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NON-ADDITIVE MEASURES, ENVELOPES AND
EXTENSIONS TO QUASI-MEASURES

MONA KHARE AND SONI GUPTA

Abstract. In the present paper, we introduce the notions of lower en-
velope and upper envelope for a [0, ∞]-valued function µ defined on a
proper sublattice M of a locally complete σ-continuous lattice L, and
we extend a finite-stable, supermodular usc-measure µ on a proper sub-
lattice M of L to a quasi∗-measure (i.e., a supermodular usc-measure)
on L, which is Mδ-inner regular. Analogously, we extend a submodular
lsc-measure on M to a quasi∗-measure (i.e., a submodular lsc-measure)
on L, which is Mσ-outer regular. Furthermore, we have studied notions
of measuring envelopes in D-lattices in the context of null-additive, con-
verse null-additive, superadditive and weak converse null-additive func-
tions.

1. Introduction

In measure theory, a basic procedure is that of extending the notion of
a measure on a given class of sets to a larger class of sets. The possibility
of extension in measure theory on logics (orthomodular lattices or posets)
was presented as an open problem in [12]. Volauf in [28] proved an exten-
sion theorem for orthocomplemented lattices and probability measures using
Carathéodory measurability. In [25], Riečan studied an extension theorem
for subadditive probability measures defined on a suborthomodular lattice
of a σ-continuous, σ-complete orthomodular lattice. Later on, in 2001, Aval-
lone and De Simone gave an extension theorem for modular functions that
contains Riečan’s result as a particular case. They together with Vitolo
further extended the theory in context of lattice ordered effect algebras in
[5]. An extension theorem has been proved for measures on MV-algebras in
fuzzy measure theory ([6, 26]; see also [18, 21, 27]). Adamski [2] obtained
that every non-negative, semifinite, continuous at φ and tight function de-
fined on a lattice of sets can be extended to an inner regular measure. The
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concept of an effect algebra has been introduced by Bennett and Foulis [7],
as a generalization of Hilbert space effects interpreted as “unsharp” quan-
tum events. Different from the “sharp” events the effects do not satisfy
the noncontradiction principle, i.e. the conjunction of a and non a may be
different from zero. These new logical structures generalize orthomodular
lattices (including Boolean algebras) as well as MV -algebras employed by
Chang in the analysis of many valued logics [8]. The categorical equivalence
of D-posets and effect algebras is discussed in [10].

Non-additive set functions, as for example outer measures, semivariations
of vector measures, naturally appeared earlier in classical measure theory
concerning countable additive set functions or more general finite additive
set functions [10]. Non-additive measures appear today in many branches
of pure mathematics with many important applications ([23, 29]; see also
[15, 16, 19, 20]). Wang [29] gave the concept of null-additive set functions.
Wang and Klir [30] introduced the concept of converse null-additive fuzzy
measures. The notion of weak converse null-additive function is studied in
context of fuzzy measures in [21].

The aim of the present paper is to study an extension problem for non-
additive measures defined on a proper sublattice M of a locally complete
σ-continuous lattice L. Some basic definitions are collected in Section 2. In
Section 3, we introduce notions of lower envelope µ∗ and upper envelope µ∗
of a [0, ∞]-valued function µ defined on M , and we extend a finite-stable,
supermodular usc-measure µ on a proper sublattice M of L to a quasi∗-
measure (i.e., a supermodular usc-measure) on L, which is Mδ-inner regular.
Analogously, we extend a submodular lsc-measure to a quasi∗-measure (i.e.,
a submodular lsc-measure) on L, which is Mσ-outer regular. In Section 4,
we have studied the notions of null-additive, converse null-additive, super-
additive and weak converse null-additive functions on a proper D-sublattice
M of L, where L is a σ-complete σ-continuous D-lattice. We have observed
that every superadditive function is converse null-additive, and also weak
converse null-additive; the converse need not be true, which is established
by a counterexample. We proved that if µ is superadditive, then µ∗ is also
superadditive. It is also proved that for a monotone null-additive function
defined on a proper D-sublattice M , if a is µ-measurable, then µ∗(a) = µ∗(a)
and, if d ∈ L such that µ∗(d) = µ∗(d) < ∞, d is µ-measurable, then µ is
weak converse null-additive.

2. Preliminaries and basic facts

Let L = (L,≤) be a lattice. Let {an} be a sequence in L. We call an ↑
a, (a ∈ L) if and only if a1 ≤ a2 ≤ · · · ≤ an ≤ . . . ,

∨
an exists and

∨
an = a.

Similarly, call an ↓ a, (a ∈ L) if and only if a1 ≥ a2 ≥ · · · ≥ an ≥ . . . ,
∧

an
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exists and
∧

an = a. In these cases we also write a = limn→∞ an. If an ↑ a,
bn ↑ b and an ≤ bn, for all n, then we may deduce that a ≤ b. The symbol
1 denotes the top element (or supremum) of L and 0 denotes the bottom
element (or infimum) of L (see [22]). A lattice L is said to be σ-continuous
(see [25]) if an ↑ a implies an ∧ b ↑ a ∧ b (or equivalently, an ↓ a implies
an ∨ b ↓ a ∨ b) for every b ∈ L. If L is σ-continuous then, for sequences
{an} and {bn} in L such that an ↑ a and bn ↑ b, we have an ∧ bn ↑ a ∧ b
(or equivalently, an ↓ a, bn ↓ b implies an ∨ bn ↓ a ∨ b). Every infinitely
distributive lattice [22] is σ-continuous.

