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FRACTIONAL CALCULUS OPERATOR AND CERTAIN
APPLICATIONS IN GEOMETRIC FUNCTION THEORY

HÜSEYIN IRMAK AND NIKOLA TUNESKI

Abstract. Using a operator involving fractional calculus introduced
by Owa and Srivastava [8], two novel families:

Vα,β
δ (ν; γ) and Wα,β

δ (µ; γ)

(δ 6= 0, α < 1, β < 1, γ < 1, µ ≥ 0, ν ∈ (−1, 0) ∪ (0, 1))

of functions f(z) which are analytic and univalent in the open unit disk
U are defined. Moreover some consequences of main results are shown.

1. Introduction and definitions

Let T (n) denote the class of functions f(z) of the form

f(z) = z +
∞∑

k=n+1

akz
k, (n ∈ N = {1, 2, 3, . . . }), (1.1)

that are analytic in the open unit disk

U =
{
z : z ∈ C and |z| < 1

}
.

Also let S(n) denote the class of all functions which are univalent in U .
A function f(z) ∈ T (n) is said to be starlike of order ∆ in U , if it satisfies

the inequality:

<e

(
zf ′(z)
f(z)

)
> ∆ (z ∈ U ; 0 ≤ ∆ < 1). (1.2)

We denote by S(∆) the subclass of T (n) consisting of functions which are
starlike of order ∆ (0 ≤ ∆ < 1) in U .
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Further, a function f(z) ∈ T (n) is said to be convex of order ∆ in U , if it
satisfies the inequality:

<e

(
1 +

zf ′′(z)
f ′(z)

)
> ∆ (z ∈ U ; 0 ≤ ∆ < 1). (1.3)

The subclass of T (n) of such functions is denoted by K(∆).
We note that

f(z) ∈ Kn(∆) ⇐⇒ zf ′(z) ∈ Sn(∆), (1.4)

and
S∗(∆) ⊂ S∗(0) ≡ S∗ and K(∆) ⊂ K(0) ≡ K,

where S∗ and K are the subclasses of T (n) consisting of functions being
starlike and convex in U , respectively. See [3], [4], and [11] for the details of
definitions in (1.2)-(1.4).

Various definitions of fractional calculus operators are given by many
authors, see [10]. We use here the following definitions due to Owa and
Srivastava [8], and see also [7, 1].

Definition 1. Let a function f(z) be analytic in a simply-connected region of
the z-plane containing the origin. The fractional integral of order µ (µ > 0)
is defined by

D−µ
z {f(z)} =

1
Γ(µ)

∫ z

0
f(ξ)(z − ξ)µ−1dξ, (1.5)

and the fractional derivative of order µ (0 ≤ µ < 1) is defined by

Dµ
z {f(z)} =

1
Γ(1− µ)

d

dz

∫ z

0
f(ξ)(z − ξ)−µdξ, (1.6)

where the multiplicity of (z − ξ)µ−1 involved in (1.5) and that of (z − ξ)−µ

in (1.6) are removed by requiring log(z − ξ) to be real when z − ξ > 0.

Definition 2. Using Definition 1, the fractional derivative of order m +
µ (m ∈ N0 = N ∪ {0}; 0 ≤ µ < 1) is defined by

Dm+µ
z {f(z)} =

dm

dzm
Dµ

z {f(z)}. (1.7)

With the help of the definitions in (1.6) and (1.7), Owa and Srivas-
tava [8] defined a modification of the fractional calculus operator J λ

z (λ 6=
2, 3, 4, . . . ) by

J λ
z {f(z)} = Γ(2− λ)zλDλ

z {f(z)} (1.8)
for functions (1.1) belonging to the class T (n).

By making use of the fractional calculus operator J λ
z , we now define two

important and novel families Vα,β
δ (ν; γ) and Wα,β

δ (ν; γ) of functions f(z) in
the class T (n) below.
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Definition 3. A function f(z) ∈ T (n) is said to belong to Vα,β
δ (ν; γ), if it

satisfies the inequality:

<e

{
α− β + (1− α)J

1+α
z {f(z)}
J α

z {f(z)} − (1− β)J
1+β
z {f(z)}
J β

z {f(z)}

1− γ Jβ
z {f(z)}

Jα
z {f(z)}

}

{
< ν(ν−1)

δ(1+ν)2
when (δ > 0, −1 < ν < 0)

> ν(1+ν)
δ(1−ν)2

when (δ < 0, 0 < ν < 1)

}
, (1.9)

where δ ∈ R∗ := R, α < 1, β < 1, γ < 1, and z ∈ U .

