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ON A NONLINEAR VOLTERRA INTEGRAL EQUATION
IN TWO VARIABLES

B.G PACHPATTE

Abstract. The aim of this paper is to study the existence, uniqueness
and other properties of solutions of a certain nonlinear Volterra integral
equation in two variables. The fundamental tools employed in the anal-
ysis are based on applications of the Banach fixed point theorem and a
certain variant of the integral inequality with explicit estimate on the
unknown function.

1. Introduction

Let R denote the set of real numbers, Rn the real n-dimensional Eu-
clidean space with appropriate norm denoted by |.| and C (S1, S2) the class
of continuous functions from the set S1 to the set S2. We denote by
R+ = [0,∞) , E = R+ × R+, E1 = {(x, y, s) : 0 ≤ s ≤ x < ∞, y ∈ R+} ,
and E2 = {(x, y, s, t) : 0 ≤ s ≤ x < ∞, 0 ≤ t ≤ y < ∞} . The partial deriva-
tives of a function z = z (x, y) : E → Rn with respect to x, y and xy are
denoted by D1z (or zx), D2z (or zy) and D2D1z = D1D2z (or zxy). In
[5, p. 20] C. Corduneanu pointed out that, by means of the substitution
u = v exp

(− ∫ x
0 b0 (y, t) dy

)
, the following hyperbolic equation

uxt + a0 (x, t) ux + b0 (x, t) ut = c0 (x, t, u) , (1.1)

considered on the semi-strip 0 ≤ x ≤ l, 0 ≤ t < ∞, with the given charac-
teristic data

u (x, 0) = u1 (x) , u (0, t) = u0 (t) , (1.2)

takes the form
vxt + a (x, t) vx = c (x, t, v) , (1.3)
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where a(x, t) and c(x, t, v) are like a0(x, t) and c0(x, t, u) and the data on
the characteristics preserve their form

v (x, 0) = u1 (x) exp
(∫ x

0
b0(y, 0)dy

)
= v1 (x) , v (0, t) = u0 (t) . (1.4)

Furthermore, by taking z (x, t) = vxt (x, t) it is easy to observe that the
equation (1.3) with characteristic data (1.4) takes the form

z (x, t) + a (x, t)
(

D1v1 (x) +
∫ t

0
z (x, τ) dτ

)

= c

(
x, t, u0 (t) + v1 (x)− u1 (0) +

∫ x

0

∫ t

0
z (y, τ) dτdy

)
. (1.5)

In view of the fact that many physical problems arising in a wide variety
of applications governed by such equations and the above observations, in
this paper we consider the integral equation of the form

u (x, y) = f (x, y) +
∫ x

0
g (x, y, ξ, u (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u (σ, τ)) dτdσ, (1.6)

which belongs to the type (1.5), where f, g, h are given functions and u
is the unknown function to be found. Throughout, we assume that f ∈
C (E, Rn) , g ∈ C (E1 ×Rn, Rn) , h ∈ C (E2 ×Rn, Rn) .The main objective
of the present paper is to study the existence, uniqueness and other proper-
ties of solutions of equation (1.6) under various assumptions on the functions
in (1.6). The analysis used in the proofs is based on the applications of Ba-
nach fixed point theorem coupled with Bielecki type norm (see [1,4,5,7]) and
a new variant of the integral inequality with explicit estimate given in [12,
p. 74]. Our approach here is elementary and provide some basic results for
future advanced studies in the field.

2. Existence and uniqueness

Let S be the space of functions z ∈ C (E,Rn) which fulfill the condition

|z (x, y)| = O (exp (λ (x + y))) , (2.1)

where λ is a positive constant. In the space S we define the norm

|z|S = sup
(x,y)∈E

[|z (x, y)| exp (−λ (x + y))] . (2.2)

It is easy to see that S with norm defined in (2.2) is a Banach space. We note
that the condition (2.1) implies that there exists a constant M0 ≥ 0 such
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that |z (x, y)| ≤ M0 (exp (λ (x + y))) . Using this fact in (2.2) we observe
that

|z|S ≤ M0. (2.3)

The following theorem ensures the existence of a unique solution to equa-
tion (1.6).

