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ON THE COHOMOLOGY OF SPACES OF LINKS AND

BRAIDS VIA CONFIGURATION SPACE INTEGRALS

ISMAR VOLIĆ

Abstract. We study the cohomology of spaces of string links and
braids in Rn for n ≥ 3 using configuration space integrals. For n > 3,
these integrals give a chain map from certain diagram complexes to the
deRham algebra of differential forms on these spaces. For n = 3, they
produce all finite type invariants of string links and braids.

1. Introduction

The goal of this paper is to establish and study configuration space inte-
grals for spaces of string (or long) links1 and pure braids in Rn for n ≥ 3.
This should be thought of as a generalization of the study of such integrals in
the case of knots and long knots. Namely, in [7], Cattaneo, Cotta-Ramusino,
and Longoni define a cochain map

D −→ Ω∗Kn (1)

between a certain diagram complex D and the deRham complex of space
of knots (and long knots) Kn in Rn for n > 3 via configuration space in-
tegrals, defined essentially as the following: A diagram Γ ∈ D is used as a
prescription for pulling back a product of volume forms on Sn−1 to a space
C[k, s;Kn,Rn], which is a bundle over Kn whose fiber over K ∈ Kn is the
compactified configuration space of k + s points in Rn, the first k of which
are constrained to lie on K. This form can then be pushed forward to Kn,
i.e. integrated along the fiber of the map C[k, s;Kn,Rn] → Kn.

Cattaneo, Cotta-Ramusino, and Longoni have further shown that, for any
k, the space of knots has cohomology classes in arbitrarily high degrees in

2000 Mathematics Subject Classification. Primary: 57M27; Secondary: 81Q30, 57R40.
Key words and phrases. Bott-Taubes integrals, configuration space integrals, spaces of

links, finite type invariants, Fulton-MacPherson compactification.
The author was supported in part by the National Science Foundation grant DMS

0805406.
1The reader should keep in mind that when we say string links we do not mean homotopy

string links as is sometimes the case in the literature; see Definition 1.1.



242 ISMAR VOLIĆ

[8] by studying certain algebraic structures on D that correspond to those
in the cohomology ring of spaces of knots. Longoni also proved in [20]
that some of these classes arise from non-trivalent diagrams. An analog for
long knots was given in [25] by Sakai who combined the configuration space
integrals with Budney’s action of the little discs operad on Kn [6]. Sakai has
further defined configuration space integrals for embeddings of long planes
Emb(Rj ,Rn) [24]. In another recent work, Koytcheff [18] has reinterpreted
configuration space integrals in a homotopy-theoretic way that does not use
integration. The advantage is that he obtains integral, rather than real,
classes in the cohomology of knots.

The results in [7] are in many respects a culmination of work begun by
Guadagnini, Martellini, and Mintchev [11] and Bar-Natan [2] and further
developed by Bott and Taubes [5] (in the literature, configuration space in-
tegrals are often referred to as “Bott-Taubes integrals”) and D. Thurston
[27]. Kontsevich had also studied similar integration techniques in [16]. The
focus of Bott-Taubes and D. Thurston’s work was knots in the classical di-
mension n = 3, and the main results in knot theory which uses configuration
space integrals is that they represent a universal finite type knot invariant,
due to D. Thurston (see also [31]).

In the present work, we generalize both the results of Cattaneo-Cotta-
Ramusino-Longoni and D. Thurston. To elaborate, we first need to define
the spaces in question precisely.

Definition 1.1. For n ≥ 3, define

• Space of string links, or long links, of m components in Rn, denoted
by Ln

m, to be the space of embeddings Emb(
⨿

mR,Rn) of the disjoint
union of m copies of R in Rn that agree, outside of {−1, 1} ×Rn−1,
with some fixed linear embedding of

⨿
mR in Rn which maps each

R to a line parallel to the line (x, 0, 0, ..., 0) in Rn;
• Space of “flattened” pure braids of m components in Rn, denoted by
Bn
m, to be the subspace of the space of embeddings Emb(

⨿
mR,Rn)

defined above determined by those embeddings whose normalized
derivative on each of the copies of R
(1) has positive first component, and further
(2) misses some fixed small neighborhoods UN and US of the north

and south poles, respectively, of the standard sphere in Rn.

Note that if one takes away condition (2), then the second space is the
standard space of pure braids of m components. Its subspace Bn

m is very
closely related to it since it is immediate that any pure braid is isotopic
to a braid in Bn

m. The isotopy is given by “flattening” the braid as much
as necessary so that the tangent vector always misses UN and US . This is
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of course not always possible with links in Ln
m because condition (1) is not

satisfied.
We will usually refer to “long links” simply as “links” and to elements

of Bn
m as “braids” throughout. In fact, we will often simply say “links” for

either space and will make the distinction clear when necessary. Both links
and braids are interesting in its own right and have been studied extensively.
More about our motivation for studying them is given below.

Our main results can now be summarized as

Theorem 1.2. For each o > 0, d ≥ 0, and n > 3, there exist diagram
complexes LDo,d and BDo,d and cochain maps

LDo,∗ −→ Ω(n−3)o+∗(Ln
m)

BDo,∗ −→ Ω(n−3)o+∗(Bn
m)

given by configuration space integrals. For n = 3, these maps give isomor-
phisms between H0(LDo,0) and H0(BDo,0) and finite type invariants of order
o of those spaces.

One immediately has the following

Conjecture 1.3. The cochain maps from Theorem 1.2 are quasi-isomor-
phisms for n > 3.