2.1 [1]. A lattice L is locally complete if it satisfies one of the following
equivalent conditions:

(i) Every non-empty lower bounded subset of L admits an infimum.
(ii) Every non-empty upper bounded subset of L admits a supremum.
(iii) There exists a complete lattice, denoted by L, with bottom (or small-

est) element 0 and top (or largest) element 1, such that L is a sub-
lattice of L, L = L ∪ {0, 1}, inf L = 0 and supL = 1.

It can be observed that every complete lattice is locally complete. For
any set X, (P(X),⊆), (LX ,≤) (where L is locally complete σ-continuous
lattice) and (I,≤) (where I is the closed unit interval [0, 1] of the real line
R) are locally complete σ-continuous lattices. For more examples of locally
complete lattices, we refer to [1].

2.2 ([10]; see also [17]). An orthomodular poset (OMP, in short) is a
bounded poset (P , ≤, ′, 0, 1) with a unary operation ′ : P → P (an or-
thocomplementation) such that the following conditions are satisfied for all
a, b, c ∈ P : (i) If a ≤ b then b

′ ≤ a
′
, (ii) (a

′
)
′
= a, (iii) a ∨ a

′
= 1, (iv) If

a ≤ b
′

then a ∨ b exists in P , (v) (orthomodular law) If a ≤ b, then there
is a c ∈ P such that c ≤ a

′
and a ∨ c = b. Two elements a, b ∈ P are

called orthogonal (written as a ⊥ b) if a ≤ b
′

or equivalently b ≤ a
′
. An

orthomodular lattice (OML) L can be defined as a lattice ordered OMP. A
subset M is called a suborthomodular lattice (or sub OML) of an OML L if
it contains 0 and 1, and is closed under the operations ′, ∧ and ∨, i.e. it
is an orthomodular lattice with respect to induced operations. An OMP is
called a quantum logic if it is a σ-complete lattice.

2.3 ([7, 9, 10, 13, 24]; see also [4, 5, 14]). An effect algebra (L;⊕, 0, 1) is a
structure consisting of a set L, two special elements 0 and 1, and a partially
defined binary operation ⊕ on L× L satisfying the following conditions for
every a, b, c ∈ L :

(1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.
(2) If b ⊕ c and a ⊕ (b ⊕ c) are defined, then a ⊕ b and (a ⊕ b) ⊕ c are

defined and a⊕ (b⊕ c) = (a⊕ b)⊕ c.
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(3) For every a ∈ L, there exists a unique a⊥ ∈ L such that a ⊕ a⊥ is
defined and a⊕ a⊥ = 1.

(4) If a⊕ 1 is defined, then a = 0.
A subset F is called a subeffect algebra of an effect algebra L if (i) 0, 1 ∈ F,
(ii) for a ∈ F, a⊥ ∈ F, (iii) for a, b ∈ F with a ⊥ b, a⊕ b ∈ F.

In every effect algebra L, a dual operation ª to ⊕ can be defined as
follows: a ª c exists and equals b if and only if b ⊕ c exists and equals a.
We say that two elements a, b ∈ L are orthogonal and we write a ⊥ b, if
a ⊕ b exists. Also for a, b ∈ L, define a ≤ b if there exists c ∈ L such that
a ⊥ c and a ⊕ c = b. If (L,6) is a lattice, we say that the effect algebra
L is a lattice effect algebra, or a D-lattice. Any OMP may be regarded as
a D-poset (which is equivalent to effect algebra) by defining b ª a = b ∧ a

′

precisely when a ≤ b.
For a1, . . . , an ∈ L, we inductively define a1⊕· · ·⊕an = (a1⊕· · ·⊕an−1)⊕

an, provided that the right hand side exists. The definition is independent of
permutation of the elements. A finite subset {a1, . . . , an} of L is said to be
orthogonal if a1⊕ · · · ⊕ an exists. A sequence {an} in L is called orthogonal
if, for every n,

⊕
i6n ai exists. If, moreover supn

⊕
i6n ai exists, the sum⊕

n∈N an of an orthogonal sequence {an} in L is defined as supn

⊕
i6n ai.

An effect algebra L is called a σ-complete effect algebra if every orthogonal
sequence in L has its sum.

2.4. Let a, b, c ∈ L (where L is an OML) such that a ⊥ b and b ≤ c. Then
a ∨ b ≥ c if and only if a ≥ c ∧ b

′
.

2.5. A function µ : L → [0,∞] (where L is a lattice) is said to be modular
if, for every a, b ∈ L, µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b). We say that µ is
submodular if for every a, b ∈ L, we have µ(a) + µ(b) ≥ µ(a ∨ b) + µ(a ∧ b);
µ is called supermodular if for every a, b ∈ L, we have µ(a) + µ(b) ≤ µ(a ∨
b)+µ(a∧ b). A function µ is called subadditive if for every a, b ∈ L, we have
µ(a∨ b) ≤ µ(a)+µ(b); µ is called superadditive if for every a, b ∈ L, we have
µ(a ∨ b) ≥ µ(a) + µ(b).

