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CURVATURE OF THE FOCAL CONIC IN THE
ISOTROPIC PLANE

M. ŠIMIĆ, V. VOLENEC AND J. BEBAN-BRKIĆ

Abstract. It is shown in [1] that every focal conic C in the isotropic
plane can be represented by the equation y2 = εx2 + x, ε ∈ {−1, 0, 1}
and a parametrization. This paper gives the equation of the circle of
curvature at the point T of the focal conic C. The radius of curvature
ρ at the point T of the focal conic C is given as well as its relation to
the span δ from the center of C to the tangent T at the point T and
to the length of the half diameter of C on the diameter parallel to the
tangent T .

By choosing a suitable affine coordinate system (see [1]) every conic C
with foci in the isotropic plane can be represented by the equation

y2 = εx2 + x (1)

where ε = −1, ε = 0 or ε = 1 depending on whether C is an ellipse, a
parabola or a hyperbola. This conic has the x-axis as its axis and one focus
has the form O = (0, 0). In the case of an ellipse or a hyperbola the second
focus is of the form O = (−ε, 0). Such a conic can be parametrized by the
equations

x =
1

t2 − ε
, y =

t

t2 − ε
, (2)

i.e. its point T with the parameter t, denoted by T = (t) and a tangent to
the conic C at the point T are of the form

T =
( 1

t2 − ε
,

t

t2 − ε

)
,

y =
t2 + ε

2t
x +

1
2t

, (3)

respectively. All the notions related to the geometry of the isotropic plane
can be found for example in Sachs [3] and Strubecker [4].

2000 Mathematics Subject Classification. 51N25.
Key words and phrases. Isotropic plane, conic, circle of curvature.
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Computation yields the equation of the straight line spanned by the two
points T1 = (t1) and T2 = (t2) of (2):

y =
t1t2 + ε

t1 + t2
x +

1
t1 + t2

. (4)

Under t1 = t2 = t (4) turns into (3). The first theorem deals with the
condition for the points Ti = (ti) (i = 1, 2, 3, 4) of the conic C, given in (2),
to be concyclic. So we have:

Theorem 1. The points T1 = (t1), T2 = (t2), T3 = (t3), T4 = (t4) of the
conic C, given with the parametric equations (2), are concyclic if and only
if the equality

εs1 + s3 = 0 (5)
is valid, where

s1 = t1 + t2 + t3 + t4, s3 = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4. (6)

Proof. Inserting (2) in the equation 2ρy = x2 + ux + v of any circle, after
multiplying the equation by (t2 − ε)2 we get the equation

−2ρt(t2 − ε) + 1 + u(t2 − ε) + v(t2 − ε)2 = 0,

that is,
vt4 − 2ρt3 + t2(u− 2vε) + 2ρεt + 1− εu + vε2 = 0.

If t1, t2, t3, t4 are the solutions of this equation, referring to Viete’s formulae
we have that

s1 =
2ρ

v
, s3 = −2ρε

v
,

out of which the equality (5) follows. ¤
What is a geometrical meaning of the equality (5)?
First, let us introduce the following definition: two lines are antiparallel

with respect to the third line if they form two opposite angles with this line.

Theorem 2. The points T1, T2, T3, T4 of the focal conic C are concyclic if
and only if the lines T1T2 and T3T4 are antiparallel with respect to the axis
of the conic C.
Proof. Let Ti = (ti) (i = 1, 2, 3, 4) be the points of the conic C. According to
(4) the lines T1T2 and T3T4 have the slopes t1t2+ε

t1+t2
, t3t4+ε

t3+t4
, respectively and

they are antiparallel with respect to the axis of the conic C (with the slope
equal to zero) iff

t1t2 + ε

t1 + t2
+

t3t4 + ε

t3 + t4
= 0.

Being written in the form of t1t2(t3+t4)+t3t4(t1+t2)+ε(t1+t2+t3+t4) = 0,
this is actually the equality (5). ¤
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Letting T1 = T2 = T3 = T and T4 = T ′, from Theorem 2, we get:

Corollary 1. If a circle of curvature of the focal conic C at its point T
intersects this conic again in a point T ′, then the line TT ′ is antiparallel
to the tangent T of the conic at the point T with respect to the axis of the
conic C.