The evidence for this conjecture comes from the case of knots, where it
seems likely that the bicomplex of diagrams is quasi-isomorphic to the E1

page of the Vassiliev spectral sequence [28]. The latter is known to converge
to the cohomology of knots for n > 3 and collapses at E2 [19]. Vassiliev-like
spectral sequences for spaces of links have been constructed in [23], and the
next step should be to show that they collapse as in the case of knots.

The part of Theorem 1.2 which states that there exist cochain maps is
proved later as Theorem 3.7. The result about finite type invariants is
Theorem 4.11. The diagram complexes, defined in Section 2, should be
thought of as just a convenient way of keeping track of integrals along the
interior and the boundary of compactified configuration spaces. Before we
define the integrals, we will have to do away with one of the more technical
aspects of the story. Namely, in order for integrals to converge, configuration
spaces have to be compactified. This construction is reviewed in Section 3.1,
as is the construction of certain spaces analogous to C[k, s;Kn,Rn] which
fiber over our link and braid spaces. We then define the integrals in Section
3.2 and show that they produce chain maps given in Theorem 1.2 when
n > 3. This directly generalizes the main results from [7] to spaces of
links and braids. The argument is essentially to show that the configuration
space integrals vanish along most of the codimension one boundaries of the
compactified configuration spaces.
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The difference for n = 3 comes from the fact that the integrals along
some faces do not necessarily vanish for all diagrams. However, this can be
fixed when d = 0 (the interesting degree which contains link invariants), and
this is done in Theorem 4.5. The diagram complexes become complexes of
trivalent diagrams which have received much attention in recent years [3, 20]
and provide a bridge to finite type theory. We recall some facts about these
in Section 4.1 and in Section 4.3 prove the second part of Theorem 1.2 after
reviewing the basics of finite type theory. This result is the analog of D.
Thurston’s results from [27] about configuration space integrals classifying
finite type invariants for knots.

This purpose of this paper is two-fold: On one hand, we provide gen-
eralizations to links and braids of the many results involving configuration
space integrals for knots, but we do so in a fashion which streamlines and
brings together the often disparate literature on the subject. In particular,
the cases of classical knots and knots in codimension > 2 have often been
treated differently and from separate points of view, and our goal is to bring
those cases together in this work.

Secondly, we wish to apply the results of this paper in the setting of man-
ifold calculus of functors. Namely, B. Munson and the author have initiated
in [22, 23] the study of spaces of links by defining certain multi-towers of
spaces whose stages represent approximations to spaces of links. In partic-
ular, these multi-towers are expected to classify all finite type invariants of
links and braids. The analogous result for knots was established in [30]. The
key in showing such a classification statement is the extension of configura-
tion space integrals from knots to links and braids, which is precisely what
is done in this paper. This extension can then be further modified so that
the target of the integrals is stages of the multi-towers (for knots, this was
done in [29]). This modification will be addressed in a future paper. It is
expected that factoring configuration space integrals through stages of the
Taylor multi-towers will also lead to a new proof that finite type invariants
separate braids and homotopy string links as well as new connections to and
generalizations of Milnor invariants.

Here are some further questions that immediately arise from the results
in this paper:

• If one thinks of Bn
m as ΩC(m,Rn−1), the loop space of the configuration

space of m points in Rn−1 (to pass to this model, one would require a
constant, rather than just positive, derivative in Definition 1.1), then one
should have another interesting connection between the work here and the
work done on the homology of Bn

m by F. Cohen and Gitler [9] and Kohno
[14]. In particular, Kohno constructs invariants on Bn

m via integrals which
are likely related to ours. The difference comes from the fact that we are
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forced to think of braids as a subspace of a certain space of embeddings,
mainly because of Proposition 3.4 and the definitions surrounding it. One
should be able to reconcile the two points of view and in particular simplify
the braid diagram complex from Section 2 so that the connected components
of diagrams have external vertices only along “vertical slices”. This would
reflect the fact that braids can be parametrized with a single loop parameter.
If this were possible, configuration space integrals for braids would simplify
greatly and the anomaly (see Section 4.2) would in particular disappear.

• One should also be able to define configuration space integrals for the
space of homotopy string links [12, 21]. The problem, however, is that
the most natural definition of this space is as a subspace of the space of
immersions of

⨿
R in Rn, in which case it is not clear that the analog of

the compactified configuration spaces from Section 3.1 for homotopy string
links would be a manifold with corners.

• It is known that finite type invariants separate braids [14, 4]. It should
be possible to reprove this result using configuration space integrals defined
here.

2. Diagram complexes

Given integers n ≥ 3 and m ≥ 1, we will consider connected diagrams Γ
consisting ofm oriented line segments labeled 1, 2, . . . ,m, with some number
of vertices on or off them (see Figure 1). A vertex lying on a segment will
be called external and will otherwise be called internal. Internal vertices
are at least trivalent. Each segment always has two external vertices at its

endpoints. External vertices on the jth segment are labeled vj1, v
j
2, . . . in

linear order. Internal vertices are also labeled.

Remark 2.1. This terminology comes from diagrams associated to ordinary
closed knots where there is only one segment, drawn as a circle. Vertices that
are not on the circle are usually drawn inside it, and are labeled “internal”,
while those on the circle are labeled “external”.

Vertices may be joined by edges. We identify four types of edges:

• internal edge, connecting two internal vertices;
• mixed edge, connecting an internal vertex and an external vertex;
• chord, connecting two external vertices;
• loop, connecting an external vertex to itself.

From now on, when we say “edge”, we will mean any of the above types
of edges unless otherwise specified.

We also identify

• arcs, which are parts of line segments between two consecutive ex-
ternal vertices.
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We will denote an edge or an arc with endpoints a and b by (a, b).
A diagram may not contain an edge connecting an internal vertex to itself.

All edges are oriented. Further,

• for n even, edges are labeled 1, 2, 3,. . . ;
• for n odd, edges are oriented.