2.6 ([9, 10, 13]). Assume that a, b are elements of an effect algebra L.

(i) If a ≤ b, then b = a⊕ (bª a).
(ii) If a ≤ b ≤ c, then bª a ≤ cª a.
(iii) If a ≤ b ≤ c, then cª b ≤ cª a.
(iv) If c ≤ a, d ≤ b and a ⊥ b, then c ⊥ d and c⊕ d ≤ a⊕ b.

3. Extension of semi-continuous measures to quasi-measures

Throughout in this section, let L be a locally complete σ-continuous lat-
tice, let C be a non-empty subset of L, and M be a proper sublattice of
L containing 0. We denote Mσ = {b ∈ L : there exists a sequence {an} in
M such that an ↑ b}, and Mδ = {b ∈ L : there exists a sequence {an} in



NON-ADDITIVE MEASURES, ENVELOPES AND EXTENSIONS 39

M such that an ↓ b}. We may also describe Mσ as the family of all countable
joins of elements from M and Mδ as the family of all countable meets of
elements from M.

Definition 3.1. A function µ : C → [0,∞] is called a semi-continuous mea-
sure (or non-additive measure) on C, if it satisfies the following conditions:

(i) µ(0) = 0, whenever 0 ∈ C,
(ii) (monotone) if a ≤ b, a, b ∈ C, then µ(a) ≤ µ(b),
(iii) (semi-continuous from below) if an ↑ a, a ∈ C, an ∈ C (n ∈ N), then

limn→∞ µ(an) = µ(a),
(iv) (semi-continuous from above) if an ↓ a, a ∈ C, an ∈ C (n ∈ N),

µ(a1) < ∞, then limn→∞ µ(an) = µ(a).
The function µ is said to be a lower semi-continuous measure (or lsc-

measure) if it satisfies (i), (ii) and (iii), while µ is said to be an upper semi-
continuous measure (or usc-measure) if it satisfies (i), (ii) and (iv).

Definition 3.2. A function µ : C → [0,∞] is called finite-stable if, for all
c1, c2 ∈ C, max(µ(c1), µ(c2)) < ∞ implies µ(c1 ∨ c2) < ∞.

Define ν(c) = sup{µ(d) : d ≤ c, d ∈ C, µ(d) < ∞}, c ∈ C. If µ = ν, then
µ is called semifinite.

If, in addition, L is an orthomodular lattice (OML), M is a proper sub-
orthomodular lattice of L and ρ : L → [0,∞] with ρ(0) = 0, we write
M(ρ; M) = {a ∈ L : ρ(b) = ρ(b ∧ a) + ρ(b ∧ (b ∧ a)

′
) for all b ∈ M}.

Definition 3.3. Let µ : M → [0,∞] with µ(0) = 0. Define µ∗ : L → [0,∞]
and µ∗ : L → [0,∞] by

µ∗(a) = sup{µ(b) : b ≤ a, b ∈ M}, a ∈ L

and
µ∗(a) = inf{µ(b) : a ≤ b, b ∈ M}, a ∈ L,

µ∗ is called the lower envelope and µ∗ the upper envelope of µ.

We get: (i) µ∗(0) = 0, µ∗(0) = 0, (ii) both µ∗ and µ∗ are monotone, (iii)
µ∗|M ≤ µ ≤ µ∗|M, (iv) µ is semifinite if and only if µ is monotone if and
only if µ∗|M = µ = µ∗|M.

Proposition 3.1.
(i) If µ is finite-stable, then µ∗ is finite-stable.
(ii) If µ is supermodular, then µ∗ is supermodular (see [3]).
(iii) If µ is submodular, then µ∗ is submodular (see [3]).
(iv) If µ is superadditive, then µ∗ is superadditive.
(v) If µ is subadditive, then µ∗ is subadditive.
(vi) Let M be a proper suborthomodular lattice of an orthomodular lattice

L. Then we have:
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(a) µ is superadditive ⇒M(µ∗;M) = {a ∈ L : µ(b) ≤ µ∗(b∧a)+µ∗(b∧
(b ∧ a)

′
) for all b ∈ M}.

(b) If µ is subadditive ⇒M(µ∗; M) = {a ∈ L : µ(b) ≥ µ∗(b∧a)+µ∗(b∧
(b ∧ a)

′
) for all b ∈ M}.

Proof. We shall prove only (i), (ii) and (v).
(i) Let a1, a2 ∈ L with µ∗(a1) < ∞, µ∗(a2) < ∞. Let ε > 0. Then there

exist b1, b2 ∈ M , a1 ≤ b1, a2 ≤ b2, µ(b1) < µ∗(a1)+ε/2 and µ(b2) < µ∗(a2)+
ε/2. Since a1∨a2 ≤ b1∨b2 and µ is finite-stable, we obtain µ∗(a1∨a2) < ∞.
Hence µ∗ is finite-stable.

