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AN INSTRUCTIVE TREATMENT OF A
GENERALIZATION OF GǍVRUŢǍ’S STABILITY

THEOREM

ESZTER GSELMANN AND ÁRPÁD SZÁZ

Abstract. We prove several useful theorems on Hyers sequences and
their pointwise limits in quite natural ways which make a straightforward
generalization of Gǎvruţǎ’s stability theorem rather plausible.

Introduction

As M. Kuczma [28, p. 424] already noted, the first results on approxi-
mately additive functions were obtained by Gy. Pólya and G. Szegő [34,
Part I, Ch. 3, Problem 99] in 1924 and D.H. Hyers [20] in 1941. The first
two authors considered only functions of N to R . While, the latter author,
answering a question of S. M. Ulam, proved a somewhat different form of
the following

Theorem 1. If f is a function of one Banach space X to another Y such
that

‖ f ( x + y )− f (x)− f (y) ‖ ≤ ε

for all x , y ∈ X and some ε ≥ 0 , then there exists a unique additive
function g of X to Y such that

‖ f (x)− g (x) ‖ ≤ ε

for all x ∈ X . Moreover, g (x) = lim
n→∞ 2−n f

(
2n x

)
for all x ∈ X .

Hyers’s theorem has later been generalized by several authors in various
ways. First of all, in 1950 T. Aoki [1] and independently in 1978 Th.M.
Rassias [37] proved stability theorems for additive and linear mappings,
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respectively, by permitting the Cauchy difference to become unbounded.
They assumed that

‖ f ( x + y )− f (x)− f (y) ‖ ≤ M
( ‖x ‖ p + ‖ y ‖ p

)

for all x , y ∈ X and some M ≥ 0 and 0 ≤ p < 1 .
Following the innovative approach of Th.M. Rassias, in 1982 J. M. Rassias

[35] also proved a stability theorem for linear mappings by replacing the sum
of the above two norms by their product. In [36], he also considered the
more general factor ‖x ‖ p1 ‖ y ‖ p2 with 0 ≤ p1 + p2 < 1 . While, the
corresponding generalization for the case of the sum of the two norms was
only considered in [24] by G. Isac and Th.M. Rassias.

The results and problems, and the scientific activity, of Th. M. Rassias
motivated several mathematicians to pursue intensive investigations in the
stability of various functional equations and inequalities. These have led
to an extensive theory. The interested reader can get a rapid overview on
the subject by consulting the books of D. H. Hyers, G. Isac and Th.M.
Rassias [21], S.-M. Jung [25], and S. Czerwik [6], or the survey papers of
D.H. Hyers and Th. M. Rassias [22], G. L. Forti [9], R. Ger [16], and L.
Székelyhidi [52].

Curiously enough, in 1951 D. G. Bourgin [5] already remarked that a
direct generalization of Hyers’s theorem can also be obtained by replacing
ε by the more general quantity ψ (x, y). However, such a generalization
of Hyers’s theorem was only proved in 1994 by P. Gǎvruţǎ [12]. ( For
some more general results, see Forti [10] and Grabiec [19] .) As a natural
extension of Th.M. Rassias’s theorem, Gǎvruţǎ proved a somewhat different
form of the following

Theorem 2. If f is a function of a commutative group U to a Banach
space X such that

‖ f ( u + v )− f (u)− f (v) ‖ ≤ Φ(u , v )

for all u , v ∈ X and some function Φ of U 2 to X , with

Ψ( u , v ) =
∞∑

n=0

1
2n

Φ
(
2n u , 2n v

)
< +∞

for all u , v ∈ U , then there exists a unique additive function g of U to
R such that

‖ f (u)− g (u) ‖ ≤ 1
2

Ψ ( u , u )

for all u ∈ U . Moreover, g is given by the same formula as in Theorem 1.