A connected component of a diagram is a subset of its vertices and edges
which is not connected by an edge to any other part of the diagram (we
disregard the arcs when identifying connected components).

Given a diagram Γ, let

• |e| = number of edges of Γ;
• |vext| = number of external vertices of Γ;
• |vint| = number of internal vertices of Γ.

Definition 2.2. Define the order and degree of Γ to be

ordΓ = |e| − |vint|
deg Γ = 2|e| − 3|vint| − |vext|.

Definition 2.3. Define LDo,d
even and BDo,d

even (resp. LDo,d
odd and BDo,d

odd) to be
real vector spaces generated by diagrams Γ described above for n even (resp.
odd) of order o and degree d modulo subspaces generated by the relations

(1) If Γ contains more than one edge between two vertices, then Γ = 0;
(2) If n is odd and Γ and Γ′ differ by a permutation of the internal

vertices or ordering of edges, then Γ = (−1)σΓ′ in LDo,d
odd and BDo,d

odd,
where σ is the sum of the order of the permutation and the number
of edges whose orientation is different;

(3) If n is even and Γ and Γ′ differ by a permutation of the edge labels,
then Γ = (−1)σΓ′ in LDo,d

even and BDo,d
even, where σ is the order of the

permutation of the edges;

and additionally in the case of BDo,d
even and BDo,d

odd,

(4) If Γ contains a loop, or a chord connecting external vertices on a
single segment, then Γ = 0.

Define LDeven, BDeven, LDodd, and BDodd to be direct sums of vector spaces
above for all o and d.

An example of a diagram in LDodd is given in Figure 1. In case when
there is only one line segment, this gives precisely the complex associated
to knots defined in [7]. The last relation corresponds to the fact that braids
always “flow” in one direction.

When there is no danger of confusion, we will drop the subscripts and
refer to our diagram spaces as LD and BD and will only make comments
about parity when necessary.
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Figure 1. Example of an element of LDodd for m = 3. This
is not an element of BDodd because of the loops and chords
(v51, v

5
1), (v

3
3, v

3
3), (v

1
5, v

1
6), (v

2
1, v

2
3), and (v32, v

3
3).

The coboundary operator will be defined via contraction of edges. More
precisely, let e be a internal edge, a mixed edge, or an arc in a diagram Γ
and define Γ/e to be the graph obtained by contracting e. The labels in the
new diagram are as follows:

• Orientations of edges other than e remain unchanged;
• The vertex that remains after contraction retains the higher of the
two endpoint labels;

• If a vertex (resp. edge) has a label higher than the label of the vertex
that remains after contraction (resp. label of e), its label is reduced
by one.

Definition 2.4. Define the differential δ on LD and BD as a linear extension
of

δ(Γ) =
∑

internal edges, mixed edges,
or arcs e of Γ

(−1)ϵ(e)Γ/e. (2)

where ϵ(e) is a sign given as follows:

• Suppose n is odd and e in an edge or an arc, or suppose n is even
and e is an arc (but not an edge). Suppose e connects vertex i to
vertex j according to the orientation of the edge or arc. Then

ϵ(e) =

{
(−1)j , j > i,

(−1)i+1, j < i.
(3)

• Suppose n is even and e is an edge. Then

ϵ(e) = (−1)(label of e)+|vext|+1. (4)
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This differential will later correspond precisely to Stokes’ Theorem and
integration over faces of compactified configuration spaces.

Theorem 2.5. The map δ is well-defined and gives a coboundary operator
on LD and BD with respect to the grading by degree d.

Proof. This is precisely the content of Theorem 4.2 in [7]. The only adjust-
ment is to think of the set of labels of external vertices in that theorem as
partitioned into m subsets (corresponding to external vertices now lying on
m different segments rather than on only one). �

Remark 2.6. Note that δ does not affect the order of a diagram.

Remark 2.7. Cattaneo, Cotta-Ramusino, and Longoni define an algebra
structure on their diagram complex via shuffle product of external vertices.
This product turns the complex into a differential graded Hopf algebra [8,
Theorem 3.2]. The same can be done to our diagram complexes. The shuffle
product is simply defined on external vertices on each segment separately.
Thus if the sets of external vertices of Γ1 and Γ2 are (Vi1 , Vi2 , . . . , Vim) and
(Vj1 , Vj2 , . . . , Vjm) respectively, then a shuffle would be an m-tuple

(σ1(Vi1 ∪ Vj1), σ2(Vi2 ∪ Vj2), . . . , σm(Vim ∪ Vjm))

where each σk is a permutation of the union Vik ∪ Vjk which preserves the
linear order of elements of Vik and Vjk .

3. Configuration space integrals

3.1. Bundles of compactified configuration spaces over links. Since
we need to integrate over configuration spaces of points in Rn, which are
open and thus bring convergence of integrals into question, we will instead
use their Fulton-MacPherson compactifications [10, 1]. In these compact-
ifications, configuration points are allowed to come together, while their
directions and relative rates of approach are kept track of. The resulting
spaces are compact manifolds with corners which are homotopy equivalent
to the open configuration spaces. The original definition of the compactifica-
tion replaces each diagonal in the product of copies of Rn by their blowups.
We will use an alternative one which does not depend of blowups, due to
Kontsevich and Soibelman [17] and Sinha [26].