Theorem 1. Suppose that

(i) the functions g, h in equation (1.6) satisfy the conditions

|g (x, y, ξ, u)− g (x, y, ξ, ū)| ≤ a (x, y, ξ) |u− ū| , (2.4)

|h (x, y, σ, τ, u)− h (x, y, σ, τ, ū)| ≤ b (x, y, σ, τ) |u− ū| , (2.5)

where a ∈ C (E1, R+) , b ∈ C (E2, R+) ,
(ii) for λ as in (2.1),
(j1) there exists a nonnegative constant α such that α < 1 and

∫ x

0
a (x, y, ξ) exp (λ (ξ + y)) dξ +

∫ x

0

∫ y

0
b (x, y, σ, τ) exp (λ (σ + τ)) dτdσ

≤ α exp (λ (x + y)) ,

(2.6)

(j2) there exists a nonnegative constant β such that
∣∣∣∣f (x, y) +

∫ x

0
g (x, y, ξ, 0) dξ +

∫ x

0

∫ y

0
h (x, y, σ, τ, 0) dτdσ

∣∣∣∣
≤ β exp (λ (x + y)) , (2.7)

where f, g, h are the functions in equation (1.6).

Under the assumptions (i) and (ii) the equation (1.6) has a unique solution
on E in S.

Proof. Let u ∈ S and define the operator T by

(Tu) (x, y) = f (x, y) +
∫ x

0
g (x, y, ξ, u (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u (σ, τ)) dτdσ. (2.8)

Now we shall show that T maps S into itself. Evidently, Tu is continuous
on E and Tu ∈ Rn. We verify that (2.1) is fulfilled. From (2.8) and using
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the hypotheses and (2.3), we have

|(Tu) (x, y)| ≤
∣∣∣∣f (x, y)+

∫ x

0
g (x, y, ξ, 0) dξ +

∫ x

0

∫ y

0
h (x, y, σ, τ, 0) dτdσ

∣∣∣∣

+
∫ x

0
|g (x, y, ξ, u (ξ, y))− g (x, y, ξ, 0)|dξ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u (σ, τ))− h (x, y, σ, τ, 0)| dτdσ

≤ β exp (λ (x + y)) +
∫ x

0
a (x, y, ξ) |u (ξ, y)| dξ

+
∫ x

0

∫ y

0
b (x, y, σ, τ) |u (σ, τ)| dτdσ

≤ β exp (λ (x + y)) + |u|S
[∫ x

0
a (x, y, ξ) exp (λ (ξ + y)) dξ

+
∫ x

0

∫ y

0
b (x, y, σ, τ) exp (λ (σ + τ)) dτdσ

]

≤ [β + M0α] exp (λ (x + y)) . (2.9)

From (2.9) it follows that Tu ∈ S. This proves that T maps S into itself.
Now, we verify that the operator T is a contraction map. Let u, v ∈ S.

From (2.8) and using the hypotheses, we have

|(Tu) (x, y)− (Tv) (x, y)| ≤
∫ x

0
|g (x, y, ξ, u (ξ, y))− g (x, y, ξ, v (ξ, y))|dξ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u (σ, τ))− h (x, y, σ, τ, v (σ, τ))|dτdσ

≤
∫ x

0
a (x, y, ξ) |u (ξ, y)− v (ξ, y)| dξ

+
∫ x

0

∫ y

0
b (x, y, σ, τ) |u (σ, τ)− v (σ, τ)|dτdσ

≤ |u− v|S
[∫ x

0
a (x, y, ξ) exp (λ (ξ + y))dξ

+
∫ x

0

∫ y

0
b (x, y, σ, τ) exp (λ (σ + τ))dτdσ

]

≤ α |u− v|S exp (λ (x + y)) . (2.10)

