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SOME NEW GRUSS’ TYPE INEQUALITIES FOR
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT
SPACES

S. S. DRAGOMIR

ABSTRACT. Some new inequalities of Griiss’ type for functions of self-
adjoint operators in Hilbert spaces, under suitable assumptions for the
involved operators, are given. Several examples for particular functions
of interest are provided as well.

1. INTRODUCTION

In 1935, G. Griiss [13] proved the following integral inequality which gives
an approximation of the integral of the product in terms of the product of
the integrals as follows

'bia/abf(x)g(@dw—bia/:f(x)dx-b_la abg(a?)d:c

<1 @—6) (M=), (1)

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition

6<f(2)<® y<g(a)<T (1.2)

for each x € [a, b] , where ¢, ®,~,T" are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced
by a smaller quantity.

For a simple proof of (1.1) as well as for some other integral inequalities
of Griiss type, see Chapter X of the book [15] and the papers [1]-[7] and [11].

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [15, Chapter X]
established the following discrete version of Griiss’ inequality:
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Theorem 1. Let a = (ay,...,ay), b= (b1,...,by) be two n- tuples of real
numbers such that r < q; < R (md s<b; <8 for i=1,...,n. Then one
has
1< 1< 1< 1n 1rn
= ibi — — it bz'<*[*} 1—*[*} - —5),
n;a n;a n; “nl2 ( n L2 (B-r)($-9)
(1.3)

where [x] denotes the integer part of x, © € R.

A weighted version of the discrete Griiss inequality was proved by J. E.
Pecari¢ in 1979 [15, Chapter X]:

Theorem 2. Let a and b be two monotonic n-tuples and p a positive one.
Then

1 < 1 < 1 <
= > pitibi — o Y _piti - - > pibi
Pn i=1 Pn i=1 Pn i=1
PPy

<lon =l —ul, g [P52] 0
== n

where Py, := Y"1 | pi, and Pyi1 = Py — Pryy.

In 1981, A. Lupas, [15, Chapter X] proved some similar results for the
first difference of a as follows.

Theorem 3. Let a,b be two monotonic n—tuples in the same sense and p

a positive n-tuple. Then

min |Aaz] mln \Abi\
1<i<n—1

e (35

=1

1 « 1 &
< = by — — - — b
=P, ;pzaz i P, ;pzaz P, ;pz i
1 & 1 > 2
2 .
< | Jnax. 1\Aa1| max, |Abi| PnZ;Z Pi — (Pn,z;w’) , (1.5)
1= 1=

where Aa; = ajy+1 — a; is the forward first difference. If there exist the

numbers a,ay,r,m1 (rr1 > 0) such that ap = a+ kr and by, = ay + kr1, then
equality holds in (1.5).

Similar integral inequalities can be stated, however they will not be pre-
sented here.
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2. OPERATOR VERSIONS OF THE GRUSS INEQUALITY

In order to state the operator version of the Griiss inequality we recall
briefly in the following the Gelfand functional calculus.

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)) .
The Gelfand map establishes a *-isometrically isomorphism ® between the
set C' (Sp (A)) of all continuous functions defined on the spectrum of A, de-
noted Sp(A), an the C*-algebra C* (A) generated by A and the identity
operator 1y on H as follows (see for instance [12, p. 3]):

For any f,g € C' (Sp(A)) and any «, 3 € C we have

(i) @ (ozf+ﬂg) =a®(f)+ 42 (g);

(i) @ (fg) =@ (f) @ (g) and @ (f) = @ (f)";

(iii) ||‘I’( )= 11l = supsespiay I f (B

(iv) ®(fo) = 1y and ®(f;) = A, where fo(t) = 1 and fy (t) = ¢, for

teSp(A).
With this notation we define

f(A):=0(f) forall feC(Sp(A))

and call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function
on Sp(A), then f(t) > 0 for any t € Sp(A) implies that f(A) > 0, i.e.
f (A) is a positive operator on H. Moreover, if both f and g are real valued
functions on Sp (A) then the following important property holds:

f(t)>g(t) for any t € Sp(A) implies that f(A) > g(A) (P)

in the operator order of B (H).

