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B.-Y. CHEN INEQUALITIES FOR SLANT SUBMANIFOLDS
IN KENMOTSU SPACE FORMS II

SIMONA COSTACHE

Abstract. In this article, we investigate sharp inequalities involving
Chen invariants for a slant submanifold M of a Kenmotsu space form

M̃(c), tangent to the structure vector field of the ambient space.

1. Preliminaries

Let (M̃, g) be an odd-dimensional Riemannnian manifold. Then M̃ is
said to be an almost contact metric manifold if it admits an endomorphism
ϕ of its tangent bundle TM̃ , a vector field ξ (structure vector field) and a
1-form η, which satisfy:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), η(X) = g(X, ξ),

for any vector fields X, Y on M̃ .
An almost contact metric manifold is called a Kenmotsu manifold if

(∇̃Xϕ)(Y ) = g(ϕX, Y )ξ − η(Y )ϕX, ∇̃Xξ = −ϕ2X = X − η(X)ξ,

where ∇̃ denotes the Riemannian connection with respect to g.
A plane section π in TpM̃ is called a ϕ -section if it is spanned by X and

ϕX, where X is a unit tangent vector field orthogonal to ξ. The sectional
curvature K̃(π) of a ϕ-section π is called ϕ-sectional curvature. A Kenmotsu
manifold with constant ϕ-sectional curvature c is called a Kenmotsu space
form and it is denoted by M̃(c). Then its curvature tensor R̃ is expressed
by

4R̃(X,Y )Z = (c− 3)[g(Y, Z)X − g(X,Z)Y ] + (c + 1)[g(ϕY,Z)ϕX

−g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+η(X)η(Z)Y − η(Y )η(Z)X].
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Let M be an n-dimensional Riemannian manifold with induced metric g
isometrically immersed in M̃ . We denote by TM and T⊥M the tangent and
the normal bundles of M respectively.

For any X ∈ TM , we write ϕX = PX + FX, where PX (respectively
FX) denotes the tangential (respectively normal) component of ϕX.

The equation of Gauss is given by

R̃(X,Y, Z,W ) = R(X, Y, Z, W )−g(h(X,Z), h(Y,W ))+g(h(X,W ), h(Y, Z)),

for any vectors X, Y, Z, W tangent to M .
We denote by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej),

where p ∈ M and {e1, . . . , en} ⊂ TpM is an orthonormal basis, the scalar
curvature of M at p ∈ M .

The mean curvature vector H is defined by H = 1
dim M trace h.

From now on, let n (respectively 2m + 1) be the dimension of M (respec-
tively M̃). We denote by

hr
ij = g(h(ei, ej), er), i, j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m + 1};

then we have

‖H‖2 =
1
n2

2m+1∑

r=n+1

(
n∑

i=1

hr
ii)

2, ‖h‖2 =
2m+1∑

r=n+1

n∑

i,j=1

(hr
ij)

2.

Also we put

‖P‖2 =
n∑

i,j=1

g2(Pei, ej),

where {e1, . . . , en} is an orthonormal basis of TpM and {en+1, . . . e2m+1} is
an orthonormal basis of T⊥p M .

A Chen invariant is defined by

δ′M (p) = τ(p)− inf
{
K(π)|π ⊂ TpM a plane section invariant by P

}
.

If the structure vector field ξ is tangent to M, we denote by D the or-
thogonal distribution to ξ in TM and we can consider the orthogonal direct
decomposition TM = D ⊕ 〈ξ〉.

Let π ⊂ Dp a plane section at p ∈ M , orthogonal to ξp. Then, Φ2(π) =
g2(Pe1, e2) is a real number which is independent of the choice of the or-
thonormal basis {e1, e2} of π.

Let L be a subspace of TpM of dimension r ≥ 2 and {e1, . . . , er} an
orthonormal basis of L.The scalar curvature τ(L) of the r-plane section L
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is given by:
τ(L) =

∑

1≤α<β≤r

K(eα ∧ eβ)

and we denote by
Ψ(L) =

∑

1≤i<j<≤r

g2(Pei, ej).

For an integer k ≥ 0, we denote by S(n, k) the finite set consisting of
k-tuples (n1, . . . , nk) of integers ≥ 2 satisfying n1 < n, n1 + · · · + nk ≤ n.
Denote by S(n) the set of k-tuples with k ≥ 0 for a fixed n.