In the present paper, we shall prove the following counterpart of a straight-
forward generalization of Gǎvruţǎ’s theorem.
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Theorem 3. If f is a function of a semigroup U to a Banach space X
such that ∥∥ f ( 2 u )− 2 f (u)

∥∥ ≤ ϕ (u)
for all u , v ∈ X and some function ϕ of U to R , with

ψ ( u ) =
∞∑

n=0

1
2n

ϕ
(
2n u

)
< +∞

for all u ∈ U , then there exists a unique 2–homogeneous function g of U
to X such that

‖ f (u)− g (u) ‖ ≤ 1
2

ψ (u)

for all u ∈ U . Moreover, g is given by the same formula as in Theorem 1.

A straightforward generalization of Gǎvruţǎ’s theorem can be easily de-
rived from this theorem. However, the novelty of our paper lies not in
Theorem 3, but in the numerous auxiliary notions and results which make
the subject rather plausible.

1. Additive groupoids and functions

Instead of groupoids, it is usually sufficient to consider only semigroups.
However, several definitions on semigroups can be naturally extended to
groupoids.

Definition 1.1. If U is a groupoid and u ∈ U , then we define 1 u = u .
Moreover, if n ∈ N such that nu is already defined, then we define

( n + 1 ) u = nu + u .

Definition 1.2. A function f of one groupoid U to another V is called
additive if

f ( u + v ) = f (u) + f (v)
for all u , v ∈ U .

Theorem 1.3. If f is a function of N to a semigroup U such that

f (n + 1 ) = f (n) + f (1)

for all n ∈ N , then f is already additive.

Proof. If m ∈ N , then f ( m + 1 ) = f (m) + f (1) . Moreover, if n ∈ N
such that f ( m + n ) = f (m) + f (n) , then we also have

f
(
m + ( n + 1 )

)
= f

(
( m + n ) + 1

)
= f ( m + n ) + f (1) =

=
(
f (m)+ f (n)

)
+f (1) = f (m)+

(
f (n)+f (1)

)
= f (m)+f ( n+1 ) .

¤
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Corollary 1.4. If U is a semigroup, then for any u ∈ U and m, n ∈ N
we have

( m + n ) u = mu + nu .

Proof. Let u ∈ U , and define f (n) = nu for all n ∈ N . Then, the
hypothesis of Theorem 1.3 is satisfied. Therefore, f is additive, and thus
the required assertion is also true. ¤
Definition 1.5. A function f of one groupoid U to another V is called n–
homogeneous, for some n ∈ N, if

f ( nu ) = nf (u)

for all u ∈ U . Moreover, f is called N-homogeneous if it is n–homogeneous
for all n ∈ N .

Theorem 1.6. If f is an additive function of U to V , then f is N–
homogeneous.

Proof. If u ∈ U , then f ( 1 u ) = f (u) = 1 f (u) . Moreover, if n ∈ N such
that f ( nu ) = n f (u) , then we also have

f
(
( n+1 )u

)
= f (nu+u ) = f (nu )+f (u) = nf (u)+f (u) = (n+1 )f (u).

¤
Corollary 1.7. If U is a semigroup, then for any u ∈ U and m, n ∈ N
we have

( nm ) u = n ( mu ) .

Proof. If u ∈ U and f (u) = nu for all n ∈ N , then by Corollary 1.4
f is additive. Therefore, by Theorem 1.6, f is N–homogeneous. Thus, the
required assertion is also true. ¤
Theorem 1.8. If ( fn)∞n=1 is a sequence of functions of a groupoid U to a
commutative semigroup V such that f1 is additive and

fn+1 = fn + f1

for all n ∈ N , then fn is additive for all n ∈ N .

Proof. If n ∈ N such that fn is additive, then

fn+1( u+v ) = fn( u+v )+f1( u+v ) =
(
fn(u)+fn(v)

)
+

(
f1(u)+f1(v)

)

=
(
fn(u) + f1(u)

)
+

(
fn(v) + f1(v)

)
= fn+1(u) + fn+1(v)

for all u , v ∈ U . Therefore, fn+1 is also additive. ¤
Corollary 1.9. If U is a commutative semigroup, then for any u, v ∈ U
and n ∈ N we have

n ( u + v ) = n u + n v .
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Proof. Define fn(u) = nu for all u ∈ U and n ∈ N . Then, the hypotheses
of Theorem 1.8 are satisfied. Therefore, fn is additive for all n ∈ N . Thus,
the required assertion is also true. ¤

Remark 1.10. A commutative group U can be made a module over the
ring Z of integers by using the definitions 0u = 0 and (−n ) u = −( nu )
for all u ∈ U and n ∈ N .