From (2.10), we obtain

|Tu− Tv|S ≤ α |u− v|S .
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Since α < 1, it follows from Banach fixed point theorem (see [5, p. 37]) that
T has a unique fixed point in S. The fixed point of T is however a solution
of equation (1.6). The proof is complete. ¤

Remark 1. We note that, Theorem 1 given above provides a simple way to
establish the existence and uniqueness for solutions of equation (1.6) in the
space of continuous functions. The existence and uniqueness result in Lp

spaces for more general version of equation (1.6) is analyzed by M.Kwapisz
[8, Theorem 1] using weighted norm introduced first by Bielecki [1]. Our
approach here applies also for the equation considered in [8, p. 246]. For a
survey on the results proved by Bielecki’s method for integral and integrod-
ifferential equations, see [4].

3. Properties of solutions

In this section we study some fundamental properties of solutions of equa-
tion (1.6) under various assumptions on the functions involved therein. The
analysis is based on the application of the following variant of the inequality
due to the present author given in [12, Theorem 2.3.1, p. 74]. For similar
results, see [10].

Lemma 1. Let w ∈ C (E, R+) , q, D1q ∈ C (E1, R+) , r,D1r,D2r,D2D1r
∈ C (E2, R+) and c ≥ 0 is a constant. If

w (x, y) ≤ c +
∫ x

0
q (x, y, ξ) w (ξ, y)dξ +

∫ x

0

∫ y

0
r (x, y, σ, τ) w (σ, τ)dτdσ,

(3.1)
for x, y ∈ R+, then

w (x, y) ≤ cA (x, y) exp
(∫ x

0

∫ y

0
B (s, t) dtds

)
, (3.2)

for x, y ∈ R+, where
A (x, y) = exp (Q (x, y)) , (3.3)

in which

Q (x, y) =
∫ x

0

[
q (η, y, η) +

∫ η

0
D1q (η, y, ξ) dξ

]
dη, (3.4)

and

B (x, y) = r (x, y, x, y) A (x, y) +
∫ x

0
D1r (x, y, σ, y) A (σ, y) dσ

+
∫ y

0
D2r (x, y, x, τ) A (x, τ) dτ +

∫ x

0

∫ y

0
D2D1r (x, y, σ, τ) A (σ, τ) dτdσ.

(3.5)
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Proof. Define the function z(x, y) by

z (x, y) = c +
∫ x

0

∫ y

0
r (x, y, σ, τ) w (σ, τ) dτdσ. (3.6)

Then (3.1) can be restated as

w (x, y) ≤ z (x, y) +
∫ x

0
q (x, y, ξ)w (ξ, y) dξ. (3.7)

From the hypotheses, it is easy to observe that z(x, y) is nonnegative and
nondecreasing for x, y ∈ R+. Treating (3.7) as a one-dimensional integral
inequality for any fixed y ∈ R+ and a suitable application of the inequality
given in [12, Theorem 1.2.1, Remark 1.2.1, p. 11] yields

w (x, y) ≤ A (x, y) z (x, y) . (3.8)

From (3.6) and (3.8), we have

z (x, y) ≤ c +
∫ x

0

∫ y

0
r (x, y, σ, τ) A (σ, τ) z (σ, τ) dτdσ. (3.9)

Now a suitable application of the inequality given in [12, Theorem 2.2.1,
Remark 2.2.1, p. 66] to (3.9) yields

z (x, y) ≤ c exp
(∫ x

0

∫ y

0
B (s, t) dt ds

)
. (3.10)

Using (3.10) in (3.8), we get the required inequality in (3.2). ¤

First, we shall give the following theorem concerning the estimate on the
solution of equation (1.6).