For a recent monograph devoted to various inequalities for functions of
selfadjoint operators, see [12] and the references therein. For other results,
see [17], [14] and [18].

The following operator version of the Griiss inequality was obtained by
Mond & Pecari¢ in [16]:

Theorem 4. [Mond-Pecarié¢, 1993, [16]] Let Cj, j € {1,...,n} be selfadjoint
operators on the Hilbert space (H,(.,.)) and such that m;- 1y < C; < M;-1g

for j € {1,...,n}, where 1y is the identity operator on H. Further, let
gj, hj:[mj, Mjl =R, je{l,...,n} be functions such that

0-1p <gj(Cj) <P-1g andy-1g < hj (C;) <T -1y (2.1)

for each j € {1,...,n}.
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Ifzje H, je{l,...,n} are such that 3°7_, |z;]|> = 1, then

n n n

> {9 (Ci) hy (Cj)ajyaz) =D (g5 (Ch)aj,xs) - (hy (Ch) wj,))
j=1 j=1 Jj=1
<1 @9 (22)

If Cj,7 € {1,...,n} are selfadjoint operators such that Sp (C;) C [m, M]
for j € {1,...,n} and for some scalars m < M and if g,h : [m, M] — R
are continuous then by the Mond-Pecarié¢ inequality we deduce the following
version of the Griiss inequality for operators

D (g (CHR(Cy aja) =D (g (Ch)ag,a) - Y (h(Cy)aj,x))
j=1 J=1 J=1
<1 @9, (23)

where z; € H, j € {1,...,n} are such that 377, |z;|* = 1 and ¢ =
minte[m,M] g (t)a ¢ = maXiem, M) g(t)7 Y= minte[m,M} h(t), and I' =
maxX¢em,M] h (t) :

In particular, if the selfadjoint operator C' satisfy the condition Sp (C) C
[m, M] for some scalars m < M, then

(g (C)h(C)z,2) = (g (C)z,2) - (W (C)w, )| < 2 - (B =) (T =7), (24)

=

for any x € H with ||z|| = 1.
In the recent paper [9] the following refinement of (2.4) has been obtained:

Theorem 5 (Dragomir, 2008, [9]). Let A be a selfadjoint operator on the
Hilbert space (H;(.,.)) and assume that Sp (A) C [m, M] for some scalars
m < M. If f and g are continuous on [m, M] and ~v = minep, a f (1),
[ = maxye(m pr) f (), 0 1= mingepm a7 g (1) and A == maxep, 1 g (1) then

[(f(A) g (A)x,x) = (f (A) z,z) (9 (A) z, )|

< 50— [lg (Al — fg ()22 "

< r-n@-9] e

A version of n operators that generalise this result and improves (2.3) is
incorporated in:

N

for each © € H with ||z|| = 1.
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Theorem 6 (Dragomir, 2008, [9]). Let A; be selfadjoint operators with
Sp(A;) C [m,M] for j € {1,...,n} and for some scalars m < M. If f,g
[m, M] — R are as in Theorem 5 then

S OF(A) g (A mjas) = (F (A aj,as) - > (g (Ay) mj, 5)
j=1 j=1 J=1
n 2 1/2
<lr-v 7[§]m Yl - (E:@Mﬂ%wﬂ)]
j=1

1
<pr-n@-9] eo
for each zj € H,j € {1,...,n} with 377, z;))* =

Motivated by the above results we investigate in this paper other Griiss’
type inequalities for selfadjoint operators in Hilbert spaces. Some of the
obtained results improve the inequalities (2.3) and (2.4) derived from the
Mond-Pecarié¢ inequality. Others provide different operator versions for the
celebrated Griiss’ inequality mentioned above. Examples for power functions
and the logarithmic function are given as well.