(ii) Let a, b ∈ L. Let ε > 0. Then there exist c, d ∈ M , c ≤ a, d ≤ b,
µ∗(a) − ε/2 < µ(c) and µ∗(b) − ε/2 < µ(d). It follows that µ∗(a) + µ∗(b) −
ε < µ(c) + µ(d). Since µ is supermodular, we obtain µ∗(a) + µ∗(b) − ε <
µ(c ∨ d) + µ(c ∧ d). Now, we have µ∗(a) + µ∗(b)− ε < µ∗(a ∨ b) + µ∗(a ∧ b).
Thus µ∗ is supermodular.

(v) Let a, b ∈ L. Let ε > 0. Then there exist c, d ∈ M , a ≤ c, b ≤ d,
µ(c) < µ∗(a) + ε/2 and µ(d) < µ∗(b) + ε/2. Since a ∨ b ≤ c ∨ d and µ∗ is
monotone, we get µ∗(a∨ b) ≤ µ(c∨d) ≤ µ(c)+µ(d) < µ∗(a)+ ε/2+µ∗(b)+
ε/2 = µ∗(a) + µ∗(b) + ε. Hence µ∗ is subadditive. ¤
Lemma 3.1. (see [3])

(a) Let µ be a [0,∞]-valued finite-stable usc-measure on M. Then for
any b ∈ Mδ with µ∗(b) < ∞, there exists a sequence {bn}∞n=1 in M
such that bn ↓ b and for each such sequence µ∗(b) = infn µ(bn).

(b) Let µ be a [0,∞]-valued lsc-measure on M. Then for any b ∈ Mσ,
there exists a sequence {bn}∞n=1 in M such that bn ↑ b and for each
such sequence µ∗(b) = supn µ(bn).

Proof. (a) Let b ∈ Mδ with µ∗(b) < ∞. Then there exists a sequence {bn}∞n=1

in M such that bn ↓ b. Choose c ∈ M such that b ≤ c and µ(c) < ∞. Replace
bn by bn∧d (where d ∈ M, b ≤ d and µ(d) < ∞). Then we have bn∨c ↓ c (as
L is σ-continuous), and infn µ(bn∨c) < ∞. Again since µ is semi-continuous
from above, we get limn→∞ µ(bn∨c) = infn µ(bn∨c) = µ(c). Also bn ≤ bn∨c
for each n, yields infn µ(bn) ≤ µ∗(b). On the other hand, b ≤ bn (n ∈ N) and
µ∗ is monotone, imply µ∗(b) ≤ infn µ(bn). Hence µ∗(b) = infn µ(bn).

(b) It follows using similar arguments as in (a). ¤
Theorem 3.1.

(a) If µ is a [0,∞]-valued finite-stable usc-measure on M, then µ∗|Mδ is
a usc-measure.

(b) If µ is a [0,∞]-valued lsc-measure on M, then µ∗|Mσ is a lsc-measure.

Proof. (a) Let {an}∞n=1 be a decreasing sequence in Mδ with µ∗(a1) < ∞ and
an ↓ a (n ∈ N), a ∈ Mδ. Then there exists a sequence {ani}∞i=1 in M such
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that ani ↓ an and µ∗(an) = limi→∞ µ(ani). For i ∈ N, set bi = a1i∧a2i . . .∧aii.
Then bi ∈ M, {bi}∞i=1 is a decreasing sequence and bi ≥ ai ≥ a for all i, which
yield that b = limi→∞ bi =

∧
bi ≥

∧
ai = a. It may be noted that b ∈ Mδ.

Also aki ≥ bi for 1 ≤ k ≤ i. Therefore ak = limi→∞ aki ≥ limi→∞ bi = b.
It follows that a =

∧
ak ≥ b. Thus a = b. Now, by Lemma 3.1(a), we have

µ∗(a) = limi→∞ µ(bi) = limi→∞ µ∗(bi) ≥ limi→∞ µ∗(ai). Also since a ≤ an,
the result follows.

(b) It follows using similar arguments as in (a). ¤

Definition 3.4. Let µ− : L → [0,∞] be defined by

µ−(a) = sup{µ∗(b) : b ≤ a, b ∈ Mδ, µ
∗(b) < ∞}, a ∈ L.

We obtain: (i) µ−(0) = 0, (ii) µ− is monotone, (iii) µ− ≤ µ∗, (iv)
µ−|Mδ = µ∗|Mδ; particularly µ−|M = µ∗|M, (v) if µ is monotone, then
µ−|M = µ, i.e. µ− is an extension of µ, (vi) if µ is subadditive, then µ− is
subadditive.

Proposition 3.2. Let M = Mδ. Then

(i) µ− ≤ µ∗,
(ii) µ− = µ∗ on M, provided µ is semifinite.

Proof. (i) Let a ∈ L and b ∈ M with b ≤ a. Since µ∗|M ≤ µ∗|M and µ∗ is
monotone, we obtain µ∗(b) ≤ µ∗(b) ≤ µ∗(a). Hence µ−(a) ≤ µ∗(a).

(ii) Since M = Mδ and µ is semifinite, so µ− = µ∗. Using Definition 3.3
(iv), we obtain µ− = µ∗ on M. ¤

Theorem 3.2. Let µ be a finite-stable usc-measure on M. Then (i) ⇒
(ii) ⇒ (iii), where

(i) µ is supermodular.
(ii) µ∗|Mδ is supermodular.
(iii) (a) µ− is supermodular. (b) µ− is semi-continuous from above.