Moreover, U can be sometimes extended to a vector space V over the field
Q of rationals by using the quotients u/k = { ( l , v ) ∈ Z×U : l u = k v }
with u ∈ U and 0 6= k ∈ Z .

Remark 1.11. In the sequel, K will denote any one of the number fields
Q , R , and C . Moreover, we shall only consider vector spaces over K .

Note that if X is a vector space then 1x = x and (n + 1 ) x = nx + x ,
and moreover 0x = 0 and (−n ) x = −nx for all x ∈ X and n ∈ N .
Therefore, the two possible definitions for k x , with k ∈ Z and x ∈ X ,
coincide.

2. The associated Hyers sequences

According to Hyers’s paper [20], we may naturally introduce the following

Definition 2.1. If f is a function of a groupoid U to a vector space X ,
then we define

fn(u) =
1
2n

f
(
2n u

)

for all u ∈ U and n ∈ N . The sequence ( fn)∞n=1 is called the Hyers
sequence associated with f .

Remark 2.2. In accordance with this definition, sometimes we shall also
use the notation f0 = f .

Hyers’s sequences were generalized in 1991 by Th.M. Rassias [38] who
replaced the number 2 by an integer k > 2 .

By using the corresponding definitions, we can easily prove the following
theorems.

Theorem 2.3. If f and g are functions of a groupoid U to a vector space
X over K and λ ∈ K , then for any n ∈ N we have

(1) ( f + g )n = fn + gn ; (2) (λ f )n = λ fn .

Theorem 2.4. If f and g are functions of a groupoid U to R , then

f ≤ g implies fn ≤ gn

for all n ∈ N .
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Theorem 2.5. If f is a function and ( f(ν))∞ν=1 is a sequence of functions
of a groupoid U to a normed space X , then

f = lim
ν→∞ f(ν) implies fn = lim

ν→∞
(
f(ν)

)
n

for all n ∈ N .

Proof. Namely, if limν→∞ f(ν)(u) = f (u) for all u ∈ U , then we also
have

lim
ν→∞

(
f(ν)

)
n
(u) = lim

ν→∞
1
2n

f(ν)

(
2n u

)
=

1
2n

f
(
2n u

)
= fn(u)

for all u ∈ U and n ∈ N . ¤

Now, as an immediate consequence of Theorems 2.3 and 2.5, we can also
state

Corollary 2.6. If f is a function and ( f(ν))∞ν=1 is a sequence of functions
of a groupoid U to a normed space X , then

f =
∞∑

ν=1
f(ν) implies fn =

∞∑
ν=1

(
f(ν)

)
n

for all n ∈ N .

Concerning Hyers’s sequences, we can also easily prove the following the-
orems.

Theorem 2.7. If f is a function of a groupoid U to a vector space X and
g is a function of X to another vector space Y , then for any n ∈ N we
have

( g ◦ f )n = gn ◦ fn .

Theorem 2.8. If f is a function of a semigroup U to a vector space X ,
then for any n , m ∈ N we have

(
fn

)
m

= fn+m .

Proof. By Definition 2.1 and Corollary 1.7, it is clear that

(
fn

)
m

(u) =
1

2m
fn

(
2m u

)
=

1
2m

(
1
2n

f
(

2n
(
2mu

)))

=
(

1
2m

1
2n

)
f
( (

2n 2m
)
u

)
=

1
2m+n

f
(
2n+m u

)
= fn+m(u)

for all u ∈ U . ¤

In particular, it is also worth noticing that we also have
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Corollary 2.9. If f is a function of a semigroup U to a vector space X ,
then for any u ∈ U and n ∈ N we have

fn( 2 u ) = 2 fn+1(u) .

Proof. By Definition 2.1 and Theorem 2.8, it is clear that

fn( 2 u ) = 2
1
2

fn ( 2 u ) = 2
(
fn

)
1
(u) = 2 fn+1(u) .