For each k-tuples (n1, . . . , nk) ∈ S(n), Chen introduced a Riemannian
invariant defined by:

δ(n1, . . . , nk)(p) = τ(p)− S(n1, . . . , nk)(p),

where S(n1, . . . , nk)(p) = inf{τ(L1)+ · · ·+ τ(Lk)} and at each point p ∈ M ,
L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that
dimLj = nj , j = 1, . . . , k.

We will consider the Chen invariant

δ′(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)},
where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM ,
invariant by P , such that dimLj = nj , j = 1, . . . , k.

For each (n1, . . . , nk) ∈ S(n), let:

d(n1, . . . , nk) =
n2

(
n + k − 1−∑k

j=1 nj

)

2
(
n + k −∑k

j=1 nj

) ,

b(n1, . . . , nk) =
1
2

[
n(n− 1)−

k∑

j=1

nj(nj − 1)
]
.

According to Lotta’s definition (see [10]), a submanifold M immersed
into an almost contact metric manifold M̃ is called slant if the angle θ(X)
between ϕX and TpM is a constant θ, which is independent of the choice of
p ∈ M and X ∈ TpM − 〈ξp〉. The angle θ of a slant immersion is called the
slant angle of the immersion.

Invariant and anti-invariant immersions are slant immersions with slant
angle θ equal to 0 and π

2 , respectively. A slant immersions which is neither
invariant nor anti-invariant is called a proper slant immersion.

2. Inequalities

We recall the following lemma due to Chen.
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Lemma 1. Let a1, . . . an, b be n + 1 (n ≥ 2) real numbers such that:
( n∑

i=1

ai

)2

= (n− 1)
( n∑

i=1

a2
i + b

)
.

Then, 2a1a2 ≥ b, with the equality holding if and only if a1 + a2 = a3 =
· · · = an.

Using the above lemma, we proved a Chen first inequality (see [7]).

Theorem 2. Let M̃(c) be a (2m + 1)-dimensional Kenmotsu space form
and M an (n = 2k+1)-dimensional non anti-invariant θ-slant submanifold,
tangent to ξ. Then, for any point p ∈ M and any plane section π ⊂ Dp, we
have:

τ −K(π) ≤ n− 2
2

{
n2

n− 1
‖H‖2 +

(c− 3)(n + 1)
4

}

+
(c + 1)(n− 1)

8
(3 cos2 θ − 2)− 3

c + 1
4

Φ2(π).

The equality case of the inequality holds at p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , en}of TpM and an orthonormal basis
{en+1, . . . , e2m+1} of T⊥p M such that en = ξ, π is spanned by e1, e2 and the
shape operators of M in M̃(c) at p take the following forms:

An+1 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

. . .
...

0 0 0 . . . µ




, a + b = µ,

Ar =




hr
11 hr

12 0 . . . 0
hr

12 −hr
11 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




, r ∈ {n + 2, . . . , 2m + 1}.

From Theorem 2 we derive the following.

Corollary 3. Let M̃(c) be a (2m + 1)-dimensional Kenmotsu space form
and M an (n = 2k + 1)-dimensional invariant submanifold, tangent to ξ.
Then, for any point p ∈ M and any plane section π ⊂ Dp, we have:

τ −K(π) ≤ (c− 3)(n− 2)(n + 1)
8

+
c + 1

4
[
n− 1

2
− 3Φ2(π)].
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Theorem 4. Let M̃(c) be a (2m + 1)-dimensional Kenmotsu space form
and M an (n = 2k+1)-dimensional non anti-invariant θ-slant submanifold,
tangent to ξ. Then:

δ′M ≤ n− 2
2

{
n2

n− 1
‖H‖2 +

(c− 3)(n + 1)
4

}

+
c + 1

8
[3(n− 3) cos2 θ − 2(n− 1)].

The equality case of the inequality holds at p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , en}of TpM and an orthonormal basis
{en+1, . . . , e2m+1} of T⊥p M such that the shape operators of M in M̃(c) at
p have the following forms:

An+1 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 µ . . . 0
...

...
...

. . .
...

0 0 0 . . . µ




, a + b = µ,

Ar =




hr
11 hr

12 0 . . . 0
hr

12 −hr
11 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




, r ∈ {n + 2, . . . , 2m + 1}.