Definition 4. A function f(z) ∈ T (n) is said to belong to Wα,β
δ (µ; γ), if it

satisfies the inequality:

<e

{[
1

1− γ

(J α
z {f(z)}
J β

z {f(z)}
− γ

)]δ}
> µ, (1.10)

where δ ∈ R∗, α < 2, β < 2, γ < 1, µ ≥ 0, z ∈ U and the value of
[

1
1− γ

(J α
z {f(z)}
J β

z {f(z)}
− γ

)]δ

is taken to be its principal value.

Noting that

Wα,β
1 (0; γ) =: A(α, β, γ),

W0,0
1 (0; γ) =: A(1, 0, γ) =: S∗(γ)

and

W1+α,0
1 (0; γ) =: A(1 + α, 0, γ) =: S∗(γ, α),

where the class A(α, β, γ) was studied Choi et al. [2] and the classes S∗(γ)
and S∗(γ, α) were studied by Owa and Shen [9] when n = 1. We also denote:

Vα,β
1 (0; γ) =: B(α, β, γ),

V0,0
1 (0; γ) =: B(1, 0, γ) =: E(γ)

and

V1+α,0
1 (0; γ) =: B(1 + α, 0, γ) =: F(γ, α).

In this paper, we also point out some certain relationships between the
classes Vα,β

δ (ν; γ), Wα,β
δ (µ; γ) and their subclasses.
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2. Main results

Now, we mention the following result which is used in the sequel.

Lemma 1. Let the function f(z) defined by (1.1) and let λ < 1. Then

z(J λ
z {f(z)})′ = (1− λ)J 1+λ

z {f(z)}+ λJ λ
z {f(z)} (z ∈ U). (2.1)

Lemma 2. ([5, 6]) Let w(z) be an analytic function in the unit disk U with
w(0) = 0 and let 0 < r < 1. If |w(z)| attains at z0 its maximum value on
the circle |z| = r, then

z0w
′(z0) = cw(z0) (c ≥ 1). (2.2)

Making use of Lemmas 1 and 2, we first give the following theorem:

Theorem 1. Let f(z) ∈ T (n), δ ∈ R∗, α < 1, β < 1, γ < 1 and z ∈ U . If
f(z) ∈ Vα,β

δ (ν; γ) then f(z) ∈ Wα,β
δ (µ; γ), where µ = 1− |ν|.

Proof. Using the definition of fractional calculus, we have

J λ
z {f(z)} = z +

∞∑

k=n+1

Γ(n + 1)Γ(2− λ)
Γ(n + 1− λ)

akz
k (n ∈ N ).

Since
1

1− γ

(J α
z {f(z)}
J β

z {f(z)}
− γ

)
= 1 + d1z + d2z

2 + · · ·

define a function w(z) by

1 + νw(z) =
[

1
1− γ

(J α
z {f(z)}
J β

z {f(z)}
− γ

)]δ

. (2.3)

Clearly, w(z) is an analytic function in U , and w(0) = 0. Differentiation of
(2.3) gives

z(J α
z {f(z)})′J β

z {f(z)}−z(J β
z {f(z)})′J α

z {f(z)}
(J β

z {f(z)})2
J α

z {f(z)}
J β

z {f(z)} − γ
=

νzw′(z)
δ[1 + vw(z)]

(2.4)

and using (2.1) in (2.4) once again :

G(z) :=
α− β + (1− α)J

1+α
z {f(z)}
J α

z {f(z)} − (1− β)J
1+β
z {f(z)}
J β

z {f(z)}

1− γ Jβ
z {f(z)}

Jα
z {f(z)}

,

or, equivalently,

G(z) =
νzw′(z)

δ[1 + νw(z)]
(2.5)
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Now, suppose that there exists a point z0 ∈ U such that

max { |w(z)| } = |w(z0)| = 1 when |z| ≤ |z0| (z ∈ U).