¤

Remark 2.10. If f is a function of a groupoid U to a vector space X ,
then by the corresponding definitions we also have f0( 2 u ) = 2 f1(u) for
all u ∈ U .

As a useful consequence of the corresponding definitions, we also have

Theorem 2.11. If f is a function of a groupoid U to a vector space X ,
then the following assertions are equivalent :

(1) f1 = f ; (2) f is 2–homogeneous .

Proof. For any u ∈ U , we have

f1(u) = f (u) ⇐⇒ 1
2

f ( 2 u ) = f (u) ⇐⇒ f ( 2 u ) = 2 f (u).

¤

Hence, by using Theorem 2.8, we can easily get the following

Theorem 2.12. If f is a 2-homogeneous function of a semigroup U to a
vector space X , then fn = f for all n ∈ N .

Proof. By Theorems 2.8 and 2.11, for any n ∈ N , we have

fn+1 = f1+n =
(
f1

)
n

= fn .

Hence, by induction, it is clear that fn = f1 = f also holds. ¤

Remark 2.13. Note that this theorem can be applied to additive functions
since they are in particular 2–homogeneous.

Moreover, it is also worth noticing that if X is a normed space and
p (x) = ‖x ‖ for all x ∈ X , then by the above theorem pn = p for all
n ∈ N .
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3. Regular and normal functions

Definition 3.1. A function f of a groupoid U to a normed space X is
called regular if the limit

g
f
(u) = lim

n→∞ fn(u)

exists in X for all u ∈ U . In particular, f is called null-regular if g
f
(u) =

0 for all u ∈ U .

Remark 3.2. In addition, the function f may be naturally called uniformly
regular if the sequence ( fn) is uniformly convergent.

By using the above definition, from the corresponding results of Section
3 we can easily derive the following theorems.

Theorem 3.3. If f and h are regular functions of a groupoid U to a
normed space X over K and λ ∈ K , then f +h and λ f are also regular
functions of U to X , and

(1) g
f+h

= g
f

+ g
h
; (2) g

λf
= λ g

f
.

Theorem 3.4. If f and h are regular functions of a groupoid U to R,
then

f ≤ h implies g
f
≤ g

h
.

Theorem 3.5. If f is a regular function of a semigroup U to a normed
space X , then for any n ∈ N the function fn is also regular and

g
fn

= g
f
.

Proof. If u ∈ U , then by Definition 3.1 and Theorem 2.8 we have

g
fn

(u) = lim
m→∞

(
fn

)
m

(u) = lim
m→∞ fn+m(u) = lim

k→∞
fk(u) = g

f
(u) .

¤
Theorem 3.6. If f is a regular function of a semigroup U to a normed
space X , then g

f
is 2–homogeneous.

Proof. If u ∈ U , then by Definition 3.1 and Corollary 2.9 we have

g
f
( 2u ) = lim

n→∞ fn ( 2 u ) = lim
n→∞ 2 fn+1(u) = 2 lim

k→∞
fk(u) = 2 g

f
(u) .

¤
Theorem 3.7. If f and g are functions of a semigroup U to a normed
space X and ϕ is a function of U to R such that

(1) ‖ f (u)− g (u) ‖ ≤ ϕ (u) for all u ∈ U ;

(2) g is 2–homogeneous and ϕ is null-regular ;
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then f is regular and g
f

= g .

Proof. Define p (x) = ‖x ‖ for all x ∈ X . Then, for any u ∈ U , we have(
p ◦ ( f − g )

)
(u) =

∥∥ f (u)− g (u)
∥∥ ≤ ϕ (u) .

Hence, by Theorems 2.12, 2.3, 2.7 and 2.4, it is clear that
∥∥ fn(u)− g (u)

∥∥ =
(
p ◦ ( fn − g )

)
(u) =

(
pn ◦

(
fn − gn

))
(u) =

=
(
pn ◦ ( f − g )n

)
(u) =

(
p ◦ ( f − g)

)
n
(u) ≤ ϕn(u)

for all n ∈ N . This implies that lim
n→∞

∥∥ fn(u)− g (u)
∥∥ = 0 , and thus

g (u) = lim
n→∞ fn(u) = g

f
(u) .