3. SOME VECTORIAL GRUSS’ TYPE INEQUALITIES

The following lemmas, that are of interest in their own right, collect some
Griiss type inequalities for vectors in inner product spaces obtained earlier
by the author:

Lemma 1. Let (H,(-,-)) be an inner product space over the real or complex
number field K |, u,v,e € H, |le|]| =1, and o, 8,7, € K such that

Re (Be — u,u — ae) > 0, Re (de — v,v — ve) >0 (3.1)
or equivalently,

)
e

S18—al,

20 <3 <li-al. (2

Then
[(u;v) = (u, €) (e, v)]

D=

[Re (Be — u,u — ae) Re (de — v,v — ve)] 2,
B =alld =~ -

%\H

§
(u,e) = 22| (v, ) - 242,
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The first inequality has been obtained in [2] (see also [8, p. 44]) while
the second result was established in [3] (see also [8, p. 90]). They provide
refinements of the earlier result from [1] where only the first part of the
bound, i.e., % |3 — «| |6 — 7| has been given. Notice that, as pointed out in
[3], the upper bounds for the Griiss functional incorporated in (3.3) cannot
be compared in general, meaning that one is better than the other depending
on appropriate choices of the vectors and scalars involved.

Another result of this type is the following one:

Lemma 2. With the assumptions in Lemma 1 and if Re (Ba) > 0,Re (67) >
0 then

[{u, 0) = (u, €) (e, v)]

C1B=alB o) le o
[Re(,@a)Re((sﬁ)}% ‘( ’ >< ’ >’7

< (3.4)

N|=
N

1 _
[(lo+ Bl = 2[Re (8a)]2) (16 + 1 - 2[Re (67)]7 )|
1
[[{u, €) (e, 0)]2 .
The first inequality has been established in [4] (see [8, p. 62]) while the
second one can be obtained in a canonical manner from the reverse of the
Schwarz inequality given in [5]. The details are omitted.

Finally, another inequality of Griiss type that has been obtained in [6]
(see also [8, p. 65]) can be stated as:

Lemma 3. With the assumptions in Lemma 1 and if B # —«, § # —~ then
‘(U, U> - <u7 €> <€7 U>‘

1B —al[6 =
1B + |6+ ]2

SIS

S%- [(ull + ICu, e]) ([oll + [{v, )] . (3.5)

4. SOME INEQUALITIES OF GRUSS’ TYPE FOR ONE OPERATOR

The following results incorporates some new inequalities of Griiss’ type
for two functions of a selfadjoint operator.

Theorem 7. Let A be a selfadjoint operator on the Hilbert space (H;(.,.))
and assume that Sp(A) C [m, M] for some scalars m < M. If f and g
are continuous on [m, M| and v := minse(m, ar) f (t), T := maxyepm a f (1),
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§ = minggp, a9 (t) and A := max,cpy, v g (t) then

(F (A) g (A) 2,2) — (f (A) 2,2) (g (A)7,2)| < = - (T =) (A=)

4
Lz — f (A) . f () = ya) (Ax — g (A) 2,9 (A) & - da)]
_ (4.1)
( (A)a,w) = T2 (g ( _ agd)
for each x € H with ||z|| = 1.
Moreover if v and § are positive, then we also have
[(f(A) g (A)z,z) = (f (A)z,2) (9 (A) z,z)|
b ER F (A) ) (g (A) ),
< ) (4.2)
(VE = v3) (VA= V) [{f (A) 2, 2) (g (4) 2, )]
while for '+ v, A+ § # 0 we have
[(f(A) g (A)z,z) = (f (A)z,2) (9 (A) z,z)|
< 3 EEDBZD g (ayal +1(7 (A) )
I 112+ 6]
(lg (Al + (g (A z,z))]7  (4.3)

for each x € H with ||z|| = 1.

