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ON A DISCRETE HILBERT TYPE INEQUALITY WITH
NON–HOMOGENEOUS KERNEL

BISERKA DRAŠČIĆ BAN, JOSIP PEČARIĆ AND TIBOR K. POGÁNY

Abstract. New extensions are given for the discrete Hilbert type in-
equality with non–homogeneous kernel. By this, recently published re-
sults by Pogány have been improved by a Hilbert type inequalities in
homogeneous kernel case derived by Krnić and Pečarić. Mathematical
tools also used are the Dirichlet series Laplace-integral representation
and the classical Hölder inequality.

1. Introduction

Let us consider a famous discrete Hilbert inequality (or double series
theorem). Let `p be the space of all complex sequences x = (xn)∞n=1 with the
finite norm ‖x‖p := (

∑∞
n=1 |xn|p)1/p endowed. Let a = (an)∞n=1 ∈ `p, b =

(bn)∞n=1 ∈ `q be nonnegative sequences and 1/p + 1/q = 1, p > 1. Then
∞∑

m,n=1

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q , (1)

where the constant π/ sin(π/p) is the best possible [1, p. 253].
This classical inequality produced a large interest among mathematicians

and recently become one of the most frequently investigated research topics.
The standard way in deriving Hilbert’s inequality is to apply the Hölder
inequality to suitably transformed Hilbert type double sum expression, i.e.
to the bilinear form

H
a,b
K :=

∞∑

m,n=1

K(m,n) ambn (2)
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where a,b are nonnegative. K(·, ·) we call kernel function (of the double
series (2)).

So, to obtain discrete Hilbert type inequalities (or double series theorems)
one derives sharp upper bounds for H

a,b
K in terms of weighted `p-norms of

a, b.
In this article we make use an approach similar to one in [4], but instead

of Mathieu–series techniques applied in [4], we use an inequality by Krnić et
al. [2, §4, Corollary 2]. Namely, in that paper it has been proved that with
p > 1, p−1 + q−1 = 1; α, β > 0 and with a real parameter γ satisfying

(1− ν

p

)
+
− 1

q
< γ <

1
p

+
(1− ν

q

)
+

, (3)

the following inequality holds

∞∑

m,n=1

ambn

(mα + nβ)ν
≤ α−1/qβ−1/pL?

( ∞∑

m=1

m(1−ν)α+(α−1)(1−(1+γ)p)ap
m

)1/p

×
( ∞∑

n=1

n(1−ν)β+(β−1)(1−(1−γ)q)bq
n

)1/q

, (4)

where the constant

L? = B
(ν − 2 + p

p
+ γ,

ν − 2 + q

q
− γ

)
(5)

is the best possible. The condition (3) has two cases whether γ is less then
1 or greater or equal to 1. In the first case the condition comes to

1
p
− 1 < γ <

1
p
,

and in the second case

−1 < γ − 1
p

< 0.

Here, and in what follows Dλ(x) denotes the Laplace integral of the Dirichlet
series [5, §5]

Dλ(x) =
∞∑

n=1

ane−λnx = x

∫ ∞

0
e−xt

( [λ−1(t)]∑

n=1

an

)
dt (6)

for positive monotone increasing (λn)∞n=1 such that

lim
x→∞λ(x) = lim

x→∞ ρ(x) = ∞ . (7)



HILBERT TYPE INEQUALITY WITH NON–HOMOGENEOUS KERNEL 25

The internal sum we find using the suitable form of the Euler–Maclaurin
summation formula: Consider the real valued function x 7→ a(x) and sup-
pose that a ∈ C1[k, m], k, m ∈ Z, k < m. Then by the classical Euler–
Maclaurin summation formula we have

m∑

j=k

aj =
∫ m

k
a(x)dx +

1
2
(ak + am) +

∫ m

k

(
x− [x]− 1

2

)
a′(x)dx.