In addition, if L is an orthomodular lattice, M is a proper suborthomod-
ular lattice of L and µ is subadditive, then (iii) ⇒ (iv) ⇒ (v), where

(iv) M(µ−; M) = {a ∈ L : µ(b) ≤ µ−(b∧ a) + µ−(b∧ (b∧ a)
′
) for all b ∈

M with µ(b) < ∞}.
(v) M(µ∗; M) ⊆M(µ−; M).

Proof. (i)⇒(ii) Let µ be supermodular. Let a, b ∈ Mδ with µ∗(a) < ∞,
µ∗(b) < ∞. Then, by Lemma 3.1(a) there exist sequences {an} and {bn} in
M such that an ↓ a, bn ↓ b, µ∗(a)=limn→∞ µ(an) and µ∗(b) = limn→∞ µ(bn).
Since L is σ-continuous, so an ∨ bn ↓ a ∨ b and also we have an ∧ bn ↓ a ∧ b.
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Therefore

µ∗(a) + µ∗(b) = lim
n→∞µ(an) + lim

n→∞µ(bn)

= lim
n→∞(µ(an) + µ(bn))

≤ lim
n→∞(µ(an ∨ bn) + µ(an ∧ bn))

= lim
n→∞µ(an ∨ bn) + lim

n→∞µ(an ∧ bn)

= µ∗(a ∨ b) + µ∗(a ∧ b).

(ii)⇒(iii) (a) Let a, b ∈ L. For ε > 0, we have c, d ∈ Mδ such that
c ≤ a, d ≤ b, with µ∗(c) < ∞, µ∗(d) < ∞. Then we have µ−(a)−ε/2 < µ∗(c)
and µ−(b)− ε/2 < µ∗(d). Thus

µ−(a) + µ−(b)− ε < µ∗(c) + µ∗(d)

≤ µ∗(c ∨ d) + µ∗(c ∧ d)

≤ µ−(a ∨ b) + µ−(a ∧ b).

Since ε is arbitrary, we have µ−(a) + µ−(b) ≤ µ−(a ∨ b) + µ−(a ∧ b).
(ii)⇒(iii) (b) Let {an}∞n=1 be a sequence in L with µ−(a1) < ∞ and an ↓ a

(n ∈ N), a ∈ L. Let ε > 0. For each n, we choose bn ∈ Mδ such that bn ≤ an,
µ∗(bn) < ∞ and

µ∗(bn) > µ−(an)− ε/2n. (3.2.1)

Put cn = b1 ∧ b2 ∧ . . . ∧ bn. Then cn ∈ Mδ and cn ↓ c, c ∈ Mδ. Now, by
(3.2.1), we get µ∗(c1) = µ∗(b1) > µ−(a1)−ε/2. Since µ∗|Mδ is supermodular,
it follows that

µ∗(c2) = µ∗(b1 ∧ b2)

≥ µ∗(b1) + µ∗(b2)− µ∗(b1 ∨ b2)

> µ−(a1)− ε/2 + µ−(a2)− ε/22 − µ−(a1 ∨ a2)

= µ−(a2)− (ε/2 + ε/22).

Suppose that µ∗(cm) ≥ µ−(am)−∑m
i=1 ε/2i. Then

µ∗(cm+1) = µ∗(cm ∧ bm+1)

≥ µ∗(cm) + µ∗(bm+1)− µ∗(cm ∨ bm+1)

> µ−(am)−
m∑

i=1

ε/2i + µ−(am+1)− ε/2m+1 − µ−(am ∨ am+1)

= µ−(am+1)−
m+1∑

i=1

ε/2i.
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Thus by induction, we obtain that µ∗(cn) ≥ µ−(an) −∑n
i=1 ε/2i, for all n.

As bn ≤ an (n ∈ N), and L is locally complete, therefore c =
∧∞

n=1 cn =∧∞
n=1 bn ≤

∧∞
n=1 an = a, which yield, using Theorem 3.1(a) that µ−(a) ≥

µ∗(c) = limn→∞ µ∗(cn) ≥ limn→∞(µ−(an)−∑n
i=1 ε/2i) = limn→∞ µ−(an)−

ε. So µ−(a) ≥ limn→∞ µ−(an). Now since a ≤ an for all n and µ− is mono-
tone the result follows.

(iii)⇒(iv) Put D = {a ∈ L : µ(b) ≤ µ−(b∧ a) + µ−(b∧ (b∧ a)
′
) for all b ∈

M with µ(b) < ∞}. Since µ− is subadditive, so M(µ−; M) ⊆ D. Let a ∈ D.
Let c ∈ L, b ∈ Mδ with b ≤ c and µ∗(b) < ∞. Then, by Lemma 3.1(a) there
exists a sequence {bn} in M such that bn ↓ b and µ∗(b) = limn→∞ µ(bn).
Now, we have µ(bn) ≤ µ−(bn∧a)+µ−(bn∧(bn∧a)

′
). Since L is σ-continuous,

and µ− is monotone, using 2.6 we obtain,

µ∗(b) = lim
n→∞µ(bn)

≤ lim
n→∞µ−(bn ∧ a) + lim

n→∞µ−(bn ∧ (bn ∧ a)
′
)

= µ−(b ∧ a) + µ−(b ∧ (b ∧ a)
′
)

≤ µ−(c ∧ a) + µ−(c ∧ (c ∧ a)
′
).