Proof. Since vy := minggpy, 1 f (t), T := max,epm ar f (1), 0 := mingepm,
g (t) and A := max,c|y, ar) g (t) , the by the property (P) we have that
vy 1lg<f(A)<T'-lgandd-1g <g(A) <A-1gy
in the operator order, which imply that
7 8) = 10 1= (4] 2 00 (A1 =g (A]lg () =801 20

in the operator order.
We then have from (4.4)

((f (A) =7 1g = f(A]z,2) 20
and
([A-1m —g(A]lg(A) =6 1u]z,x) >0,
for each x € H with ||z|| = 1, which, by the fact that the involved operators
are selfadjoint, are equivalent with the inequalities
(Te — f(A)z, f(A)z —~yz) >0 and (Az—g(A)z,g(A)xz —ox) >0,
(4.5)
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for each x € H with ||z| = 1.

Now, if we apply Lemma 1 for u = f(A)z, v = g(A)zx, e = x, and the
real scalars I', v, A and § defined in the statement of the theorem, then we
can state the inequality

[(f (A)z,g(A)z) = (f (A) z,2) (2,9 (A) 2)| < - (T =) (A =9)
Re (T — f (A)x, f (A) & — y2) Re (Az — g (A) 7,9 (A) 7 — 62)]? ,

.Jk\i—‘

i

( (A)w,@) = 52| (g (A) 2, 2) - 242
(4.6)

for each x € H with ||z|| = 1, which is clearly equivalent with the inequality
(4.1).

The inequalities (4.2) and (4.3) follow by Lemma 2 and Lemma 3 respec-
tively and the details are omitted. ([l

Remark 1. The first inequality in (4.2) can be written in a more convenient

way as
‘ fAgAzz) | 1 =) (A9
FA)za)gA)a,a) | =4 350
for each # € H with ||z|| = 1, while the second inequality has the following
equivalent form

(f (A) g (A)z,z)
[(f (A)z,z) (g (A)z,z)]'/?

1

(4.7)

—[(f (A) z,z) (g (A) z,z)]"/?

< (VI-v3) (VA-V5) (48)

for each x € H with ||z| = 1.
We know, from [10] that if f, g are synchronous (asynchronous) functions
on the interval [m, M], i.e., we recall that

[ (&) = f(s)] g (t) — g (s)] (=) <O for each ¢,s € [m, M],
then we have the inequality

(f(A)g(A)z,z) = (<) (f(A) z,z) (9 (A) 2, ) (4.9)
for each € H with ||z|| = 1,provided f, g are continuous on [m, M] and A
is a selfadjoint operator with Sp (A4) C [m, M].
Therefore, if f, g are synchronous then we have from (4.7) and from (4.8)
the following results:

0 FAgWzz) 1 (-9 (A-9) (4.10)

- (fA)zx) (g(A)z,x) T4 VIYAS
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0 (w2 g ()7,
< (Vi-vA) (VA-VE) (1)

for each x € H with ||z|| = 1, respectively.
If f, g are asynchronous then

(f(A)g(A)z ) L T=m(4-9) (4.12)

O e @) <1 VA
and
0< [(f (A, 2) (g (A) z, 2)]V2 (f(A)g(A)a,z)
) o (2 - DR

for each x € H with ||z|| = 1, respectively.

It is obvious that all the inequalities from Theorem 7 can be used to
obtain reverse inequalities of Griiss’ type for various particular instances of
operator functions, see for instance [9]. However we give here only a few
provided by the inequalities (4.10) and (4.11) above.

Example 1. Let A be a selfadjoint operator with Sp (A) C [m, M| for some
scalars m < M.
If A is positive (m > 0) and p,q > 0, then

(APHig, ) 1 (MP —mP)(M?— m?)

< 1< Z. .
S Grway (A ST e (414)
and
p+q
0< <A Z‘,$> _ [<Apx,$> . <Aqx,x>]1/2

[(APz, @) - (Adz, 2)]"/?

b p

< (ME —mi) (M% - m%) (4.15)

for each x € H with ||z|] = 1.
If A is positive definite (m > 0) and p, ¢ < 0, then
(APt 2 (M= — =) (M~ — =)

1
—l<-- 4.16
= <Ap[L"$> . <Aql'7:[;> - 4 M_%m_lﬂ;q ( )
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and
p+q
S i 47, ()
(M5 —m8) (% =t
< —te 54 (4.17)
M~ 72 m™ 2

for each © € H with ||z| = 1.