Fix n ≥ 3 and let C0(p,Rn) denote the configuration space of p points
x1, x2, . . . , xp in Rn (thus xi ̸= xj for all i ̸= j). For points xi, xj , and xk,
with 1 ≤ i < j < k ≤ p, let

vij =
xj − xi
|xj − xi|

∈ Sn−1, aijk =
|xi − xj |
|xi − xk|

∈ [0,∞],
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where [0,∞] is the one-point compactification of [0,∞). We then have a
map

γ : C(p,Rn) −→ (Rn)p × (Sn−1)(
p
2) × [0,∞](

p
3)

(x1, . . . , xp) 7−→ (x1, . . . , xp, v12, . . . , vij , . . . , v(p−1)p,

a123, . . . , aijk, . . . , a(p−2)(p−1)p). (5)

Definition 3.1. Define C[p,Rn] to be the closure of γ(C(p,Rn)) in (Rn)p×
(Sn−1)(

p
2) × [0,∞](

p
3).

Theorem 3.2 ([26], Corollary 4.5 and Lemma 4.12). Space C[p,Rn] is a
manifold with corners homotopy equivalent to the Fulton-MacPherson com-
pactification of C(p,Rn).

In addition, C[p,Rn] is a manifold with boundary components given by
points colliding as well as points escaping to infinity. The latter faces come
from the fact that the proper compactification (one that is actually compact)
of C(p,Rn) is C[{x1, . . . , xp} ∪ {∞}, Sn], where {∞} is some fixed point on
the sphere. But since Rn is Sn\{∞}, we may as well consider C[p,Rn] while
paying attention to extra faces occurring when configuration points tend to
infinity.

Codimension one faces of C[p,Rn] are given by a group of points coming
together at the same time (as opposed to some colliding, then others joining
them later).

Definition 3.3. Define the space C[j1, j2, . . . , jm, s; Ln
m,Rn] as the pullback

C[j1, j2, . . . , jm, s; Ln
m,Rn] //

��

C[j1+j2+· · ·+jm+s,Rn]

π

��
(C[j1,R]× C[j2,R]× · · · × C[jm,R])× Ln

m
ev // C[j1 + j2 + · · ·+ jm,Rn]

where π is the projection and ev is the evaluation of a link with m strands
where the first strand is evaluated on the first j1 points, second on next j2
points, and so on.

Similarly define C[j1, j2, . . . , jm, s; Bn
m,Rn] by replacing Ln

m with Bn
m in

the above diagram.

Definition 3.3 is analogous to the one for the space of knots given on page
5283 of [5]. Also analogous is the following result, which is a special case of
Proposition A.3 in [5].

Proposition 3.4. The pullbacks C[j1, j2, . . . , jm, s; Ln
m,Rn] and C[j1, j2,

. . . , jm, s; Bn
m,Rn] are smooth manifolds with corners which fiber over Ln

m

and Bn
m, respectively.
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One should think of C[j1, j2, . . . , jm, s; Ln
m,Rn] (and analogously of the

other space) as the space whose fiber over LK ∈ Ln
m is the space of j1 +

j2 + · · · + jm + s configuration points in Rn with the first j1 restricted to
lie on the first strand of a given link, the second j2 on the second, etc.,
while the last s are free to move in Rn. We will denote such a fiber by
C[j1, j2, . . . , jm, s; LK,Rn] (or C[j1, j2, . . . , jm, s; B,Rn] for B ∈ Bn

m). The
connection to the diagram complexes defined earlier should start becoming
clearer; these configuration points correspond to vertices on or off the line
segments.

Remark 3.5. As mentioned in the introduction, it would have been nice
to define a diagram complex and configuration space integrals for the space
of homotopy string links as well. However, it is not clear how to establish
Proposition 3.4 for this case. The problem is that the homotopy link space
is a subspace of the space of immersions, and Proposition A.3 in [5] requires
points in the link space to be embeddings.

3.2. Constructing cohomology classes of link spaces. We now want
to construct morphisms of chain complexes LDo,∗ → Ω(n−3)o+∗(Ln

m) and

BDo,∗ → Ω(n−3)o+∗(Bn
m), where Ω is the usual deRham algebra of differential

forms. The morphisms will be given by a modification of the Bott-Taubes
configuration space integration [5]. We will describe the construction for
LDo,d and then mention how it changes for the other space.

Let n ≥ 3. Given Γ ∈ LDo,d with ji external vertices on the ith strand
for 1 ≤ i ≤ m, s internal vertices, and |e| non-loop edges, consider the map

ϕΓ : C[j1, j2, . . . , jm, s; Ln
m,Rn] −→ S|e|(n−1)

given by the product of the normalized difference of those pairs of points in
C[j1, j2, . . . , jm, s; Ln

m,Rn] for which there exists an edge in Γ. (We first have
to label the last s points in C[j1, j2, . . . , jm, s; Ln

m,Rn] and corresponding
internal vertices in Γ the same way; this is already done for the external
vertices by construction since those are labeled in a linear order as are the
configuration points on the link strands.)

For each loop on Γ, instead of the normalized difference, we use the nor-
malized derivative of the strand that has the loop. We denote the product
of all such maps by

(∂Ln
m)Γ : C[j1, j2, . . . , jm, s; Ln

m,Rn] −→ S(# of loops in Γ)(n−1).

Now let symSn−1 be a normalized top form on Sn−1, by which we mean
that its pullback via the antipodal map preserves it, up to sign. We will
further require symSn−1 to be supported in UN and US (see (2) of Defini-
tion 1.1). Letting ω be the product of |e|+(# of loops in Γ) such top forms
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on Sn−1, define the pullback form α on C[j1, j2, . . . , jm, s; Ln
m,Rn] by

α = (ϕΓ × (∂Ln
m)Γ)

∗ω.

Finally, α can be pushed forward along the fiber of the bundle map

πL : C[j1, j2, . . . , jm, s; Ln
m,Rn] −→ Ln

m.