Under the assumptions that t1 = t2 = t3 = t and t4 = t′, (6) gives
s1 = 3t + t′ and s3 = t3 + 3t2t′. In this case the equality (5) yields

t′ = −t
t2 + 3ε

3t2 + ε
. (7)

As a consequence, we have

Corollary 2. The circle of curvature at the point T = (t) of the conic C
given with parametric equations (2) intersects this conic again in the point
T ′ = (t′) given by the parameter t′ (7).

Theorem 3. The circle of curvature at the point T = (t) of the conic C
given with parametric equations (2) has the equation

(t2 − ε)3x2 − 2(3t4 + ε2)x + 8t3y − 3t2 − ε = 0. (8)

Proof. The line T ′ with the equation

y = − t2 + ε

2t
x +

3t2 + ε

2t(t2 − ε)
(9)

passes through the point given in (3) because of

− t2 + ε

2t
· 1
t2 − ε

+
3t2 + ε

2t(t2 − ε)
=

t

t2 − ε
.

The lines T and T ′ with the equations (3) and (9) are antiparallel with
respect to the axis of the conic C. According to Corollary 1, the line T ′ is
the joint line TT ′ where

T = (t2 + ε)x− 2ty + 1, T ′ = (t2 + ε)x + 2ty − 3t2 + ε

t2 − ε
,

T = 0 and T ′ = 0 are the equations of the lines T and T ′. Under C =
εx2− y2 + x the equation T T ′ + kC = 0 for a given k ∈ R associates a conic
that passes through the point T ′ and at the point T osculates the conic
C. For k = −4t2 we gain the osculating circle of C at T . So, the circle of
curvature from the theorem has the equation

[(t2 + ε)x− 2ty + 1]
[
(t2 + ε)x + 2ty − 3t2 + ε

t2 − ε

]
− 4t2(εx2 − y2 + x) = 0.

Rearrangement of the upper equation yields (8). ¤
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It is known that any circle with the radius ρ has the equation of the form
2ρy = x2 + ux + v. Based on this, using (8), we have:

Corollary 3. The radius of curvature ρ of the conic C with the parametric
equations (2) at the point T = (t) is given by

ρ = − 4t3

(t2 − ε)3
. (10)

The span from the point (x0, y0) to the line with the equation y = kx+l is
y0− kx0− l. The conic C given with the equation (1) where ε ∈ {−1, 1} has
center at (− ε

2 , 0), so the span from the center to the line T with equation
given in (3) is equal to

δ = − t2 + ε

2t
·
(
− ε

2

)
− 1

2t
=

t2 − ε

4εt
. (11)

We continue our work by investigating relations between the above men-
tioned span δ, the radius of curvature ρ, the half axes and the half diameter
of the conic C.

Let us denote by α and β the half axes of the conic C with the equation
(1). Obviously, α = − ε

2 , i.e. α2 = 1
4 . An isotropic line passing through the

center of the conic has the equation x = − ε
2 . For this abscissae, using (1),

an ordinate y is of the form
y2 = − ε

4
.

Hence, it is formally β2 = − ε
4 , having geometrical meaning in the case of

an ellipse, and in the case of a hyperbola it is taken as a formal equality. In
both cases we have

α2β2 = − ε

16
.

On the other hand, (10) and (11) give

ρδ3 = − 4t3

(t2 − ε)3
· (t2 − ε)3

43εt3
= − ε

16
= α2β2,

and we get the following:

Theorem 4. If α, β are the half axes of an ellipse or of a focal hyperbola,
then the radius of curvature ρ of the conic at its point T has the form

ρ =
α2β2

δ3
,

where δ is the span from the center of the conic to its tangent at the pointT .