Introducing the operator

dx := 1 + {x} ∂

∂x
,

with obvious transformations we get the desired condensed form of the
Euler–Maclaurin summation formula

∑̀

j=k+1

aj =
∫ `

k
dxa(x) dx (k, ` ∈ Z). (8)

2. Main result

We are ready now to formulate our main result.

Theorem 1. Suppose p, r > 1, p−1 + q−1 = 1, r−1 + s−1 = 1, µ > 0, a,b
are nonnegative sequences such that

(
nB1/rap

n

)∞
n=1

∈ `r, B1 := α(1− ν) + (α− 1)
(
1− (1 + γ)r

)
,

(
nB2/sbp

n

)∞
n=1

∈ `s, B2 := β(1− ν) + (β − 1)
(
1− (1− γ)s

)
;

α, β > 0, γ satisfies (3) and λ, ρ are positive monotone increasing functions
satisfying (7), while ν > 0 is such that the series

∞∑

m,n=1

(ambn)p

(mα + nβ)ν
(9)

converges. Then
∞∑

m,n=1

ambn

(λm + ρn)µ
< Cµ,α,β

p,r (λ, ρ) ‖nB1/rap‖1/p
r ‖nB2/sbp‖1/p

s , (10)

where

Cµ,α,β
ν,p,r (λ, ρ) :=

(
α1/sβ1/r

)−p B1/p
(ν − 2 + r

r
+ γ,

ν − 2 + s

s
− γ

)

× (µq(µq + 1))1/q

(∫ ∞

λ1

∫ ∞

ρ1

∫ [λ−1(t)]
0

∫ [ρ−1(u)]
0 P (v, w) dvdw

(t + u)µq+2
dtdu

)1/q
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and

P (v, w) =
∞∑

j=0

(
ν(q − 1)

j

)
dv(vαj) dw(wβ(ν(q−1)−j)) . (11)

Moreover, Cµ,α,β
ν,p,r (λ, ρ) is the best possible.

Proof. Assume p > 1 and rewrite the Hilbert’s bilinear double sum into the
form:

∞∑

m,n=1

ambn

(λm + ρn)µ
=

∞∑

m,n=0

ambn

(mα + nβ)ν/p
· (mα + nβ)ν/p

(λm + ρn)µ

where the positive scaling parameter ν will be ordered so, that the in-
volved sums converge. Then, applying the Hölder inequality with conjugated
p, q, p > 1 we get

∞∑

m,n=1

ambn

(λm + ρn)µ
<

( ∞∑

m,n=1

ap
mbp

n

(mα + nβ)ν

)1/p( ∞∑

m,n=1

(mα + nβ)ν(q−1)

(λm + ρn)µq

)1/q

=: A
1/p
1 A

1/q
2 . (12)

To estimate A1 we apply a Hilbert type inequality with nonhomogeneous
kernel function K(m, n) = (mα+nβ)−ν derived by Krnić et al. [2, §4, Corol-
lary 2] taking in (4) certain suitable specifications such us ap

m 7→ am, bp
n 7→

bn, (r, s) 7→ (p, q). Now, making use of the mentioned inequality to A1 we
arrive at

A1 ≤ α−1/sβ−1/rB
(ν − 2 + r

r
+ γ,

ν − 2 + s

s
− γ

)

×
( ∞∑

n=1

n(1−ν)α+(α−1)(1−(1+γ)r)apr
n

)1/r

×
( ∞∑

n=1

n(1−ν)β+(β−1)(1−(1−γ)s)bps
n

)1/s

= α−1/sβ−1/rB
(ν − 2 + r

r
+ γ,

ν − 2 + s

s
− γ

)∥∥nB1/rap
∥∥

r

∥∥nB2/sbp
∥∥

s
,

where
(

1−ν
r

)
+
− 1/s < γ < 1/r +

(
1−ν

s

)
+

.
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On the other hand in estimating A2, we firstly expand the numerator
(mα + nβ)ν(q−1) into a binomial series:

A2 =
∞∑

m,n=1

∞∑

j=0

(
ν(q − 1)

j

)
mαjnβ(ν(q−1)−j)

(λm + ρn)µq

=
∞∑

j=0

∞∑

m,n=1

(
ν(q − 1)

j

)
mEnF

(λm + ρn)µq

=
1

Γ(µq)

∞∑

j=0

(
ν(q − 1)

j

) ∞∑

m,n=1

mEnF

∫ ∞

0
xµq−1e−(λm+ρn)xdx

=
1

Γ(µq)

∞∑

j=0

(
ν(q − 1)

j

) ∫ ∞

0
xµq−1

( ∞∑

m=1

mEe−λmx

)( ∞∑

n=1

nF e−ρnx

)
dx

for E = αj, F = β(ν(q − 1) − j). We apply the integral expression result
(6) to the Dirichlet series

Dλ(x) =
∞∑

m=1

mEe−λmx .

This results in

Dλ(x) =
∞∑

m=1

mEe−λmx = x

∫ ∞

0
e−xt

( [λ−1(t)]∑

m=1

mE

)
dt .

We calculate the innner–most counting sum by the Euler–Maclaurin sum-
mation formula (8). One concludes

Dλ(x) = x

∫ ∞

0
e−xt

( [λ−1(t)]∑

m=1

mE

)
dt

= x

∫ ∞

0
e−xt

(∫ [λ−1(t)]

0
dv(vE) dv

)
dt

= x

∫ ∞

λ1

∫ [λ−1(t)]

0
e−xtdv(vE) dtdv ;

similarly

Dρ(x) =
∞∑

n=1

nF e−ρnx = x

∫ ∞

ρ1

∫ [ρ−1(u)]

0
e−xudw(wF ) dudw .
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Therefore we easily deduce

A2 =
1

Γ(µq)

∞∑

j=0

(
ν(q − 1)

j

) ∫ ∞

0
xµq−1Dλ(x)Dρ(x) dx

=
1

Γ(µq)

∞∑

j=0

(
ν(q − 1)

j

) ∫ ∞

0
xµq+1

( ∫ ∞

λ1

∫ [λ−1(t)]

0
e−xtdv(vE) dtdv

)

×
(∫ ∞

ρ1

∫ [ρ−1(u)]

0
e−xudw(wF ) dudw

)
dx

=
1

Γ(µq)

∞∑

j=0

(
ν(q − 1)

j

) ∫ ∞

λ1

∫ ∞

ρ1

(∫ ∞

0
xµq+1e−x(t+u)dx

)

×
∫ [λ−1(t)]

0

∫ [ρ−1(u)]

0
dv(vE) dw(wF ) dtdudvdw

=
Γ(µq + 2)

Γ(µq)

∞∑

j=0

(
ν(q − 1)

j

)

×
∫ ∞

λ1

∫ ∞

ρ1

∫ [λ−1(t)]
0

∫ [ρ−1(u)]
0 dv(vE)dw(wF ) dvdw

(t + u)µq+2
dtdu

= µq(µq + 1)

×
∫ ∞

λ1

∫ ∞

ρ1

∫ [λ−1(t)]
0

∫ [ρ−1(u)]
0

∑∞
j=0

(
ν(q−1)

j

)
dv(vE)dw(wF ) dvdw

(t + u)µq+2
dtdu .

(13)

Since all series in A2 are convergent, so are the integral expressions as well.
So, all interchanges of the integration order are legitimate. Now, denoting
the integrand of numerator term in (13) by P (v, w) and replacing the cal-
culated A1 and A2 back to the starting inequality (12), we finish the proof
of (10).

It remains only to show that Cµ,α,β
ν,p,r (λ, ρ) is the best possible constant.