We will denote the resulting form by (IL)Γ. Its degree is

deg(IL)Γ = (degree of α)− (dimension of fiber of πL)

= (n− 1)|e| − (ns+ j1 + j2 + · · ·+ jm)

= (n− 1)|e| − n|vint| − |vext|
= (n− 3)o+ d

where as usual o = ordΓ and d = deg Γ.
The value of (IL)Γ on an ((n − 3)o + d)-chain sitting over LK ∈ Ln

m is
therefore

(IL)Γ(LK) =

∫
π−1
L (LK)=C[j1,j2,...,jm,s;LK,Rn]

α.

We thus get a linear map

IL : LDo,d −→ Ω(n−3)o+d(Ln
m)

Γ 7−→
(
LK 7→ (IL)Γ(LK) =

∫
C[j1,j2,...,jm,s;LK,Rn]

α

)
. (6)

The corresponding construction for Γ ∈ BDo,d is identical, except now
the total space is C[j1, j2, . . . , jm, s; Bn

m,Rn]. However, since BDo,d has no
loops, α is defined just as the pullback ϕ∗

Γω. The map corresponding to IL
will be denoted by IB.

Proposition 3.6. The maps

IL : LDo,d −→ Ω(n−3)o+d(Ln
m)

IB : BDo,d −→ Ω(n−3)o+d(Bn
m)

are compatible with the relations from Definition 2.3.

Proof. To simplify notation, denote both maps by I.
For the first relation, if a diagram has a double edge, then two of the

maps to the product of spheres are the same, and I thus factors through
S(n−1)|e|(# of loops in Γ)−1. For dimensional reasons, the pullback of ω thus
must be 0 (see, for example, [13, Proposition 5.24] for details).

It is also clear that I respects the orientation relations (2) and (3) since
permuting the labels of the configuration points off the link (these corre-
spond to internal vertices) may change the orientation of the fibers π−1

L (LK)



252 ISMAR VOLIĆ

for n odd; changing edge orientations composes ϕΓ with some number of an-
tipodal maps which may introduce a sign for n odd; and permuting the edge
labels permutes the various wedge factors symSn−1 in ω and may introduce
a sign for n even. All the signs in the diagram complexes have been defined
to be compatible with the corresponding sign changes in I. �

The following is the main theorem of the paper.

Theorem 3.7. Let m ≥ 1. For n > 3, the maps IL and IB are morphisms
of cochain complexes.

Remark 3.8. This is a generalization of the same statement for knots,
namely Theorem 1.1 in [7].

Proof. Consider first the map IL. The differential in Ω(n−3)o+d(Ln
m) is given

by Stokes’ Theorem which says that

d(IL)Γ = π∗dα−
∫
∂C[j1,j2,...,jm,s;LK,Rn]

α.

The first term is zero since α is closed. The second is the sum of the push-
forwards of α along all the codimension one boundaries of C[j1, j2, . . . , jm, s;
LK,Rn] (to which α extends smoothly; see [5, 31]).

We identify three types of codimension one boundary:

• principal faces, characterized by two points coming together;
• hidden faces, characterized by more than two points coming together;
• faces at infinity, characterized by one or more points tending to
infinity.

The differential in LDo,d has been defined so as to correspond precisely to
certain principal faces. Namely, for Γ ∈ LDo,d, (IL)dΓ is the form obtained
by adding the integrals of α over all principal faces of C[j1, j2, . . . , jm, s; Ln

m,
Rn]. We just need to show that the integral along those principal faces which
do not share a mixed or internal edge is zero. This is accomplished by
noting that, if x1 and x2 collide and there is no map keeping track of the
direction between them, then the restriction of the map ϕΓ×(∂Ln

m)Γ to that
principal face, which we will denote by ∂x1=x2C[j1, j2, . . . , jm, s; LK,Rn],
factors through a space in which x1 and x2 are allowed to pass through each
other. In other words, let C ′[j1, j2, . . . , jm, s; Ln

m,Rn] be the space where
the x1 = x2 diagonal has not been blown up (or map γ has been modified
appropriately). Then we have a factorization

∂x1=x2C[j1, j2, . . . , jm, s; LK,Rn]

,,XXXXXXXXXXXXXXXXXXXXXXX

(ϕΓ×(∂Ln
m)Γ)|x1=x2 // S(|e|+(# of loops in Γ))(n−1)

∂x1=x2C
′[j1, j2, . . . , jm, s; LK,Rn]

33ggggggggggggggggggggg
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The dimension of ∂x1=x2C
′[j1, j2, . . . , jm, s; LK,Rn] is strictly less than

that of ∂x1=x2C[j1, j2, . . . , jm, s; LK,Rn] since n > 3 (x1 and x2 coming
together in the first space is a boundary of codimension at least 3). Thus α
must be zero.

Note that this argument works any time the subset of colliding vertices
can be broken up into two connected subsets. Details in the case of knots and
n = 3 can be found in [31, Proposition 4.1], but the statement generalizes
easily to our case.

To prove the theorem, it then remains to show that the integrals along
hidden faces and faces at infinity vanish.

Vanishing along hidden faces: The proof for the case of knots [7, Theorem
A.6] applies in an identical way here. It is important to note that this is
where the assumption n > 3 is needed (the rest of the arguments work for
n = 3 as well).

Vanishing along faces at infinity: This is essentially the content of [29,
Lemma 3.9], which is the same statement for knots. The only new kind
of face at infinity is one where two external vertices on different strands
escape to infinity. But then the vector between them is constant in the limit
(since our links are linear outside a compact set) and so the restriction of
ϕΓ×(∂Ln

m)Γ to this face factors through a point. The pullback α again must
be zero.