The line with the equation

y =
t2 + ε

2t

(
x +

ε

2

)
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is parallel to the line in (3) and is incident to the center (− ε
2 , 0) of the conic

(1). Inserting this expression for y in (1) for the abscissae of the points of
intersection we get the equation

(t2 + ε)2

4t2

(
x2 + εx +

1
4

)
− εx2 − x = 0

which, after the multiplication by 4t2 and after being rearranged, we get

x2(t2 − ε)2 + x · ε(t2 − ε)2 +
1
4
(t2 + ε)2 = 0.

For the solutions of the latter equation we have that

x1 + x2 = −ε, x1x2 =
(t2 + ε)2

4(t2 − ε)2
, and

(x1 − x2)2 = (x1 + x2)2 − 4x1x2 = 1− (t2 + ε)2

(t2 − ε)2
= − 4t2ε

(t2 − ε)2
.

Denoting by τ the length of the half diameter on the given diameter, it
follows that 4τ2 = (x1 − x2)

2 i.e.

τ2 = − εt2

(t2 − ε)2
. (12)

Thus we have:

Theorem 5. The half diameter τ of the ellipse or the focal hyperbola C
given with (2) on its diameter parallel to the tangent at its point T = (t) is
given by the formula (12).

Furthermore, (10) and (11) immediately give

ρδ = − εt2

(t2 − ε)2
,

i.e. ρδ = τ2, because of (12). Thus we have the following theorem:

Theorem 6. The radius of curvature ρ of an ellipse or of a focal hyperbola
C at its point T equals

ρ =
τ2

δ
,

where δ is the span from the center of the conic C to its tangent T , and τ is
the half diameter of the conic on the diameter parallel to the tangent T .

In [1] it is shown that the point of intersection of the tangents to the conic
(2) at its points T1 = (t1) and T2 = (t2) is of the form

T12 =
( 1

t1t2 − ε
,

t1 + t2
2(t1t2 − ε)

)
. (13)
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With (3), t = t1, and (13) for the distances τ1 = T1T12 and τ2 = T2T12 we
get

τ1 = T1T12 =
1

t1t2 − ε
− 1

t12 − ε
=

t1(t1 − t2)
(t12 − ε)(t1t2 − ε)

,

τ2 = T2T12 =
t2(t2 − t1)

(t22 − ε)(t1t2 − ε)
,

respectively, whence
τ1

τ2
= − t1(t22 − ε)

t2(t12 − ε)
. (14)

According to Corollary 3, for the radii of curvature ρ1 and ρ2 of the conic C
at the points T1 and T2 we get the equality

ρ1

ρ2
=

t1
3(t22 − ε)3

t23(t12 − ε)3
. (15)

Finally, from (14) and (15) we get

ρ1

ρ2
= −τ1

3

τ2
3
. (16)

This is summarized in

Theorem 7. The radii of curvature of the focal conic at its two points are
related as cubes of the segments of its tangents at these points measured from
their points of contact to their point of intersection.

In the case of a parabola where ε = 0, the equation (8) can be transformed
into

t4x2 − 6t2x + 8ty − 3 = 0. (17)
Thus,

Corollary 4. A parabola with the equation y2 = x has at its point T =
(t) = ( 1

t2
, 1

t ) the circle of curvature given in (17) and the radius of curvature
ρ = − 4

t3
.

The diameter of a parabola at the point T has the equation y = 1
t . This

and (17) yields the equation t4x2−6t2x+5 = 0. The latter equation has two
solutions in x, the one x = 1

t2
corresponds to the point T and the second

x = 5
t2

corresponds to the point T ′ = ( 5
t2

, 1
t ) that is the second point of

intersection of this diameter of the parabola with the circle given in (17).
Now

OT =
1
t2

, TT ′ =
5
t2
− 1

t2
=

4
t2

= 4 ·OT

holds, as well as
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Theorem 8. If the circle of curvature at the point T of the parabola with
focus O = (0, 0) intersects its diameter at the point T residually at the point
T ′, then the equality TT ′ = 4 ·OT is valid.

The same statement is valid in Euclidean geometry as well (see e. g. [2],
p. 561).
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