Theorem 2. Suppose that the functions f, g, h in equation (1.6) satisfy the
conditions

|g (x, y, ξ, u)− g (x, y, ξ, ū)| ≤ q (x, y, ξ) |u− ū| , (3.11)

|h (x, y, σ, τ, u)− h (x, y, σ, τ, ū)| ≤ r (x, y, σ, τ) |u− ū| , (3.12)

where q,D1q ∈ C (E1, R+) and r,D1r,D2r,D2D1r ∈ C (E2, R+) and

c = sup
(x,y)∈E

∣∣∣∣f (x, y) +
∫ x

0
g (x, y, ξ, 0) dξ +

∫ x

0

∫ y

0
h (x, y, σ, τ, 0) dτdσ

∣∣∣∣ < ∞.

(3.13)
If u(x, y) is any solution of equation (1.6) on E, then

|u (x, y)| ≤ cA (x, y) exp
(∫ x

0

∫ y

0
B (s, t) dtds

)
, (3.14)

for (x, y) ∈ E, where A(x, y) and B(x, y) are given by (3.3) and (3.5).
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Proof. Using the fact that u(x, y) is a solution of equation (1.6) and hy-
potheses, we have

|u (x, y)| ≤
∣∣∣∣f (x, y) +

∫ x

0
g (x, y, ξ, 0) dξ +

∫ x

0

∫ y

0
h (x, y, σ, τ, 0)dτdσ

∣∣∣∣

+
∫ x

0
|g (x, y, ξ, u (ξ, y))− g (x, y, ξ, 0)|dξ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u (σ, τ))− h (x, y, σ, τ, 0)|dτdσ

≤ c +
∫ x

0
q (x, y, ξ) |u (ξ, y)|dξ +

∫ x

0

∫ y

0
r (x, y, σ, τ) |u (σ, τ)|dτdσ. (3.15)

Now an application of Lemma 1 to (3.15) yields (3.14). ¤
Remark 2. In Theorem 2, if we assume that (i) Q (x, y) < ∞ and (ii)∫∞
0

∫∞
0 B (s, t) dtds < ∞, then the solution u(x, y) of equation (1.6) is bo-

unded on E.

A slight variant of Theorem 2 is embodied in the following theorem.

Theorem 3. Suppose that the functions g, h in equation (1.6) satisfy the
conditions (3.11), (3.12) and∫ x

0
|g (x, y, ξ, f (ξ, y))| dξ +

∫ x

0

∫ y

0
|h (x, y, σ, τ, f (σ, τ))|dτdσ ≤ d, (3.16)

for x, y ∈ R+, where f is the function involved in (1.6) and d ≥ 0 is a real
constant. If u(x, y) is any solution of equation (1.6) on E, then

|u (x, y)− f (x, y)| ≤ dA (x, y) exp
(∫ x

0

∫ y

0
B (s, t) dtds

)
, (3.17)

for (x, y) ∈ E, where A(x, y) and B(x, y) are given by (3.3) and (3.5).

Proof. Let e (x, y) = |u (x, y)− f (x, y)| for (x, y) ∈ E. Using the fact that
u(x, y) is a solution of equation (1.6) and the hypotheses, we have

e (x, y) ≤
∫ x

0
|g (x, y, ξ, f (ξ, y))| dξ +

∫ x

0

∫ y

0
|h (x, y, σ, τ, f (σ, τ))|dτdσ

+
∫ x

0
|g (x, y, ξ, u (ξ, y))− g (x, y, ξ, f (ξ, y))|dξ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u (σ, τ))− h (x, y, σ, τ, f (σ, τ))|dτdσ

≤ d +
∫ x

0
q (x, y, ξ) e (ξ, y)dξ +

∫ x

0

∫ y

0
r (x, y, σ, τ) e (σ, τ)dτdσ. (3.18)

Now an application of Lemma 1 to (3.18) yields (3.17).
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We call the function u ∈ C (E,Rn) an ε-approximate solution to equation
(1.6), if there exists a constant ε ≥ 0 such that

∣∣∣∣u (x, y)−
{

f (x, y) +
∫ x

0
g (x, y, ξ, u (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u (σ, τ)) dτdσ

}∣∣∣∣ ≤ ε,

for all x, y ∈ R+. ¤

The next theorem deals with the estimate on the difference between two
approximate solutions of equation (1.6).