Now by definition of µ−, we have µ−(c) ≤ µ−(c ∧ a) + µ−(c ∧ (c ∧ a)
′
). The

reverse inequality follows from the supermodularity of µ− and the ortho-
modular law. Thus a ∈M(µ−;M). Hence D ⊆M(µ−;M).

(iv)⇒(v) Let a ∈ M(µ∗; M). Let b ∈ M with µ(b) < ∞. µ(b) = µ∗(b) ≤
µ∗(b∧a)+µ∗(b∧(b∧a)

′
) ≤ µ−(b∧a)+µ−(b∧(b∧a)

′
). Thus a ∈M(µ−;M).

¤
Definition 3.5. Define µ− : L → [0,∞] by

µ−(a) = inf{µ∗(b) : a ≤ b, b ∈ Mσ}, a ∈ L.

We observe that: (i) µ−(0) = 0, (ii) µ− is monotone, (iii) µ− ≥ µ∗, (iv)
µ−|Mσ = µ∗|Mσ; particularly µ−|M = µ∗|M, (v) if µ is monotone, then
µ−|M = µ, i.e. µ− is an extension of µ, (vi) if µ is superadditive, then µ−
is superadditive.

Proposition 3.3. Let M = Mσ. Then µ∗ ≤ µ−.

Proof. Let a ∈ L and b ∈ M with a ≤ b. Since µ∗|M ≤ µ∗|M and µ∗ is
monotone, we obtain µ∗(a) ≤ µ∗(b) ≤ µ∗(b). Hence µ∗(a) ≤ µ−(a). ¤

Using similar arguments as in Theorem 3.2, we obtain the following:

Theorem 3.3. Let µ be an lsc-measure on M. Then (i) ⇒ (ii) ⇒ (iii),
where (i) µ is submodular. (ii) µ∗|Mσ is submodular. (iii) (a) µ− is sub-
modular. (b) µ− is semi-continuous from below.
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In addition, if L is an orthomodular lattice, M is a proper suborthomod-
ular lattice of L and µ is superadditive, then (iii) ⇒ (iv) ⇒ (v), where (iv)
M(µ−; M) = {a ∈ L : µ(b) ≥ µ−(b ∧ a) + µ−(b ∧ (b ∧ a)

′
) for all b ∈ M}.

(v) M(µ∗; M) ⊆M(µ−; M).

Definition 3.6. Let C ⊆ L. We call a function ρ : L → [0,∞] C-inner
regular if for any a ∈ E, ρ(a) = sup{ρ(b) : b ≤ a, b ∈ C, µ(b) < ∞}, and is
said to be C-outer regular if for any a ∈ E, ρ(a) = inf{ρ(b) : a ≤ b, b ∈ C}.
The function ρ is said to be quasi∗-measure (respectively, quasi∗-measure) on
L, if it is supermodular usc-measure (respectively, submodular lsc-measure);
the pair (L, ρ) is called quasi∗-measure space (respectively, quasi∗-measure
space). The function ρ is said to be quasi-measure on L, if it is either Mδ-
inner regular quasi∗-measure or Mσ-outer regular quasi∗-measure.

Since µ−|Mσ = µ∗|Mσ, the function µ− is Mσ-outer regular. Also, since
µ−|Mδ = µ∗|Mδ, the function µ− is Mδ-inner regular.

Theorem 3.4.

(a) Every finite-stable, supermodular, usc-measure defined on a proper
sublattice M of L, can be extended to an Mδ-inner regular quasi∗-
measure on L.

(b) Every submodular, lsc-measure defined on a proper sublattice M of
L, can be extended to an Mσ-outer regular quasi∗-measure on L.

Proof. Follows from Theorem 3.2 and Theorem 3.3. ¤

Theorem 3.5. Let µ be a semi-continuous measure on M. Then we have:

(i) µ− is semifinite and Mδ-inner regular.
(ii) µ− is a semiextension of µ (i.e. µ(a) = µ−(a) for a ∈ M, µ(a) < ∞),

and µ− is the smallest semiextension of µ within the class of all
monotone, [0,∞]-valued functions on L which are semi-continuous
from above on Mδ.

(iii) µ− is an extension of µ if and only if µ is semifinite.
(iv) µ− is the largest extension of µ within the class of all monotone,

[0,∞]-valued functions on L which are semi-continuous from below
on Mσ.

Proof. We shall prove only (ii) and (iii).
Obviously µ− is a semiextension of µ. Now, let η : L → [0,∞] be a

monotone semiextension of µ, and is semi-continuous from above on Mδ.
Let a ∈ L, b ∈ Mδ with b ≤ a and µ∗(b) < ∞. Then there exists a
sequence {bn}∞n=1 in M such that bn ↓ b and µ∗(b) = infn µ(bn). Thus
µ∗(b) = infn η(bn) = η(b) ≤ η(a), and so µ−(a) ≤ η(a), which proves (ii).
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Define a function η on M by η(a) = sup{µ(b) : b ≤ a, b ∈ M,µ(b) < ∞}.
Now, µ is semifinite if and only if µ = η. Since µ− is an extension of η, (iii)
follows. ¤

4. Measuring envelopes in D-lattices

In this Section we shall consider L to be a σ-complete σ-continuous D-
lattice and study a few properties of the function µ defined on L, and its
measuring envelopes µ∗ and µ∗ (introduced in Section 3), in the context of
some weaker forms of additivity of the function µ.

