{-1}T(\overline{\lambda}U^* + K^*)^{-1} \in (QD)$ (3) $(\overline{\lambda}U^* + K^*)^{-1}T(\lambda U + K)^{-1} \in (QD).$

Proof. The proof of the Corollary is a direct consequence of the Theorem 2.8, Theorem 2.5 and the fact that if $S = \lambda U + K$, then

$$SS^* = (\lambda U + K)(\overline{\lambda}U^* + K^*) = |\lambda|^2 I + \lambda UK^* + \overline{\lambda}KU^* + KK^*,$$

$$S^*S = (\overline{\lambda}U^* + K^*)(\lambda U + K) = |\lambda|^2 I + \overline{\lambda}U^*K + \lambda K^*U + K^*K.$$

From the above equalities we see that SS^* and S^*S are thin operators. Therefore $SS^*, S^*S \in \bigcap(QD)(P_n)$.

Theorem 2.10. Let $T \in (QD)(P_n)$. If $\lambda U^* + \overline{\lambda}U \in (QD)(P_n)$, where U is a unitary operator, $\lambda \in \mathbb{C}$, then

$$T' = (\lambda I + U + K)^{-1} T(\lambda I + U + K) \in (QD).$$

Proof. Let $T \in (QD)(P_n)$ and let $\lambda U^* + \overline{\lambda}U \in (QD)(P_n)$. Denote by

$$K_n = (\lambda I + U + K)^{-1} P_n(\lambda I + U + K).$$

Since P_n are orthogonal projections of finite rank, K_n are compact operators with finite rank. Now, $K_n \to I$ strongly because $P_n \to I$ strongly and obviously $K_n^2 = K_n$. Further, to prove our result, we need only to show that

$$||K_n - K_n^*|| \to 0, n \to \infty$$

and

$$\|T'K_n - K_nT'\| \to 0, n \to \infty$$

see [7]. From the inequality

$$||T'K_n - K_nT'|| =$$

= $||(\lambda I + U + K)^{-1}TP_n(\lambda I + U + K) - (\lambda I + U + K)^{-1}P_nT(\lambda I + U + K)||$
 $\leq ||(\lambda I + U + K)^{-1}|| \cdot ||TP_n - P_nT|| \cdot ||\lambda I + U + K||$

we observe that

$$||T'K_n - K_nT'|| \to 0, n \to \infty.$$

Next,

$$||K_n - K_n^*||$$

= $(\lambda I + U + K)^{-1} P_n(\lambda I + U + K) - (\lambda I + U + K)^* P_n(\lambda I + U + K)^{*-1}||$
 $\leq ||(\lambda I + U + K)^{-1}|| \cdot ||P_n(\lambda I + U + K)(\lambda I + U + K)^* - (\lambda I + U + K)(\lambda I + U + K)^*|| \cdot ||\lambda I + U + K||$

 $\leq M \|P_n(\lambda I + U + K)(\lambda I + U + K)^* - (\lambda I + U + K)(\lambda I + U + K)^* P_n\|.$ Now, it is easy to see that the right hand of the last equality tends to zero, as $n \to \infty$.

References

- D. A. Herrero, Approximation of Hilbert Space Operators, I., Research Notes in Math., Vol.72 (London-Boston-Melbourne: Pitman Books Ltd., 1982).
- [2] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
- [3] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970), 887–933.
- [4] Muhib R. Lohaj, Necessary conditions for quasidiagonality of some special nilpotent operators, Rad. Mat., 10 (2001),209–217.
- [5] G. R. Luecke, A note on quasidiagonal and quasitriangular operators, Pacific. J. Math., 56 (1975), 179–185.
- [6] Carl M. Pearcy, Some recent developments in operator theory, Conference Board Math. Sci., Vol 36, 1978.
- [7] R. A. Smucker, Quasidiagonal and Quasitriangular Operators, Disertation, Indiana Univ., 1973.
- [8] R. A. Smucker, Quasidiagonal weighted shifts, Pacific. J. Math., 98 (1982), 173-182.

(Received: November 2, 2009) (Revised: February 6, 2010) Department of Math. and Computer Sciences, Avenue "Mother Theresa" 5 Prishtinë, 10000, Kosova E-mail: muhib_ lohaj@yahoo.com shqipe_ lohaj@hotmail.com