Theorem 4. Let u1(x, y) and u2(x, y) be respectively, ε1 and ε2 approximate
solutions of equation (1.6) on E. Suppose that the functions g, h in equation
(1.6) satisfy the conditions (3.11), (3.12). Then

|u1 (x, y)− u2 (x, y)| ≤ (ε1 + ε2) A (x, y) exp
(∫ x

0

∫ y

0
B (s, t) dtds

)
,

(3.19)
for (x, y) ∈ E, where A(x, y) and B(x, y) are given by (3.3) and (3.5).

Proof. Since u1 (x, y) and u2 (x, y) are respectively, ε1 and ε2 approximate
solutions to equation (1.6), we have

∣∣∣∣ui (x, y)−
{

f (x, y) +
∫ x

0
g (x, y, ξ, ui (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, ui (σ, τ)) dτdσ

}∣∣∣∣ ≤ εi, (3.20)

for i = 1, 2. From (3.20) and using the elementary inequalities |v − z| ≤
|v|+ |z| and |v| − |z| ≤ |v − z| , we observe that

ε1 + ε2 ≥
∣∣∣∣u1 (x, y)−

{
f (x, y) +

∫ x

0
g (x, y, ξ, u1 (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u1 (σ, τ)) dτdσ

}∣∣∣∣

+
∣∣∣∣u2 (x, y)−

{
f (x, y) +

∫ x

0
g (x, y, ξ, u2 (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u2 (σ, τ)) dτdσ

}∣∣∣∣

≥
∣∣∣∣[u1 (x, y)− u2 (x, y)]−

[{
f (x, y) +

∫ x

0
g (x, y, ξ, u1 (ξ, y)) dξ
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+
∫ x

0

∫ y

0
h (x, y, σ, τ, u1 (σ, τ)) dτdσ

}

−
{

f (x, y) +
∫ x

0
g (x, y, ξ, u2 (ξ, y)) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u2 (σ, τ)) dτdσ

}]∣∣∣∣

≥ |u1 (x, y)− u2 (x, y)| −
∣∣∣∣
∫ x

0
{g (x, y, ξ, u1 (ξ, y))− g (x, y, ξ, u2 (ξ, y))} dξ

+
∫ x

0

∫ y

0
{h (x, y, σ, τ, u1 (σ, τ))− h (x, y, σ, τ, u2 (σ, τ))} dτdσ

∣∣∣∣ . (3.21)

Let w (x, y) = |u1 (x, y)− u2 (x, y)|, (x, y) ∈ E. From (3.21) and using con-
ditions (3.11), (3.12), we have

w (x, y) ≤ (ε1 + ε2) +
∫ x

0
|g (x, y, ξ, u1 (ξ, y))− g (x, y, ξ, u2 (ξ, y))| dξ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u1 (σ, τ))− h (x, y, σ, τ, u2 (σ, τ))| dτdσ

≤ (ε1 + ε2) +
∫ x

0
q (x, y, ξ) w (ξ, y) dξ

+
∫ x

0

∫ y

0
r (x, y, σ, τ) w (σ, τ) dτdσ. (3.22)

Now an application of Lemma 1 to (3.22) yields (3.19). ¤
Remark 3. In case, if u1(x, y) is a solution of equation (1.6), then we have
ε1 = 0 and from (3.19) we see that u1 (x, y) → u2 (x, y) as ε2 → 0. Moreover,
from (3.19) the uniqueness of solutions of equation (1.6) follows if εi ≡ 0
(i = 1, 2).

We next consider the following variants of equation (1.6):

u (x, y) = f (x, y) +
∫ x

0
g (x, y, ξ, u (ξ, y) , µ) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u (σ, τ) , µ)dτdσ, (3.23)

and

u (x, y) = f (x, y) +
∫ x

0
g (x, y, ξ, u (ξ, y) , µ0) dξ

+
∫ x

0

∫ y

0
h (x, y, σ, τ, u (σ, τ) , µ0)dτdσ, (3.24)
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for (x, y) ∈ E, where f ∈ C (E, Rn) , g ∈ C (E1 ×Rn ×R, Rn) , h ∈
C (E2 ×Rn ×R, Rn) and µ, µ0 are parameters.