¤
Corollary 3.8. If f is a function of a semigroup U to a normed space X
and ϕ is a mull-regular function of U to R , then there exists at most one
2–homogeneous function g of U to X such that

‖ f (u)− g (u) ‖ ≤ ϕ (u)

for all u ∈ U .

Definition 3.9. A regular function f of a groupoid U to a normed space
X is called normal if the sum

Sf (u) =
∞∑

n=0

(
fn(u)− g

f
(u)

)

exists in X for all u ∈ U . In particular, a normal function is called
null-normal if it is null-regular.

Remark 3.10. In addition, the function f may be naturally called uni-
formly normal if the if the series

∑
( fn − gf ) is uniformly convergent.

Theorem 3.11. If f is a normal function of a semigroup U to a normed
space X , then Sf is a null-regular function of U to X .

Proof. By Definition 3.9, we have

Sf =
∞∑

i=0

(
fi − g

f

)
.

Hence, by using Corollary 2.6 and Theorems 2.3, 2.8, 3.6 and 2.12, we can
infer that

(
Sf

)
n

=
∞∑

i=0

(
fi − g

f

)
n

=
∞∑

i=0

(
( fi)n − ( g

f
)n

)
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=
∞∑

i=0

(
fi+n − g

f

)
=

∞∑

k=n

(
fk − g

f

)
.

This implies that

lim
n→∞

(
Sf

)
n

= lim
n→∞

∞∑

k=n

(
fk − g

f

)
= 0 .

Therefore, the required assertion is also true. ¤

Remark 3.12. If in particular f is uniformly normal, then the above proof
also shows that Sf is uniformly null-regular.

4. Approximately homogeneous functions

Definition 4.1. A function f of a groupoid U to a normed group X is
called ϕ–approximately n–homogeneous, for some n ∈ N and ϕ ∈ RU , if

∥∥ f (n u )− n f (u)
∥∥ ≤ ϕ (u)

for all u ∈ U .

Remark 4.2. Now, f may be called ε–approximately n–homogeneous, for
some ε ≥ 0 , if it is ϕ–approximately n–homogeneous with ϕ = U×{ε} .

A simple reformulation of the n = 2 particular case of above definition
yields the following

Theorem 4.3. If f is a function of a groupoid U to a normed space X
and ϕ ∈ RU , then the following assertions are equivalent :

(1) f is ϕ-approximately 2–homogeneous ;
(2)

∥∥ f1(u)− f (u)
∥∥ ≤ 1

2 ϕ (u) for all u ∈ U .

Proof. For any u ∈ U , we have
∥∥ f ( 2u )− 2 f (u)

∥∥ ≤ ϕ (u)

⇐⇒
∥∥∥∥

1
2

f ( 2 u )− f (u)
∥∥∥∥ ≤ 1

2
ϕ (u) ⇐⇒ ∥∥ f1( u)− f (u)

∥∥ ≤ 1
2

ϕ (u) .

¤

As an extension of the implication (1) =⇒ (2) , we can prove the following

Theorem 4.4. If f is a ϕ–approximately 2–homogeneous function of a
semigroup U to a normed space X , then for any u ∈ U and n ∈ {0} ∪ N
we have ∥∥ fn+1(u)− fn(u)

∥∥ ≤ 1
2

ϕn(u) .
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Proof. Define p (x) = ‖x ‖ for all x ∈ X . Then, by Theorem 2.12, we have
pn = p . Moreover, by Theorem 4.3, we also have

(
p ◦ ( f1 − f )

)
(u) =

∥∥ f1(u)− f (u)
∥∥ ≤ 1

2
ϕ (u) .

Now, by Theorems 2.8, 2.3, 2.7 and 2.4, it is clear that
∥∥ fn+1(u)− fn(u)

∥∥ =
(
p ◦ ( fn+1 − fn)

)
(u) =

(
p ◦ (

( f1)n − fn

))
(u)

=
(
pn ◦ ( f1− f )n

)
(u) =

(
p ◦ ( f1− f )

)
n
(u) ≤

( 1
2

ϕ
)

n
(u) =

1
2

ϕn(u) .