Indeed, since the Hölder inequality is sharp, and A2 is transformed only
by equalities, and the constant L? is the best possible [2], the assertion is
proved. This finishes the proof of the Theorem. ¤

Remark 1. The inequality given in [4]

∞∑

m,n=1

ambn

(λm + ρn)µ
≤ Cλ,ρ ‖n(2−r)/par‖1/r

p ‖n(2−r)/qbr‖1/r
q , (14)
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where the constant

Cλ,ρ = Cλ,ρ(p, q, r, s, µ) :=
(µs

2
(µs + 1)

)1/s
B1/r

(
1 +

r − 3
p

, 1 +
r − 3

q

)

×
( ∫ ∞

λ1

∫ ∞

ρ1

[λ−1(x)][ρ−1(y)]
(
[λ−1(x)] + [ρ−1(y)] + 2

)

(x + y)sµ+2
dxdy

)1/s

is the best possible and
∫ ∞

λ1

(
λ−1(x)

)2

xsµ/2+1
dx < ∞,

∫ ∞

ρ1

(
ρ−1(x)

)2

xsµ/2+1
dx < ∞, (15)

turns out to be a special case of (10). Indeed, let α = β = 1, γ = 0 and
ν(q − 1) = 1, that is ν = p− 1 in our Theorem 1. Thus, we conclude B1 =
B2 = 2− p, consequently the norms become ‖n(2−p)/rap‖r, ‖n(2−p)/sbp‖s in
(10). Since the numerator of A2 now equal to m + n, we can separate the
double sums into

A2 =
∞∑

m,n=1

m

(λm + ρn)µq
+

∞∑

m,n=1

n

(λm + ρn)µq

and calculate each sum exactly like in the proof of the Theorem 1:

A2 =
1

Γ(µq)

( ∫ ∞

0

( ∞∑

m=1

e−λmx
)( ∞∑

n=1

ne−ρnx
)
xµq−1dx

+
∫ ∞

0

( ∞∑

m=1

me−λmx
)( ∞∑

n=1

e−ρnx
)
xµq−1dx

)
.

The inner–most Dirichlet series have the following integral forms
∞∑

m=1

e−λmx = x

∫ ∞

0
e−xt[λ−1(t)] dt

∞∑

n=1

ne−ρnx = x

∫ ∞

0
e−ux [ρ−1(u)]([ρ−1(u)] + 1)

2
du

∞∑

n=1

e−ρnx = x

∫ ∞

0
e−xu[ρ−1(u)] du

∞∑

m=1

me−λmx = x

∫ ∞

0
e−tx [λ−1(t)]([λ−1(t)] + 1)

2
dt .

Repeating a calculation similar to one in the proof of Theorem 1, we get

A2 =
µq

2
(µq + 1)

∫ ∞

λ1

∫ ∞

ρ1

[λ−1(t)][ρ−1(u)]([λ−1(t)] + [ρ−1(u)])
(t + u)µq+2

dtdu .
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By this, the constant turns into

Cµ,1,1
p−1,p,r(λ, ρ) := B1/p

(
1 +

p− 3
r

, 1 +
p− 3

s

)(µq

2
(µq + 1)

)1/q

×
(∫ ∞

λ1

∫ ∞

ρ1

[λ−1(t)][ρ−1(u)]([λ−1(t)] + [ρ−1(u)])
(t + u)µq+2

dtdu

)1/q

.

So, switching (p, q) ↔ (r, s), we deduce the inequality (14).

3. Another extension of inequality (14)

Krnić and Pečarić obtained a result that we nicely incorporate into our
recent considerations. Under r−1 + s−1 = 1, r > 1, ν ∈ (2 −min{r, s}, 2 +
min{r, s}], for nonnegative a,b there holds true

∞∑

m,n=1

ambn

(m + n)ν
< L1‖n(1−ν)/ra‖r‖n(1−ν)/sb‖s . (16)

where the constant

L1 = B
(r + ν − 2

r
,
s + ν − 2

s

)

is the best possible, see [3, Corollary 1].