The arguments for IB are identical, except the last relation from Defi-
nition 2.3 has to be taken into account. But this is immediate since the
condition (2) of Definition 1.1 means that, if x1 and x2 are points on the
same braid strand, then the vector (x1 − x2)/|x1 − x2| is never in UN or
US , and therefore the integral of the pullback of the normalized top form
concentrated in those neighborhoods via this map must be zero. One has
such an integral precisely when there is a chord on a single line segment in
a diagram in BDo,d, in which case the diagram is set to zero. �
Remark 3.9. Changing the form symSn−1 to another symmetric form with
support in UN and US does not change the resulting cohomology class as
the difference of integrals along the two forms for any diagram Γ is exact [7,
Proposition 4.5].

It should be clear that the maps IL and IL are compatible with the usual
inclusions of long knots and braids into links. Namely, with Kn as before
denoting the space of long knots in Rn, one has a map

Kn −→ Ln
m

given by replacing the first strand of the long unlink by a long knot (scaled
sufficiently so that it is away from the rest of the strands), and the induced
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quotient map on deRham algebras

Ω∗(Ln
m) −→ Ω∗(Kn).

Associated to Kn, one also has the diagram complex D of Cattaneo, Cotta-
Ramusino, and Longoni [7] mentioned in the introduction, which is defined
exactly as LD except that it consists of diagrams with only one line segment
which contains all external vertices. There is thus an inclusion

D −→ LD

given by replacing the first segment of the empty diagram by a given diagram
in D. Further, the integration map in [7]

IK : D −→ Ω∗(Kn)

is defined exactly as ours. Putting this together, we get that the composed
map

D −→ LD −→ Ω∗(Ln
m) −→ Ω∗(Kn)

is precisely IK.
The situation is exactly the same for the inclusion of braids into links,

i.e. the classes defined by IL and IB map to each other in a natural way.

4. The case n = 3

The dimension n = 3 is of course in many respects the most interesting
one, and we wish to pay attention to what classes in degree zero, or link
invariants, our configuration space integrals might produce. As it turns out,
they give all finite type, or Vassiliev, invariants. This is the subject of section
4.3 with some preliminary results about the diagram complexes and certain
faces of compactified configuration spaces associated to this case established
in sections 4.1 and 4.2.

4.1. Trivalent diagrams. To see what link invariants, i.e. elements of
H0(L3

m) and H0(B3
m), our integrals generate, first note that if n = 3, then

to obtain classes in H0, we must set d = 0. It is a simple combinatorial
exercise to see that this forces diagrams in both of our diagram complexes
to have trivalent internal and univalent external vertices (where we do not
count arcs emanating from external vertices into their valence, only edges).
Note also that such a graph cannot have loops. Its order is then half the
total number of vertices. Such diagrams are known as trivalent diagrams.
Before we state the main results about them which are of interest here, it
is convenient to identify H0(LDo,0) and H0(BDo,0) with their duals (this is
fine since we have a basis, namely the diagrams), in order to connect to the
theory of finite type invariants in Section 4.3. We then have



COHOMOLOGY OF LINKS VIA CONFIGURATION SPACE INTEGRALS 255

Theorem 4.1. The cohomology group H0(LDo,0) is isomorphic to the dual
of the subspace of trivalent diagrams LDo,0 in LDo,d modulo STU and 1T
relations pictured in Figures 2 and 3.

The result is the same for H0(BDo,0) except the 1T relation is not needed.

= 0

i

j(−1)j +(−1)i+1 +(−1)i+1

i+ 1i i i+ 1

Figure 2. STU relation. No other edges connect to the
pictured vertices and the diagrams are same outside pictured
portions.

i+ 1i

= 0

Figure 3. 1T relation. The rest of the diagram is entirely
outside the pictured portion.

Remark 4.2. For the braid case, 1T relation is unnecessary since those
diagrams do not have chords with endpoints on the same segment.

Proof. The proof is immediate from considering what the adjoint to the
differential δ must be. Since δ identifies vertices, its adjoint “blows them
up” in all possible ways. Thus blowing up an external vertex with two edges
emanating from it gives the STU relation and blowing up a vertex with a
loop gives the 1T relation. It turns out one need not consider the blowups
of internal vertices, since the relation in that case (so-called IHX relation)
follows from the STU relation [3, Theorem 6]. More details in the case of
knots can be found in [20, Section 3]. �
4.2. Anomalous faces. Using maps IL and IB, we want to construct maps

I∗L : H
0(LDk,0) −→ H0(L3

m)

I∗B : H
0(BDk,0) −→ H0(B3

m).

However, the proof that the integrals along hidden faces vanish for triva-
lent diagrams and n = 3 breaks down for the special face when all the points
in a single (or more) isolated strand component of C[j1, j2, . . . , jm, s; LK,Rn]
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or C[j1, j2, . . . , jm, s; B,Rn] come together. Such a face is called anomalous.
By such a component we mean a subset of vertices corresponding to a con-
nected component of a diagram Γ all of whose external vertices are on a
single strand, and the arcs between those external vertices do not contain
external vertices of any other components. In other words, an anomalous
face has a subset of the configuration points colliding, but there is no map
measuring the direction between a point in this subset and a point outside
the subset. It should be clear why external vertices are required to lie on a
single segment; configuration points on link components can only collide if
they lie on the same strand.

Notice that if Γ has such a component Γstr, then by Fubini’s Theorem we
have

IΓ = IΓstrIΓ\Γstr
,

where Γ \ Γstr denotes Γ with all the vertices and edges in Γstr removed.
We can thus without loss of generality assume from now on that a diagram
giving rise to an anomalous face has one connected component all of whose
external vertices are on a single line segment. This is why anomalous faces
can be regarded as a knotting, rather than linking, phenomenon.