¤

Corollary 4.5. If f is a ϕ–approximately 2–homogeneous function of a
semigroup U to a normed space X , then fn is ϕn–approximately 2–
homogeneous for all n ∈ N .

Proof. By Theorems 2.8 and 4.4, we have
∥∥ ( fn)1(u)− fn(u)

∥∥ =
∥∥ fn+1(u)− fn(u)

∥∥ ≤ 1
2

ϕn(u)

for all u ∈ U and n ∈ N . Therefore, by Theorem 4.3, the required assertion
is also true. ¤

By using Theorem 4.4, we can also easily prove the following more general

Theorem 4.6. If f is a ϕ-approximately 2–homogeneous function of a
semigroup U to a normed space X , then for any u ∈ U , n ∈ N and
k ∈ {0} ∪ N we have

∥∥ fn+k(u)− fk(u)
∥∥ ≤ 1

2

n+k−1∑

i=k

ϕi(u) .

Proof. By using Theorem 4.4, we can easily see that

∥∥ fn+k(u)− fk(u)
∥∥ =

∥∥∥∥
n∑

j=1

(
fj+k(u)− fj+k−1(u)

) ∥∥∥∥

≤
n∑

j=1

∥∥ fj+k(u)− fj+k−1(u) ‖ ≤
n∑

j=1

1
2

ϕj+k−1(u) =
1
2

n+k−1∑

i=k

ϕi(u) .

¤

The k = 0 particular case of this theorem immediately yields the following
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Corollary 4.7. If f is a ϕ–approximately 2–homogeneous function of a
semigroup U to a normed space X , then for any u ∈ U and n ∈ N we
have

∥∥ fn(u)− f (u)
∥∥ ≤ 1

2

n−1∑

i=0

ϕi(u) .

5. The regularity of approximately homogeneous functions

Theorem 5.1. If f is a ϕ–approximately 2–homogeneous function of a
semigroup U to a normed space X and ϕ is null-normal, then for any
u ∈ U and n ∈ N we have

lim
n→∞ ‖ fn(u)− f (u) ‖ ≤ 1

2
Sϕ(u) .

Proof. From Corollary 4.7, we can easily see that

lim
n→∞ ‖ fn(u)− f (u) ‖ ≤ lim

n→∞
1
2

n−1∑

i=0

ϕi(u)

=
1
2

lim
n→∞

n−1∑

i=0

ϕi(u) =
1
2

∞∑

n=0

ϕn(u) =
1
2

Sϕ(u) .

¤
Corollary 5.2. If f is a regular ϕ-approximately 2–homogeneous function
of a semigroup U to a normed space X and ϕ is null-normal, then for any
u ∈ U we have

‖ f (u)− g
f
(u) ‖ ≤ 1

2
Sϕ(u)

Proof. By the regularity of f and Theorem 5.1, it is clear that

‖f(u)−g
f
(u)‖ = lim

n→∞ ‖ f (u)−fn(u) ‖ = lim
n→∞ ‖ fn(u)−f (u)‖ ≤ 1

2
Sϕ(u) .

¤
Theorem 5.3. If f is a ϕ-approximately 2–homogeneous function of a
semigroup U to a Banach space X and ϕ is null-normal, then f is regular.

Proof. If u ∈ U , then by Theorem 4.6 for any k , l ∈ N , with k < l , we
have

‖ fl(u)− fk(u) ‖ ≤ 1
2

l−1∑

i=k

ϕi(u) ≤ 1
2

∞∑

i=k

ϕi(u) .

Moreover, by null-normality of ϕ , we also have
∞∑

i=0

ϕi(u) < +∞ , and hence lim
k→∞

∞∑

i=k

ϕi(u) = 0 .
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Therefore, for each ε > 0 there exists k 0 ∈ N such that for any k ∈ N ,
with k 0 ≤ k , we have

∞∑

i=k

ϕi(u) < ε .

Hence, it is clear that for any k , l ∈ N , with k 0 ≤ k , l and k ≤ l , we also
have

‖ fl(u)− fk(u) ‖ ≤ 1
2

∞∑

i=k

ϕi(u) <
1
2

ε < ε .