The following theorem shows the dependency of solutions of equations
(3.23) and (3.24) on parameters.

Theorem 5. Suppose that the functions g, h in equations (3.23), (3.24)
satisfy the conditions

|g (x, y, ξ, u, µ)− g (x, y, ξ, ū, µ)| ≤ q (x, y, ξ) |u− ū| , (3.25)

|g (x, y, ξ, u, µ)− g (x, y, ξ, u, µ0)| ≤ p1 (x, y, ξ) |µ− µ0| , (3.26)

|h (x, y, σ, τ, u, µ)− h (x, y, σ, τ, ū, µ)| ≤ r (x, y, σ, τ) |u− ū| , (3.27)

|h (x, y, σ, τ, u, µ)− h (x, y, σ, τ, u, µ0)| ≤ p2 (x, y, σ, τ) |µ− µ0| , (3.28)

where p1, q, D1q ∈ C (E1, R+), p2, r,D1r,D2r,D2D1r ∈ C (E2, R+) and∫ x

0
p1 (x, y, ξ) dξ ≤ M1, (3.29)

∫ x

0

∫ y

0
p2 (x, y, σ, τ)dτdσ ≤ M2, (3.30)

in which M1,M2 are nonnegative constants. Let u1(x, y) and u2(x, y) be the
solutions of equations (3.23) and (3.24) respectively. Then

|u1 (x, y)−u2 (x, y)| ≤ (M1+M2) |µ−µ0|A (x, y) exp
(∫ x

0

∫ y

0
B (s, t) dtds

)
,

(3.31)
for (x, y) ∈ E, where A(x, y) and B(x, y) are given by (3.3) and (3.5).

Proof. Let w (x, y) = |u1 (x, y)− u2 (x, y)| , (x, y) ∈ E. Using the facts that
u1 (x, y) and u2 (x, y) are the solutions of equations (3.23) and (3.24) and
hypotheses, we have

w (x, y) ≤
∫ x

0
|g (x, y, ξ, u1 (ξ, y) , µ)− g (x, y, ξ, u2 (ξ, y) , µ)| dξ

+
∫ x

0
|g (x, y, ξ, u2 (ξ, y) , µ)− g (x, y, ξ, u2 (ξ, y) , µ0)| dξ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u1 (σ, τ) , µ)− h (x, y, σ, τ, u2 (σ, τ) , µ)|dτdσ

+
∫ x

0

∫ y

0
|h (x, y, σ, τ, u2 (σ, τ) , µ)− h (x, y, σ, τ, u2 (σ, τ) , µ0)|dτdσ

≤
∫ x

0
q (x, y, ξ)w (ξ, y) dξ +

∫ x

0
p1 (x, y, ξ) |µ− µ0| dξ

+
∫ x

0

∫ y

0
r (x, y, σ, τ)w (σ, τ) dτdσ +

∫ x

0

∫ y

0
p2 (x, y, σ, τ) |µ− µ0| dτdσ
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≤ (M1 + M2) |µ− µ0|+
∫ x

0
q (x, y, ξ)w (ξ, y) dξ

+
∫ x

0

∫ y

0
r (x, y, σ, τ)w (σ, τ) dτdσ. (3.32)

Now an application of Lemma 1 to (3.32) yields (3.31), which shows the
dependency of solutions of equations (3.23) and (3.24) on parameters. ¤
Remark 4. We note that the idea employed above can be extended to study
the integrodifferential equation of the form

D2D1u (x, y) = F (x, y, u (x, y) , (Ku) (x, y) , (Lu) (x, y)) , (3.33)

with the given data

u (x, 0) = σ (x) , u (0, y) = τ (y) , (3.34)

for x, y ∈ R+, where

(Ku) (x, y) =
∫ x

0
g (x, y, ξ, u (ξ, y))dξ, (3.35)

(Lu) (x, y) =
∫ x

0

∫ y

0
h (x, y, σ, τ, u (σ, τ))dτdσ, (3.36)

by making use of a suitable variant of the inequality given in [12, Theorem
2.5.1, p. 96] (see also [10]). Here, we omit the details.