Definition 4.1. Let E be a difference poset (i.e. a D-poset) or effect algebra
and µ : E → [0,∞] be a function. Then µ is called:

(i) null-additive, if µ(b⊕c) = µ(b) provided b, c ∈ E, b ⊥ c and µ(c) = 0.
(ii) converse null-additive, if µ(c ª b) = 0 provided b, c ∈ E, b ≤ c,

µ(b) = µ(c) < ∞.
(iii) superadditive, if µ(b ⊕ c) ≥ µ(b) + µ(c) provided b, c ∈ E, b ⊥ c.

Observe that, µ is null-additive if and only if µ(b ª c) = µ(b) provided
b, c ∈ M, c ≤ b and µ(c) = 0. Also, observe that if µ is superadditive, then
µ is converse null-additive. The converse of this statement need not be true
as µ2 (given below) is converse null-additive but not superadditive.

Example 4.1. Let E1 = {0, a, b, c, d, e, 1}. Let us define: a⊕ b = b⊕ a = c,
b⊕ c = c⊕ b = a⊕ d = d⊕ a = e⊕ e = 1 and let x⊕ 0 = 0⊕ x = x for all
x ∈ E1. Then E1 is an effect algebra. Define functions µ1 and µ2 on E1 as
follows:

(I) µ1(x) = 0 if x ∈ {0, b, c, d, 1} and µ1(x) = 1 if x ∈ {a, e};
(II) µ2(x) = 0 if x ∈ {0, a, b, c, d, 1} and µ2(e) = 1.

Then we have,
(i) µ2 is null-additive, but µ1 is not;
(ii) µ1 and µ2 are not superadditive;
(iii) µ2 is converse null-additive, but µ1 is not.

Example 4.2. Let E2 = {0, a, b, c, 1}. Let us define: a ⊕ b = b ⊕ a = c,
b⊕ c = c⊕ b = a⊕ a = 1 and let x⊕ 0 = 0⊕ x = x for all x ∈ E2. Then E2

is an effect algebra. Define functions µ3, µ4 and µ5 on E2 as follows:
(I) µ3(x) = 0 if x ∈ {0, b}, and µ3(x) = 1 if x ∈ {a, c, 1}.

(II) µ4(x) = 0 if x ∈ {0, a, b}, and µ4(x) = 1 if x ∈ {c, 1}.
(III) µ5(x) = 0 for all x ∈ E2.

Then we have,
(i) µ3 and µ5 are null-additive, but µ4 is not;
(ii) µ4 and µ5 are superadditive, but µ3 is not;
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(iii) µ4 and µ5 are converse null-additive, but µ3 is not.

Proposition 4.1. Let µ1 and µ2 be two [0,∞)-valued functions defined on
an effect algebra E. Define (µ1 +µ2)(a) = µ1(a)+µ2(a), and (µ1−µ2)(a) =
µ1(a)− µ2(a), a ∈ E. Then the following hold:

(i) If µ1 and µ2 are supermodular (submodular, respectively) then µ1+µ2

is supermodular (submodular, respectively).
(ii) If µ1 and µ2 are modular, then so are µ1 + µ2 and µ1 − µ2.
(iii) If µ1 and µ2 are null-additive, then so are µ1 + µ2 and µ1 − µ2.

Proof. (i) Let µ1 and µ2 be supermodular. Let a, b ∈ E. Then

(µ1 + µ2)(a) + (µ1 + µ2)(b) = µ1(a) + µ2(a) + µ1(b) + µ2(b)

≤ µ1(a ∨ b) + µ1(a ∧ b) + µ2(a ∨ b) + µ2(a ∧ b)

= (µ1 + µ2)(a ∨ b) + (µ1 + µ2)(a ∧ b).

If µ1 and µ2 are submodular, then by similar arguments, µ1 +µ2 is submod-
ular.

(ii) The proof is obvious.
(iii) Let a, b ∈ E and a ⊥ b. Since µ1 and µ2 are null-additive, therefore,

we have µ1(a ⊕ b) = µ1(a) and µ2(a ⊕ b) = µ2(a), whenever µ1(b) = 0 and
µ2(b) = 0. So (µ1 +µ2)(b) = 0 and (µ1 +µ2)(a⊕b) = µ1(a⊕b)+µ2(a⊕b) =
(µ1 + µ2)(a).

By similar arguments, we can show that µ1−µ2 is also null-additive. ¤
From now onwards, let L be a σ-complete σ-continuous D-lattice, M be

a proper D-sublattice of L and µ be a [0,∞]-valued function defined on M.

Proposition 4.2. Let µ be a superadditive function defined on M. Then the
function µ∗ is superadditive.