Therefore,
(
fn(u)

)∞
n=1

is a Cauchy sequence in X . Thus, by the complete-
ness of X , the limit

g
f
(u) = lim

n→∞ fn(u)

exists in X . This shows that f is regular. ¤
Remark 5.4. If in particular ϕ is uniformly null-normal, then we can also
prove that f is uniformly regular.

The above results allow us to easily establish the following counterpart of
a straightforward generalization of Gǎvruţǎ’s theorem [12] .

Theorem 5.5. If f is a ϕ-approximately 2–homogeneous function of a
semigroup U to a Banach space X and ϕ is null-normal, then there exists
a unique 2–homogeneous function g of U to X such that

‖ f (u)− g (u) ‖ ≤ 1
2

Sϕ(u)

for all u ∈ U . Moreover, g is the pointwise limit of the Hyers sequence
associated with f .

Proof. By Theorem 5.3, f is regular. Thus, by Definition 3.1, the limit

g
f
(u) = lim

n→∞ fn(u)

exists for all u ∈ U .
Moreover, by Corollary 5.2, we have

‖ f (u)− g
f
(u) ‖ ≤ 1

2
Sϕ(u)

for all u ∈ U . Furthermore, by Theorem 3.6, g
f

is 2–homogeneous.
Finally, by Theorem 3.11, Sϕ is null–regular. Hence, ( 1/2 )Sϕ is also

null-regular. Therefore, by Corollary 3.8, there exists at most one function
g of U to X such that

‖ f (u)− g (u) ‖ ≤ 1
2

Sϕ(u)

for all u ∈ U . Thus, the proof is complete. ¤
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Remark 5.6. If in particular ϕ is uniformly null-normal, then by Remark
6.4 we can also state that g is the uniform limit of the associated Hyers
sequence.

6. Approximately additive functions

Definition 6.1. A function f of a groupoid U to a normed group X is
called Φ–approximately additive, for some Φ ∈ RU 2

, if
∥∥ f (u + v )− (

f (u) + f (v)
) ∥∥ ≤ Φ( u , v )

for all u , v ∈ U .

Remark 6.2. Now, f may be called ε–approximately additive, for some
ε ≥ 0 , if it is Φ–approximately additive with Φ = U 2 × { ε } .

Theorem 6.3. If f is an Φ–approximately additive function of a groupoid
U to a normed group X , 1 < n ∈ N and

ϕ (u) =
n−1∑

k=1

Φ ( k u , u )

for all u ∈ U , then f is ϕ–approximately n–homogeneous.

Proof. By Definition 6.1, we evidently have
∥∥ f ( 2u )− 2 f (u)

∥∥ =
∥∥ f ( u + u )− (

f (u) + f (u)
) ∥∥ ≤ Φ( u , u )

for all u ∈ U . Therefore, the required assertion is true for n = 2 .
Moreover, if the required assertion is true for some 2 ≥ n , then we can

easily see that
∥∥ f

(
( n + 1 )u )− ( n + 1 ) f (u)

∥∥
=

∥∥ f (n u + u )− (
n f (u) + f (u)

) ∥∥ =
∥∥ f ( nu + u )− f (u)− n f (u)

∥∥
=

∥∥ f ( n u + u )− f (u)− f ( nu) + f ( nu )− n f (u)
∥∥

=
∥∥ f ( n u + u )− (

f ( nu) + f (u)
)

+ f ( nu )− n f (u)
∥∥

≤ ∥∥ f (n u + u )− (
f ( nu) + f (u)

) ‖ + ‖ f ( nu )− n f (u)
∥∥

≤ Φ( nu , u ) +
n−1∑

k=1

Φ ( k u , u ) =
n∑

k=1

Φ( k u , u )

for all u ∈ U . Therefore, the required assertion is also true for n + 1 . ¤

The n = 2 particular case of the above theorem gives the following
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Corollary 6.4. If f is an Φ–approximately additive function of a groupoid
U to a normed group X , and

ϕ (u) = Φ (u , u )

for all u ∈ U , then f is ϕ–approximately 2–homogeneous.

Remark 6.5. Therefore, the results of Sections 4 and 5, can be immediately
applied to Φ–approximately additive functions.