To fix the contribution of the anomalous faces, one produces, for each
Γ, a correction term. By the above remarks, the computation of this term
reduces to its computation in the case of knots. This was done in [27]
(see also [31]). Adapting the notation to the case of links and braids, the
reformulation of those results is as follows. It is important to note that one
now needs to use a rotationally invariant volume form on S2 rather than
one concentrated around the poles.

Proposition 4.3. For n = 3,

• if Γstr ∈ LDk,0 contains a chord, then the pushforward of the restric-
tion of IL to the anomalous face vanishes [31, Corollary 4.3]. (Recall
that diagams in BDk,0 do not contain chords on single strands.)

• if Γstr ∈ LDk,0 does not contain a chord or if Γstr ∈ BDk,0, then
the pushforward of the restriction of IL or IB to the anomalous face
equals

µΓstr

∫
C[1,0;K,R3]∼=C(1,K)∼=K

(
K ′

|K ′|

)∗
volS2 (7)

where
– µΓstr is a real number which depends on Γstr;
– K is the strand corresponding to the segment with all the exter-

nal vertices in Γstr and K ′ is its derivative;
– volS2 is the rotationally invariant normalized top form on S2

[31, Proposition 4.8].
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By the discussion above, the correction term in the case of a diagram
which was not necessarily concentrated on a single segment would, again by
Fubini’s Theorem, be a product of correction terms for each such component
of the diagram. The integral over the face which has configuration points
from two or more such components colliding does not have to be taken into
account; any time a subset of the colliding vertices can be broken up into
two connected subsets, the integral is zero (see proof of Theorem 3.7).

Remark 4.4. Note that, in case of braids,K is necessarily the unknot. Thus
understanding the anomaly in the case of braids amounts to understanding
configuration space integrals for the unknot. Also note that, if we could have
used a bump form as in the previous section to establish this proposition, the
anomalous face would not be an issue for braids. Namely, since the derivative
along each component of the braid has positive first component, the integral
from equation (7) would be zero since the bump form is concentrated at the
poles.

Now recall the definition of the maps IL and IB from equation (6). Using
Proposition 4.3, we get

Theorem 4.5. The restriction of the map

IL : LDk,0 −→ Ω0(L3
m)

given by

Γ 7−→

{
IL(Γ)− µΓ

∫
C[2,0;K,R3]≃C[2,K]

(
x1−x2
|x1−x2|

)∗
volSn−1 , Γ = Γstr;

IL(Γ), otherwise

to the anomalous face of each diagram Γ ∈ LDk,0 is zero. Here Γstr has all
its external vertices on one strand and it has no chords. As before, K is the
strand of LK corresponding to the segment on which Γstr is concentrated.

The same statement is true for the map

IB : BDk,0 −→ Ω0(B3
m)

defined as above but with IL replaced by IB and Γ ∈ BDk,0.

Proof. We give the proof for the case of IL. The argument is the same for
IB.

If Γ is not concentrated on one strand (i.e. not all its external vertices are
on one strand), then it has no anomalous face and Theorem 3.7 shows that
the pushforward along all non-principal faces vanishes.

If Γ is concentrated on one strand and it has a chord, then the pushforward
along the anomalous face vanishes by Proposition 4.3.

If Γ is concentrated on one strand and it does not have a chord, to find
the correction to IL, by Proposition 4.3 we need a space whose boundary
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is C[1, 0;K,R3] and a map which becomes the derivative on that boundary.
But this space is simply the configuration space of two points on K and
the map is the normalized difference of those points. This is precisely the
integral ∫

C[2,0;K,R3]≃C[2,K]

(
x1 − x2
|x1 − x2|

)∗
volSn−1 (8)

from the statement of the theorem. The correction coefficient µΓ comes from
Proposition 4.3. �
Remark 4.6. It is an open question whether µΓ = 0, but some computa-
tions done by D. Thurston in low degrees in the knot case suggest that it
is.

We now have

Theorem 4.7. Let m ≥ 1. There exist maps

I
∗
L : H

0(LDk,0) −→ H0(L3
m)

W 7−→
(
LK 7−→

∑
Γ∈LDk,o

W (Γ)(IL)Γ(LK)

)
and

I
∗
B : H

0(BDk,0) −→ H0(B3
m)

W 7−→
(
B 7−→

∑
Γ∈BDk,o

W (Γ)(IB)Γ(B)

)
.

Proof. We need to show that the integrals along all faces of Γ vanish or
cancel out.

For principal faces where points which do not share an edge collide, com-
ments from the proof of Theorem 3.7 apply. For those that do, there are
always three diagrams which differ either as in STU (or the IHX) rela-
tions. The integrals along the faces where each of the two pictured vertices
in STU come together are the same. The signs of the integrals match the
signs in the relation. Thus these contributions cancel in the sum. More
details about this in the case of knots can be found in [31, Section 4.4]. In
fact, the arguments are identical in the case of links.

For non-anomalous hidden faces, the argument depends on enumerating
the possibilities for the vertex which has an edge that is not involved in
the collision (and there is one since our diagrams are connected and not all
points are colliding). The fact that the valence of any vertex is at most three
is crucial for this to work. Details can be found in [31, Proposition 4.4].

For faces at infinity, the same argument as in Theorem 3.7 works.
Finally, the anomalous face is taken care of by definitions of IL and IB. �
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4.3. Finite type invariants of links and braids. Finite type invariants
have received much attention in recent years because of the many connec-
tions they have to physics, 3-manifold theory, etc. Their study was initiated
by Vassiliev [28] who came across them by studying embeddings as com-
plements of immersions. Kontsevich [15] exhibited an isomorphism between
finite type invariants of knots and the dual of trivalent diagrams. This is
now known as the fundamental theorem of finite type theory. An alternative
proof of this theorem uses configuration space integrals [27] (also see [31] for
details). Theorem 4.11 below is a direct generalization of that statement to
spaces of links.