4. Discrete analogues

Let N denote the set of natural numbers, N0 = {0, 1, 2, . . .} and D (S1, S2)
the class of discrete functions from the set S1 to the set S2. We denote
by G = N0 × N0, G1 = {(m,n, ξ) : 0 ≤ ξ ≤ m < ∞, n ∈ N0} and G2 =
{(m,n, σ, τ) : 0 ≤ σ ≤ m < ∞, 0 ≤ τ ≤ n < ∞} . For any function w : G →
Rn we define the operators ∆1, ∆2 by ∆1w (m,n) = w (m + 1, n)−w (m,n) ,
∆2w (m,n) = w (m,n + 1)−w (m, n) and ∆2∆1w (m,n) =∆2 (∆1w (m, n)) .
We use the usual conventions that empty sums and products are taken to
be 0 and 1 respectively. The sum-difference equation which constitutes the
discrete analogue of equation (1.6) can be written as

u (m,n) = f̄ (m,n) +
m−1∑

ξ=0

ḡ (m,n, ξ, u (ξ, n))

+
m−1∑

σ=0

n−1∑

τ=0

h̄ (m,n, σ, τ, u (σ, τ)), (4.1)

for m,n ∈ N0, where f̄ ∈ D (G,Rn) , ḡ ∈ D (G1 ×Rn, Rn) , h̄ ∈ D(G2

×Rn, Rn).
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In this section, we formulate in brief the discrete versions of Lemma 1,
Theorems 2 and 3 only, concerning the solutions of equation (4.1). One can
formulate results similar to those in Theorems 1, 4 and 5 for the solutions
of equation (4.1). For a detailed account on the study of such equations, see
[11,12].

Lemma 2. Let w ∈ D (G,R+) , q̄, ∆1q̄ ∈ D (G1, R+) , r̄, ∆1r̄, ∆2r̄, ∆2∆1r̄ ∈
D (G2, R+) , and c̄ ≥ 0 is a constant. If

w (m,n) ≤ c̄ +
m−1∑

ξ=0

q̄ (m,n, ξ)w (ξ, n) +
m−1∑

σ=0

n−1∑

τ=0

r̄ (m,n, σ, τ) w (σ, τ), (4.2)

for m,n ∈ N0, then

w (m,n) ≤ c̄Ā (m,n)
m−1∏

s=0

[
1 +

n−1∑

t=0

B̄ (s, t)
]
, (4.3)

for m,n ∈ N0, where

Ā (m,n) =
m−1∏

ξ=0

[
1 + Q̄ (ξ, n)

]
, (4.4)

in which

Q̄ (m,n) = q̄ (m + 1, n, m) +
m−1∑

η=0

∆1q̄ (m,n, η), (4.5)

and

B̄ (m,n)= r̄ (m+ 1, n+ 1,m, n) Ā (m, n)+
m−1∑

σ=0

∆1r̄ (m, n + 1, σ, n) Ā (σ, n)

+
n−1∑

τ=0

∆2r̄ (m + 1, n, m, τ) Ā (m, τ) +
m−1∑

σ=0

n−1∑

τ=0

∆2∆1r̄ (m,n, σ, τ) Ā (σ, τ) .