Similar inequalities may be stated for either p > 0, < 0 or p < 0,q > 0.
The details are omitted.

Example 2. Let A be a positive definite operator with Sp (A) C [m, M] for
some scalars 1 <m < M. If p > 0 then

(AP1n Az, x) 1 (MP—mP)ln M

1<z m 4.18
= (Arx,z) - (In Az, x) 4 MimivVInM-Inm (4.18)
and
p
0< (AP In Az, z) — [(APz, z) - (lnAa:,x>]1/2

[(APz, z) - (In Az, z)]/?
< (M% - m%) [\/mM ~Vinm|, (4.19)
for each x € H with ||z|] = 1.

5. SOME INEQUALITIES OF GRUSS’ TYPE FOR 12 OPERATORS

The following extension for sequences of operators can be stated:

Theorem 8. Let A; be selfadjoint operators with Sp (A;) C [m, M] for j €
{1,...,n} and for some scalars m < M. If f and g are continuous on [m, M]
and y 1= minte[m,M] f (t)7 L= maxXgem, M) f (t)> S minte[m,M] g (t) and
A = max;cpm a9 () then

S (AN g (A mjas) = > (F(Ay) mg5) - Y (g (A)) zj, ;)
j=1 j=1 J=1
<3 ==
S0 Py — £ (Ag) 25, f (Ag) 35— ya5)
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for each zj € H,j € {1,...

, 2
yn} with 357 [lay]|” = 1.

Moreover if v and § are positive, then we also have

n n

D (F(A) g (A)mj ) = > (f

j=1 7=1

(T'—y)(A=6
P S Y (A

S| () (3
NS A ) Sy (g (Ay) )|

.’IZJ,JI] E

=1
j) 5, Tj) - 23:1 (9 (4)) zj, 25)

.CE],CL’]

(5.2)

N

while for I' +~, A+ § # 0 we have

(T

n
J:1

—7)(A-9)

) Tjs Tj) ) Tjs T5)

> (F(A) g (A mjas) = > (f
=1 j=1
1
< .
=4

for each zj € H,j e {1,...
Proof. As in [12, p. 6], if we put
A ...

0

then we have Sp (Z) C [m, M],

(1 ()a(@)23) - S0

. A,

(0 +~] A +8))2

K(an Y | )1/2+
((an )P )1/2+

- 2
o} with S0 [l |2 = 1.

n

> (f(A)) aj,z))

J=1

) 1/2
I

n

> (g (4) x5, 25)

=1

0 T
and Z = ,
Tn
[z]] =1



100 S. S. DRAGOMIR

(£(4)7.7) ()7 an Y P

and

3

$],$j

le

Jo ()7 Zug ) a5

Applying Theorem 7 for A and 7 we deduce the desired results. The details
are omitted. (]

Remark 2. The first inequality in (5.2) can be written in a more convenient
way as

> i (f(A)) g (A;) zj, 2)) LT =7 (A-9) (5.4)
E 1 (f (45) zj, ;) - Z?:l (9 (4j) zj,25) 4 I'vAdé
for each x; € H,j € {1,...,n} with 377, |z;||*> = 1, while the second
inequality has the following eqmvalent form
’ > i (f (A)) g (Aj) zj, 25)
. " 1/2
[0 (A ) - X {9 (Aj) )
n n 1/2
- [Z(f (Aj) 5,250 - > (g (Aj)%ﬂ?j)]
j=1 j=1

< (VI-v3) (VA-V5) (55)

for each x; € H,j € {1,...,n} with 37 ||z = L.
We know, from [10] that if f, g are synchronous (asynchronous) functions
on the interval [m, M], then we have the inequality

n n n

> (A g(A)) zjas) = ()Y (F(Aj)zjag) - > (g (Aj) xj,a5) (5.6)

J=1 J=1 J=1

for each z; € H,j € {1,...,n} with 377, |#;]|* = 1, provided f, g are con-
tinuous on [m, M| and A; are selfadjom‘U operators with Sp (A4;) C [m, M],

jed{l,...,n}.
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Therefore, if f, g are synchronous then we have from (5.4) and from (5.5)
the following results:

o< Doien (f(A)) g (Ag) xj,25)