The goal of this section is to show that the elements of H0(L3
m) and

H0(B3
m) which arise via the maps IL and IB from Theorem 4.7 are precisely

finite type link invariants. We first briefly review some definitions and results
from finite type theory.

Define a k-singular link to be a link as usual except for a finite number of
double points where the derivatives are independent. For L3

m, the strands
involved in a singularity can come from a single strand or two different
strands, while for B3

m, they necessarily come from different strands (as braids
always “move in the same direction”).

Given a link invariant V ∈ H0(L3
m) or V ∈ H0(B3

m), extend it to k-
singular links via repeated use of the Vassiliev skein relation from Figure 4.

)
− V

()
= V

( )
V
(

Figure 4. Skein relation.

The pictures represent a neighborhood of a singularity, and outside of it,
the three links are identical. The two pictures on the right are called reso-
lutions of the singularity. The order in which the singularities are resolved
does not matter because of the sign conventions.

Definition 4.8. Link invariant V is a finite type k invariant (or Vassiliev
of type k) if it vanishes on links with k + 1 double points.

Let LVk and BVk be the collections of all type k invariants for the link
space and the braid space, respectively, and note that LVk−1 ⊂ LVk and
BVk−1⊂BVk. It is easy to see that the value of a type k invariant on a k-
singular link depends only on the placement of singularities and not on the
way

⨿
mR is mapped to R3. This information is encoded by chord diagrams

of order k, which are our usual diagrams except they have exactly 2k external
vertices paired off by k chords and no internal vertices. Denote by CLDk,0
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and CBDk,0 the subspaces of LDk,0 and BDk,0, respectively, generated by
chord diagrams of order k.

Now consider the four-term (4T ) relation pictured in Figure 5 and recall
the 1T relation from Figure 3. Define spaces of weight systems of order k,
denoted by LWk and BWk, to be

LWk = (CLDk,0/(4T, 1T ))∗ and BWk = (CBDk,0/4T )∗

where ∗ denotes the dual vector space.

Remark 4.9. As before, it is not necessary to use the 1T relation in the
braid case since those diagrams do not contain chords on single strands.

jj + 1

= 0+(−1)j+1 +(−1)k +(−1)k(−1)j+1

i

k + 1

j j

i

k + 1

i

k

j

k + 1 k

k + 1

i

j + 1

Figure 5. 4T relation. No other edges connect to the pic-
tured vertices and the diagrams are same outside pictured
portions. In the case of L3

m, the three subsegments need not
lie on distinct segments. In particular, when all the external
vertices are on a single segment, we get the usual 4T relation
for knots.

The following was established by Bar-Natan, [3, Theorem 6], in case of
knots (i.e for the diagram complex D). The proof is identical for the case of
links and braids, so that we get

Theorem 4.10. There are isomorphisms

H0(LDk,0) ∼= LWk and H0(BDk,0) ∼= BWk.

We now have the main theorem of this section.

Theorem 4.11. The maps I
∗
L and I

∗
B give isomorphisms

LWk
∼= LVk/LVk−1 and BWk

∼= BVk/BVk−1

between spaces of weight systems and finite type invariants of the two link
spaces.

Proof. We consider the case of I
∗
L. The braid case is identical. We have

from Theorem 4.7 a map

I
∗
L : LWk −→ H0(L3

m).
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(Even though W ∈ LWk is now a priori defined only on chord diagrams,
it can be extended uniquely to trivalent diagrams via isomorphism from
Theorem 4.10.) We want to prove that this map is an isomorphism onto
those finite type k elements in H0(L3

m) which do not come from finite type
k − 1 elements.

To see that the map lands in LVk/LVk−1, consider a k-singular link
LKk with singularities as prescribed by some chord diagram Γ0 ∈ CLDk,o

(i.e. chords connect those points on the segments of Γ0 which, after those
segments have been identified with m copies of R and mapped to R3, make

up the singularities). Now consider all the resolutions LK1
k , LK

2
k , . . . , LK

2k

k

of LKk. We want to show that the values of I
∗
L cancel or vanish over all

Γ ∈ LDk,o and all resolutions.
First observe that we can choose the resolutions so they only differ in k

disjoint balls of arbitrarily small radius. Then the value of (IL)Γ0 on each of
the 2k resolutions of LKk is 1 or −1 because each of the k maps between 2k
configuration points on the resolutions can point either to the north pole or
the south pole inside each ball. Those integrals thus cancel out. Note that
this would not happen for any chord diagram with fewer than k chords.

The argument for diagrams that are different from Γ0 is essentially that
the vectors can never point to the poles inside the resolution balls at the
same time. So at least one vector must point from one ball to the other.
The difference, over all resolutions, can then be made arbitrarily small.

What remains to see is that I
∗
L is an isomorphism onto LVk/LVk−1. This

is accomplished by noticing that there is a map

LVk −→ LWk

V 7−→ f

where f is given by

f(Γ) = V (LKΓ).

Here LKΓ is any link with k singularities as prescribed by the chord diagram
Γ (remember that Γ has k chords pairing off 2k external vertices; these
points are to form singularities after the m copies of R, which correspond to
diagram segments, are mapped to R3). This is a well-defined map because,
as noted before, the value of a type k invariant on a k-singular link only
depends on the placement of singularities. The kernel of this map is by
definition precisely LVk−1.

The claim now is that this map and I
∗
L are inverses. The proof of this is

identical to the case of knots, which is Theorem 5.3 in [31] (which contains
more details about the first part of the proof as well), and does not amount
to much more than unravelling of the definitions. The translation to the
case of links from the case of knots is thus left to the reader. �



262 ISMAR VOLIĆ
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