Then, applying Lemma 2, we can write z0w
′(z0) = cw(z0) (c ≥ 1) and

w(z0) = eiθ. Thus, from (2.5) we obtain

<e{G(z0)} = <e

(
νz0w

′(z0)
δ[1 + νw(z0)]

)

=
cν

δ
<e

(
eiθ

1 + νeiθ

)
=

cν(ν + cosθ)
δ(1 + 2νcosθ + ν2)

. (2.6)

and further, from (2.6) yields that

<e {G(z0)}
{
≥ ν(ν−1)

δ(1+ν)2
if (δ > 0, −1 < ν < 0)

≤ ν(1+ν)
δ(1−ν)2

if (δ < 0, 0 < ν < 1)

}
, (2.7)

where c ≥ 1. But, the inequalities in (2.7) contradict the inequalities (1.9)
relating to our assumptions that f(z) ∈ Vα,β

δ (ν; γ), and hence, we conclude
that |w(z)| < 1 for all z ∈ U . Consequently, it follows from (2.3) that∣∣∣∣∣

[ 1
1− γ

(J α
z {f(z)}
J β

z {f(z)}
− γ

)]δ

− 1

∣∣∣∣∣ < |v|, (2.8)

which implies that

<e

{[
1

1− γ

(J α
z {f(z)}
J β

z {f(z)}
− γ

)]δ}
> µ = 1− |v|, (2.9)

i.e., f(z) ∈ Wα,β
δ (µ; γ). Therefore, the proof of Theorem 1 is completed. ¤

If we put zf ′(z) in stead of f(z) in the Theorem 1, we then obtain the
following theorem.

Theorem 2. Let δ ∈ R∗, α < 1, β < 1 γ < 1 and z ∈ U . If the function
f(z) ∈ T (n) satisfies the following conditions:

<e

{
α− β + (1− α)J

1+α
z {zf ′(z)}
J α

z {zf ′(z)} − (1− β)J
1+β
z {zf ′(z)}
J β

z {zf ′(z)}

1− γ Jβ
z {zf ′(z)}

Jα
z {zf ′(z)}

}

{
< ν(ν−1)

δ(1+ν)2
when (δ > 0, −1 < ν < 0)

> ν(1+ν)
δ(1−ν)2

when (δ < 0, 0 < ν < 1)

}
, (2.10)

then

<e

{[
1

1− γ

(J α
z {zf ′(z)}
J β

z {zf ′(z)}
− γ

)]δ}
> 1− |ν|. (2.11)
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3. Certain consequences of the main results

Now we introduce two subclasses Vα,β
δ (µ; γ) and Wα,β

δ (µ; γ) of functions
f(z) ∈ T (n), respectively, satisfying the inequalities (2.10) and (2.11). In
particular, we define some certain subclasses of the these classes as following:

Wα,β
1 (0; γ) =: B(α, β, γ),

W0,0
1 (0; γ) =: B(1, 0, γ) =: E(γ),

W1+α,0
1 (0; γ) =: B(1 + α, 0, γ) =: F(γ, α),

Vα,β
1 (0; γ) =: A(α, β, γ),

V0,0
1 (0; γ) =: A(1, 0, γ) =: K(γ),

V1+α,0
1 (0; γ) =: A(1 + α, 0, γ) =: K(γ, α).

Next, we can give some interesting and/or important results for the above
subclasses below:

Corollary 1. If f(z) ∈ B(α, β, γ) then f(z) ∈ A(α, β, γ).

Corollary 2. If f(z) ∈ F(γ, α) then f(z) ∈ S∗(γ, α).

Corollary 3. If f(z) ∈ E(γ) then f(z) ∈ S∗(γ), i.e., f(z) is starlike function
of order γ (0 ≤ γ < 1) in U .

Corollary 4. If f(z) ∈ B(α, β, γ) then f(z) ∈ A(α, β, γ).

Corollary 5. If f(z) ∈ F(γ, α) then f(z) ∈ K(γ, α).

Corollary 6. If f(z) ∈ E(γ) then f(z) ∈ K(γ), i.e., f(z) is convex function
of order γ (0 ≤ γ < 1) in U .
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