Theorem 2. Suppose p, r > 1, p−1 + q−1 = 1, r−1 + s−1 = 1, µ > 0, ν ∈
(2−min{r, s}, 2 + min{r, s}], a,b are nonnegative sequences such that

(
n(1−ν)/rap

n

)∞
n=1

∈ `r,(
n(1−ν)/sbp

n

)∞
n=1

∈ `s;

and λ, ρ are positive monotone increasing functions satisfying (7). Then
∞∑

m,n=1

ambn

(λm + ρn)µ
< Cµ,ν

p,r (λ, ρ) ‖n(1−ν)/rap‖1/p
r ‖n(1−ν)/sbp‖1/p

s , (17)

where

Cµ,ν
p,r (λ, ρ) := B1/p

(ν − 2 + r

r
,
ν − 2 + s

s

)
(µq(µq + 1))1/q

×
( ∫ ∞

λ1

∫ ∞

ρ1

∫ [λ−1(t)]
0

∫ [ρ−1(u)]
0 P (v, w) dvdw

(t + u)µq+2
dtdu

)1/q

and

P (v, w) =
∞∑

j=0

(
ν(q − 1)

j

)
dv(vj) dw(wν(q−1)−j) .

Moreover, the constant Cµ,ν
p,r (λ, ρ) is the best possible.
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Proof. By α = β = 1 the Hilbert type double sum (12) one restricts to
∞∑

m,n=1

ambn

(λm + ρn)µ
=

∞∑

m,n=0

ambn

(m + n)ν/p
· (m + n)ν/p

(λm + ρn)µ
. (18)

Again, by Hölder inequality with p−1 + q−1 = 1 we conclude
∞∑

m,n=1

ambn

(λm + ρn)µ
<

( ∞∑

m,n=1

ap
mbp

n

(m + n)ν

)1/p( ∞∑

m,n=1

(m + n)ν(q−1)

(λm + ρn)µq

)1/q

=: B
1/p
1 B

1/q
2 .

Applying inequality (16) to evaluate B1 with ap
m 7→ am, bp

n 7→ bn, we get

B1 < B
(
1 +

ν − 2
r

, 1 +
ν − 2

s

)
‖n(1−ν)/rap‖r‖n(1−ν)/sbp‖s .

Now, it remains to calculate B2. But, the only change with respect to
calculation procedure of A2 is the specified α = β = 1 in (11), where the
exponents inside operators dv, dw, are just E = j and F = ν(q − 1) − j.
Therefore, we only mimic the transformation of A2 into B2 with simplified
E, F .

The best constant question is clear because we apply the Hölder inequal-
ity, and the sharp constant L1 appearing in the result (16) by Krnić and
Pečarić. This finishes the proof of Theorem 2. ¤

Remark 2. Let us specify ν/p = 1/q, p > 1, accordingly, make use at
the Hölder inequality (with respect to conjugated p, q) in the right–hand
expression in (18). We conclude that

∞∑

m,n=1

ambn

(λm + ρn)µ
<

( ∞∑

m,n=1

ap
mbp

n

(m + n)p−1

)1/p( ∞∑

m,n=1

m + n

(λm + ρn)µq

)1/q

,

which is the same partial result as the one [4, p. 1487, Eq. (13)], considered
by Pogány in course to obtain (14).

On the other side Theorem 2 extends substantially the range of r from
(3−min{p, q}, 3] (cf. [4, Theorem 1]) to (3−min{p, q}, 3+min{p, q}]. Indeed,
putting ν = r − 1 in the preambula of Theorem 2, we show the validity of
this claim easily.

4. Discussion, final remarks

There are lots of special cases connected to both of our theorems. In
Remarks 1,2 we clearly show that the third authors result (14) is only a
corollary, a special case of our Theorems. Now, we will discuss some further
aspects of these novel results.
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4.1. Around Theorem 1. We introduce the independent scaling parame-
ters p, r, α, β, µ and ν in Theorem 1 together with two dependent ones r, s
such as are the conjugated Hölder pairs of initial p, r respectively. Therefore,
this procedure defined by (10) in a Hilbert type seven parameters inequality
family I(p, r, α, β, γ, µ, ν). Any further specification of the independent pa-
rameters gives certain novel inequalities which ones become to complicated
for nonninteger ν(q − 1), see the differential form P (v, w) in (11). On the
other side P (v, w) is a finite sum with integer ν = p−1. Let us show an exam-
ple, choosing the nonhomogeneous kernel function K(m,n) = (m2 + n3)−2

in the auxiliary Hilbert type inequality.