(4.6)

Proof. Define a function z(m,n) by

z (m,n) = c̄ +
m−1∑

σ=0

n−1∑

τ=0

r̄ (m,n, σ, τ)w (σ, τ) . (4.7)

Then (4.2) can be restated as

w (m,n) ≤ z (m,n) +
m−1∑

ξ=0

q̄ (m,n, ξ)w (ξ, n) . (4.8)



VOLTERRA INTEGRAL EQUATION IN TWO VARIABLES 71

From the hypotheses, it is easy to observe that z(m,n) is nonnegative and
nondecreasing in m,n ∈ N0. Treating (4.8) as one dimensional inequality for
any fixed n ∈ N0 and following the proof of Theorem 4.3.1 part (a1) given
in [12, p. 206], we get

w (m,n) ≤ z (m, n) Ā (m,n) . (4.9)

From (4.7) and (4.9), we have

z (m,n) ≤ c̄ +
m−1∑

σ=0

n−1∑
τ

r̄ (m, n, σ, τ) Ā (σ, τ) z (σ, τ) . (4.10)

Now by following the proof of Theorem 5.2.2 part (b1) given in [12, p. 246]
with suitable modifications, we get

z (m,n) ≤ c̄

m−1∏

s=0

[
1 +

n−1∑

t=0

B̄ (s, t)
]
. (4.11)

Using (4.11) in (4.9) we get the required inequality in (4.3). ¤
Theorem 6. Suppose that the functions f̄ , ḡ, h̄ in equation (4.1) satisfy the
conditions

|ḡ (m, n, ξ, u)− ḡ (m,n, ξ, ū)| ≤ q̄ (m,n, ξ) |u− ū| , (4.12)∣∣h̄ (m,n, σ, τ, u)− h̄ (m,n, σ, τ, ū)
∣∣ ≤ r̄ (m,n, σ, τ) |u− ū| , (4.13)

where q̄,∆1q̄ ∈ D (G1, R+) , r̄, ∆1r,∆2r̄, ∆2∆1r̄ ∈ D (G2, R+) and

c̄ =
∣∣∣∣f̄ (m,n) +

m−1∑

ξ=0

ḡ (m,n, ξ, 0) +
m−1∑

σ=0

n−1∑

τ=0

h̄ (m,n, σ, τ, 0)
∣∣∣∣ < ∞. (4.14)

If u(m,n) is any solution of equation (4.1) on G, then

|u (m,n)| ≤ c̄Ā (m,n)
m−1∏

s=0

[
1 +

n−1∑

t=0

B̄ (s, t)
]
, (4.15)

for (m,n) ∈ G, where Ā (m,n) and B̄ (m,n) are given by (4.4) and (4.6).

The proof follows by the arguments as in the proof of Theorem 2 given
above and using Lemma 2. We omit the details.

By the similar way as Theorem 3 we have

Theorem 7. Suppose that the functions f̄ , ḡ, h̄ in equation (4.1) satisfy the
conditions (4.12), (4.13) and

m−1∑

ξ=0

∣∣ḡ (
m,n, ξ, f̄ (ξ, n)

)∣∣ +
m−1∑

σ=0

n−1∑

τ=0

∣∣h̄ (
m,n, σ, τ, f̄ (σ, τ)

)∣∣ ≤ d̄, (4.16)
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for m,n ∈ N0, where d̄ ≥ 0 is a real constant. If u(m,n) is any solution of
equation (4.1) on G, then

∣∣u (m,n)− f̄ (m,n)
∣∣ ≤ d̄Ā (m,n)

m−1∏

s=0

[
1 +

n−1∑

t=0

B̄ (s, t)
]
, (4.17)

for (m,n) ∈ G, where Ā (m,n) and B̄ (m,n) are given by (4.4) and (4.6).

In concluding we note that, if we take h = 0 and treat the variable
y as a constant, then the equation (1.6) reduces to the Volterra integral
equation in one independent variable and by taking g = 0 it reduces to the
Volterra integral equation in two independent variables. Indeed, a particular
feature of our approach is that it presents conditions under which we can
offer simple, unified and concise proofs of some of the important qualitative
properties of solutions of equations (1.6) and (4.1). For detailed account on
such equations, see [2-9, 14].
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