S S A w ) S g (A ey

1 T=7(A=-9)

<7 RS (5.7)
and
0< dima (f(A)) g (Ag) xj,25) -
[0 (A agm) - 5 (9 (A) @, 5)]|
n n 1/2
- [Z(f (Aj) wj @) - > (g (Aj)l’jaxﬁ}
j=1 Jj=1

<(VI-v3) (VA-V5) (53)

for each z; € H,j € {1,...,n} with 377, ||| = 1, respectively.
If f, g are asynchronous then

doion (f(A)) g (4;) x5, 25)

O  S FA) agay) S (g (Ay) 2y )
1 (I' - A—90
SZ'( \/Ll')"y(A(S ) (5.9)
and
n n 1/2
0<[2}ﬂ&ﬂm%%2}ﬂ&ﬂm%ﬁ
j=1 J=1

>y (f(A)) g (Aj) zj,25)
(S0 (F (A ay) - Sy b (A )]
< (V- \A) (\/Z - V8) (5.10)

for each x; € H,j € {1,...,n} with 377, HmJH2 = 1, respectively.

It is obvious that all the inequalities from Theorem 8 can be used to
obtain reverse inequalities of Griiss’ type for various particular instances of
operator functions, see for instance [9]. However we give here only a few
provided by the inequalities (5.7) and (5.8) above.
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Example 3. Let A; j € {1,...,n} be selfadjoint operators with Sp(A4;) C
[m, M], j€{1,...,n} for some scalars m < M.
If A; are positive (m > 0) and p,q > 0, then

ZJ 1<Ap qx]’$]>
23 1<A x],x3> Z] 1<A i Lj>Tj

0<

4;‘}_.\/

< 5o (5.11)
and
0< <A +qxj7xj> 1/2
(i (A ) - i (Afys)
[ ; <A l‘],l‘]> Z<A?xj,a:j>]l/2
j=1 j=1
< (M% - mg) (M% - m%) (5.12)
for each x; € H,j € {1,...,n} with 30 [|2;|* = L.
If A is positive definite (m > 0) and p, ¢ < 0, then
)< > <Ap+q$j,$j> .
Z; 1 <A $J’$J> Z] 1 <A 1/‘]793]>
OO
and
0< []Ei:l <A§xj,xj> : j:l <A;1.xj,wj>r/2
Z < AP, >
[S ()5 < oes)]
I )( o)

2

for each x; € H,j € {1,...,n} with 37, \|xj||2 =
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Similar inequalities may be stated for either p > 0, < 0 or p < 0,q > 0.
The details are omitted.

Example 4. Let A be a positive definite operator with Sp (A) C [m, M] for
some scalars 1 <m < M. If p > 0 then

> i1 <A§ InAjz;, xj>

0<
> i1 <A§~’Ejafﬁj> i (In Ay, a)

4 M3
and
o< E;L,l <A§ In Ajl’j,:L‘]> .
[Z?—l <Aj$.77xj> ) Zj 1 <1nAJx]7x]>}
n n 1/2
— [Z <Aj:cj,xj> . Z <1HA]£L‘],J:‘J>:|
j=1 j=1

S(Mg—m%[ﬂEW—Vﬁﬁy (5.16)

for each x; € H,j € {1,...,n} with 37 [|z;|* = L.