Corollary 1. Assume min{p, r} > 1, µ > 0,
(2

p
− 1

)
+
− 1

q
< γ <

1
p

+
(2− p

q

)
+

.

The four–parameter Hilbert type inequality family I
(
p, r, 2, 3, γ, µ, 2(p − 1)

)
reads as follows

∞∑

m,n=1

ambn

(λm + ρn)µ

< Cµ,2,3
p,r (λ, ρ) ‖n(7−4p)/r−1−γap‖1/p

r ‖n(11−6p)/s−2(1−γ)bp‖1/p
s , (19)

where and λ, ρ are positive monotone increasing functions having property
(7), while a,b are nonnegative real sequences satisfying

(
n(7−4p)/r−1−γap

n

)∞
n=1

∈ `r,
(
n(11−6p)/s−2(1−γ)bp

n

)∞
n=1

∈ `s,

and the double series ∞∑

m,n=1

(ambn)p

(m2 + n3)2p−2

converges. The constant

Cµ,2,3
p,r (λ, ρ) =

(
µq(µq + 1)

)1/q

(
21/s31/r

)p B1/p
(2p− 4

r
+ 1 + γ,

2p− 4
s

+ 1− γ
)

×
( ∫ ∞

λ1

∫ ∞

ρ1

LtRu

(t + u)µq+2

((2Lt + 1)(3L2
t + 3Lt − 1)

30

+
(Lt + 1)(2Lt + 1)Ru(Ru + 1)2

12

+
(Ru + 1)(2Ru + 1)(3R4

u + 6R3
u − 3Ru + 1)

42

)
dudt

)1/q

(20)

is the best possible; here Lt := [λ−1(t)], Ru := [ρ−1(u)].
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Obviously, further subsequent specifications of remaining independent pa-
rameters will result in less complicated, but not necessarily simpler con-
stants.

4.2. Around Theorem 2. The family of the second Hilbert type inequality
J(p, r, µ, ν) defined in the Theorem 2 is of mainly simpler structure. Taking
the condition ν(q − 1) = 2 as above, we present the related result.

Corollary 2. Let r > 1, µ > 0 and p ∈ (2− 1
2 min{r, s}, 2+ 1

2 min{r, s}]; a,b
are nonnegative sequences such that

(
n(3−2p)/rap

n

)∞
n=1

∈ `r,
(
n(3−2p)/sbp

n

)∞
n=1

∈ `s;

and λ, ρ are positive monotone increasing functions satisfying (7). Then
∞∑

m,n=1

ambn

(λm + ρn)µ
< Cµ,2p−2

p,r (λ, ρ) ‖n(3−2p)/rap‖1/p
r ‖n(3−2p)/sbp‖1/p

s , (21)

where

Cµ,2p−2
p,r (λ, ρ) :=

(µq(µq + 1))1/q

6
B1/p

(2p− 4 + r

r
,
2p− 4 + s

s

)

×
(∫ ∞

λ1

∫ ∞

ρ1

LtRu

(t + u)µq+2

(
(Lt + 1)(2Lt + 1)

+ 3(Lt + 1)(Ru + 1) + (Ru + 1)(2Ru + 1)
)
dtdu

)1/q

.

(22)

Here Lt := [λ−1(t)], Ru := [ρ−1(u)]. Moreover, the constant Cµ,2p−2
p,r (λ, ρ) is

the best possible.

The differential form P (v, w) in the Corollary 2 originates back to (m +
n)2, therefore the integrand in (22) becomes symmetric in Lt, Ru.
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