Concerning approximately additive functions, we can also easily prove the
following

Theorem 6.6. If f is an Φ–approximately additive function of a commu-
tative semigroup U to a normed space X , then fn is Φn–approximately
additive for all n ∈ N .

Proof. If n ∈ N and u , v ∈ U , then by the corresponding definitions and
Corollary 1.9 it is clear that

∥∥ fn( u + v )− (
fn(u) + fn(v)

) ∥∥

=
∥∥∥∥

1
2n

f
(
2n( u + v )

)−
( 1

2n
f

(
2n u

)
+

1
2n

f
(
2n v

)) ∥∥∥∥

=
1
2n

∥∥ f
(
2n u + 2n v

)− (
f

(
2n u

)
+ f

(
2n v

)) ∥∥

≤ 1
2n

Φ
(
2n u , 2n v

)
=

1
2n

Φ
(
2n ( u , v )

)
= Φn( u , v ) .

¤

From the above theorem, we can easily derive the following counterpart
of Theorem 3.6.

Theorem 6.7. If f is a regular Φ–approximately additive function of a
commutative semigroup U to a normed space X and Φ is null-regular,
then g

f
is additive.

Proof. If u , v ∈ U , then by the regularity of f , Theorem 6.6 and the
null-regularity of Φ we have

∥∥ g
f
( u + v )− (

g
f
(u) + g

f
(v)

) ∥∥
= lim

n→∞
∥∥ fn( u + v )− (

fn(u) + fn(v)
) ∥∥ ≤ lim

n→∞ Φn ( u , v ) = 0 ,

and thus g
f
( u + v ) = g

f
(u) + g

f
(v) is also true. ¤

Now, as an immediate consequence of our former results, we can also state
the following straightforward extension of Gǎvruţǎ’s theorem [12] .
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Theorem 6.8. If f is a Φ-approximately additive function of a commuta-
tive semigroup U to a Banach space X , Φ is null-regular and the function
ϕ , defined by

ϕ (u) = Φ (u , u )
for all u ∈ U , is null-normal, then there exists a unique additive function
g of U to X such that

‖ f (u)− g (u) ‖ ≤ 1
2

Sϕ(u)

for all u ∈ U . Moreover, g is the pointwise limit of the Hyers sequence
associated with f .

Proof. By Corollary 6.4, f is, in particular, ϕ–approximately 2–homoge-
neous. Therefore, by Theorem 5.5, there exists a unique 2–homogeneous
function g of U to X such that

‖ f (u)− g (u) ‖ ≤ 1
2

Sϕ(u)

for all u ∈ U . Moreover, g is the pointwise limit of the Hyers sequence
associated with f , and thus f is regular and g = g

f
. Furthermore, by

Theorem 6.7, g
f

is additive. Hence, it is clear that the required assertions
are also true. ¤
Remark 6.9. If in particular ϕ is uniformly null-normal, then by Remark
5.6 we can also state that g is the uniform limit of the associated Hyers
sequence.
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[14] P. Gǎvruţǎ, M. Hosszu, D. Popescu and C. Cǎprǎu, On the stability of Mappings and
an answer to a problem of Th.M. Rassias, Ann. Math. Blaise Pascal, 2 (1995), 55–60.

[15] R. Ger, The singular case in the stability behaviour of linear mappings, Grazer Math.
Ber., 316 (1992), 59–70.

[16] R. Ger, A survey of recent results on stability of functional equations, Proceedings of
the 4th International Conference on Functional Equations and Inequalities Pedagog-
ical University of Cracow, 1994, 5–36.

[17] R. Ger and P. Volkmann, On sums of linear and bounded mappings, Abh. Math. Sem.
Univ. Hamburg, 68 (1998), 103–108.
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[26] Z. Kaiser and Zs. Páles, An example of a stable functional equation when the Hyers
method does not work, J. Ineq. Pure Appl. Math., 6 (2005), 1–11.

[27] G.H. Kim, On the stability of functional equations with square-symmetric operation,
Math. Ineq. Appl., 4 (2001), 257–266.

[28] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities,

Polish Sci. Publ. and Univ. Ślaski, Warszawa, 1985.
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