Proof. Let a, b ∈ L and a ⊥ b. By definition of µ∗, we have c, d ∈ M , c ≤ a,
d ≤ b, µ∗(a) − ε/2 < µ(c) and µ∗(b) − ε/2 < µ(d). Now, by 2.8 (iv) we
have c⊕ d ≤ a⊕ b. Since µ∗ is monotone, we have µ∗(a⊕ b) ≥ µ∗(c⊕ d) ≥
µ(c⊕d) ≥ µ(c)+µ(d) > µ∗(a)−ε/2+µ∗(b)− ε/2 = µ∗(a)+µ∗(b)− ε. Since
ε is arbitrary, the result follows. ¤
Definition 4.2. Let µ be a monotone null-additive function on M. Let Nµ =
{a ∈ L : ∃ a1, a2 ∈ M such that a1 ≤ a ≤ a2 andµ(a2 ª a1) = 0}. The
function µ : Nµ → [0, +∞] is defined as µ(a) = µ(a1), where a1, a2 ∈ M ,
a1 ≤ a ≤ a2 and µ(a2ªa1) = 0. Elements of Nµ are sometimes also referred
to as µ-measurable.

Since a1 ≤ a2, so by 2.8(i), we have a2 = a1 ⊕ (a2 ª a1). Hence by null-
additivity of µ, we get µ(a2) = µ(a1). So µ(a) may equally be defined as
µ(a2). Further, if d ≤ a and d ∈ M , then µ(d) ≤ µ(a2) = µ(a1). Hence
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µ(a1) = sup{µ(d) : d ≤ a, d ∈ M}. Thus µ is well-defined. Also µ is an
extension of µ on Nµ; in particular µ(0) = µ(0).

Also if a1, a2 ∈ Nµ and a1 ≤ a2, then µ(a1) ≤ µ(a2): Since a1, a2 ∈ Nµ,
then there exist b1, c1, b2, c2 ∈ M such that b1 ≤ a1 ≤ c1, µ(c1 ª b1) = 0
and b2 ≤ a2 ≤ c2, µ(c2 ª b2) = 0. Again, since b1 ≤ a1 ≤ a2 ≤ c2, so
µ(a1) = µ(b1) ≤ µ(c2) = µ(a2).

Let µ and ν be monotone null-additive functions defined on M. If ker µ
= ker ν, then Nµ = Nν , where ker µ = {a ∈ M : µ(a) = 0}.
Proposition 4.3. Let µ be a monotone null-additive function defined on
M. If µ is converse null-additive, then the function µ is also converse null-
additive on Nµ.

Proof. Let b, c ∈ Nµ with b ≤ c and µ(b) = µ(c) < ∞. Then there exist
b1, c1, b2, c2 ∈ M such that b1 ≤ b ≤ b2, µ(b2 ª b1) = 0 and c1 ≤ c ≤
c2, µ(c2 ª c1) = 0. Since µ is converse null-additive on M and µ(b1) =
µ(b) = µ(c) = µ(c2), so µ(c2 ª b1) = 0. Since b ≤ c ≤ c2, then by 2.8
(ii) and (iii) we have c ª b ≤ c2 ª b ≤ c2 ª b1. Again since µ is monotone,
µ(cª b) ≤ µ(c2 ª b1) = 0, so µ(cª b) = 0. Hence µ is converse null-additive
on Nµ. ¤
Definition 4.3. Let µ be a function defined on M. Let d ∈ L such that
d 6∈ M and µ∗(d) < ∞. A function µ is called weak converse null-additive
(on M) with respect to d, if for all a, b ∈ M such that a ≤ d ≤ b and
µ(a) = µ(b) < ∞, there exist elements a0, b0 ∈ M with a0 ≤ d ≤ b0 such
that µ(b0 ª a0) = 0; µ is called weak converse null-additive (on M), if it is
weak converse null-additive (on M) with respect to d, whenever d 6∈ M and
µ∗(d) < ∞.

Observe that if µ is converse null-additive, then it is weak converse null-
additive, which yields that every superadditive function is weak converse
null-additive. The converse of this statement need not be true as µ2 in
Example 4.1 is weak converse null-additive but not superadditive.

Theorem 4.1. Let µ be a monotone null-additive function defined on M.
Then the following hold:

(i) If a ∈ Nµ, then µ∗(a) = µ∗(a).
(ii) If for every d ∈ L such that µ∗(d) = µ∗(d) < ∞, d ∈ Nµ, then µ is

weak converse null-additive.

Proof. (i) Let a ∈ Nµ. Then there exist b, c ∈ M such that b ≤ a ≤ c and
µ(c ª b) = 0. So µ(b) ≤ µ∗(a) ≤ µ∗(a) ≤ µ(c). Since µ(b) = µ(c), we have
µ∗(a) = µ∗(a).

(ii) Suppose that µ is not weak converse null-additive (on M), then there
exists an element d ∈ L such that µ∗(d) < ∞ and if for all b, c ∈ M,
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b ≤ d ≤ c and µ(b) = µ(c) < ∞, µ(cª b) 6= 0. Since µ∗(d) = µ∗(d) < ∞, we
have that d ∈ Nµ. Then there exist b0, c0 ∈ M such that b0 ≤ d ≤ c0 and
µ(c0 ª b0) = 0, a contradiction. ¤
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