Similar inequalities may be stated for p < 0. The details are omitted.
The following result for n operators can be stated as well:

Corollary 1. Let A; be selfadjoint operators with Sp (A;) C [m, M] for j €
{1,...,n} and for some scalars m < M. If f and g are continuous on [m, M]
and 7y = Mminyepy p f (1), T = maxyepm an f (1), 6 1= mingepm a9 (t) and
A = maxie(m ) 9 (t) then for any p; > 0,5 € {1,....n} with 3°7_p; =1
we have

‘ <ijf(Aj)9(Aj)fU=$> - <ijf(f4j)%l’> : <ij9 (Aj)$a$> ‘
j=1 j=1 j=1

(=) (A=9)

>~ =
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|01y (T = (Aj)a, [ (Ag) @ = ya)
) XA —g (4 z g (A — 0]

‘<Z?:1 p;f (4;) $93> - F%W‘ ‘<Z}L1 ;g (4;) fwf> -8,
(5.17)

for each x € H, with ||z]|* = 1.
Moreover if v and § are positive, then we also have

‘ <ijf(Aj)9(Aj)$a$> - <ijf(f4j)$7l’> : <ij9 (Aj)$a$> ‘
j=1 j=1 J=1
LD (5 pif (4w - (S pig (A )

<) (Vi-vA) (VA= Va) [(Zhmif (A a.z) (5.18)
' <Z?=1 p;ig (4j)z, x>}

NI

while for T 4+, A+ § # 0 we have

| <ijf(Aj)g(Aj)xafE> - <Zij(Aj)%$> : <ijg(f4j)%$> ‘
j=1 j=1 J=1

(T —7) (A —0)
T+ /1A + 6])2

. {<<Jzn;pj ‘f(Aj)xHQ)l/z + ’ <jz:pjf(z4j)x,x> D

((Zp lg (Aj)wHQ)l/z n ' <j§n;pjg <Aj>x7a:> D] N (5.19)

for each x € H, with ||z||* = 1.

1
< .
_4[

Proof. Follows from Theorem 8 on choosing z; = \/p; -z, j € {1,...,n},
where p; > 0,5 € {1,...,n}, 3> p; = 1 and v € H, with ||lz[| = 1. The
details are omitted. O
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Remark 3. The first inequality in (5.18) can be written in a more conve-
nient way as

‘ (Shimif (A)g (4w, )
(Simd (A w2 (i pig (4) 2,2

(5.20)
for each z € H, with ||z||* = 1, while the second inequality has the following
equivalent form

‘ (S sf (A (45) .2
2= pif (Aj)wx ) (35 pig (Aj) @, @ 1/2
( ) ¥

<ijf(Aj)%$> : <ZP;‘9(AJ‘)$,I>]
s =1

< (VI-vA) (VA-VE) (5.21)

for each = € H, with ||z||* = 1.
We know, from [10] that if f, g are synchronous (asynchronous) functions
on the interval [m, M], then we have the inequality

<ijf(Aj)g(Aj)%$> > () <ijf(Aj)x,$> : <ijg (Aj)$a$>
j=1 J=1 J=1

(5.22)
for each 2 € H, with ||z||* = 1, provided f, g are continuous on [m, M] and
Aj; are selfadjoint operators with Sp (4;) C [m, M], j € {1,...,n}.

Therefore, if f,g are synchronous then we have from (5.20) and from
(5.21) the following results:

<zj 12l (45) g (A7), )

0< —1
<Z?:1pj )z, @ < = 1Pig ( )x,x>
1 T—v)(A-9)
< 1 TA3 (5.23)
and
(Syamif (A7) (A z.x)
0<

KZ?:lpjf (Aj) x,a;> ' <ZJ 1D59 (A )37 x>} 12
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n n 1/2
- [<ijf(f4j)xv$> : <ijg (Aj)f'?ﬂ?>]
< (Vi-vA) (VA-VE) (5.29)

for each = € H, with ||z||* = 1, respectively.
If f, g are asynchronous then

(S5 paf (A g (4)) )

0<1-—
<Z?:1pjf (Aj)l’,1‘> : <Z7j1=1pjg (Aj) x7$>
1 (T'—=7v)(A—-9)
=1 TyAS (5:25)
and

(S0 02 (A)) g (4)) 2,2
KZ?:lpjf (47) m‘r> ' <27:1 pig (4;) xfﬂ>] -
< (VI-\A) (VA-V6) (5.26)

for each = € H, with ||z||* = 1, respectively.

The above inequalities (5.23) - (5.26) can be used to state various partic-
ular inequalities as in the previous examples, however the details are left to
the interested reader.
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