Proof. The proof of Theorem 4 is similar with the proof of Theorem 2 con-
sidering π = Sp{e1, e2}, with e2 = 1

cos θPe1, because π is invariant by P and
so Φ2(π) = cos2 θ. ¤
Lemma 5. Let M be an (n = 2k + 1)-dimensional submanifold, tangent to
ξ of a (2m + 1)-dimensional Kenmotsu space form M̃(c). Let n1, . . . , nk be
integers ≥ 2 satisfying n1 < n, n1 + · · ·+ nk ≤ n. For p ∈ M , let Lj ⊂ TpM
be subspaces of TpM , orthogonal to ξ such that dimLj = nj , ∀j ∈ {1, . . . , k}.
Then, we have:

τ(p)−
k∑

j=1

τ(Lj) ≤ d(n1, . . . , nk) ‖H‖2 + b(n1, . . . , nk)
c− 3

4

+
c + 1

8

[
3 ‖P‖2 − 2n + 2−

k∑

j=1

6Ψ(Lj)
]
.
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Proof. Let p ∈ M and {e1, . . . , en = ξ} be an orthonormal basis of TpM .
From the Gauss equation we get

2τ = n2 ‖H‖2 − ‖h‖2 +
c− 3

4
n(n− 1) +

c + 1
4

[
3 ‖P‖2 − 2(n− 1)

]
.

Denoting by

η = 2τ − 2d(n1, . . . , nk) ‖H‖2 − c− 3
4

n(n− 1)− c + 1
4

[
3 ‖P‖2 − 2(n− 1)

]
,

it follows that
n2 ‖H‖2 =

(
η + ‖h‖2

)
γ, (1)

where γ = n + k −∑k
j=1 nj .

Let en+1 be a unit normal vector at p parallel to H(p) and {en+1, . . . ,
e2m+1} an orthonormal basis of T⊥p M .

We denote by ai = hn+1
ii = g(h(ei, ei), en+1).

The relation (1) becomes
( n∑

i=1

ai

)2

= γ

[
η +

∑

i 6=j

(hn+1
ij )2 +

n∑

i=1

(hn+1
ii )2 +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2

]
. (2)

Let L1, . . . , Lk be k mutually orthogonal subspaces of TpM , dimLj = nj ,
defined by:

L1 = Sp {e1, . . . , en1},
L2 = Sp {en1+1, . . . , en1+n2},
...
Lk = Sp

{
en1+···+nk−1+1, . . . , en1+···+nk

}
.

We denote by Dj , j = 1, . . . , k the sets:
D1 = {1, . . . , n1},
D2 = {n1 + 1, . . . , n1 + n2},
...
Dk = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk}.
Also we put:
b1 = a1,
b2 = a2 + · · ·+ an1 ,
b3 = an1+1 + · · ·+ an1+n2 ,
...
bk+1 = an1+···+nk−1+1 + · · ·+ an1+···+nk

,
bk+2 = an1+···+nk+1,
...
bγ+1 = an.
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Then the relation (2) is equivalent to

( γ+1∑

i=1

bi

)2

= γ

[
η +

γ+1∑

i=1

b2
i +

∑

i 6=j

(hn+1
ij )2 +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2

− 2
∑

2≤α1<β1≤n1

aα1aβ1 − 2
∑

α2<β2
α2,β2∈D2

aα2aβ2 − · · · − 2
∑

αk<βk
αk,βk∈Dk

aαk
aβk

]
.

Applying the algebraic lemma we have:

2b1b2 ≥ η +
∑

i6=j

(hn+1
ij )2 +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2

− 2
( ∑

2≤α1<β1≤n1

aα1aβ1 +
∑

α2<β2
α2,β2∈D2

aα2aβ2 + · · ·+
∑

αk<βk
αk,βk∈Dk

aαk
aβk

)
,

which is equivalent to:

∑

α1<β1

aα1aβ1 + · · ·+
∑

αk<βk

aαk
aβk

≥ 1
2

[
η +

∑

i6=j

(hn+1
ij )2 +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2

]
,

with αi, βi ∈ Di, ∀i = 1, . . . , k.
From the Gauss equation we obtain:

τ(Lj) =
nj(nj − 1)(c− 3)

8
+

3(c + 1)
4

Ψ(Lj)

+
2m+1∑

r=n+1

∑

αj<βj

[
hr

αjαj
hr

βjβj
−

(
hr

αjβj

)2
]

.

It follows that

k∑

j=1

2m+1∑

r=n+1

∑

αj<βj

[
hr

αjαj
hr

βjβj
−

(
hr

αjβj

)2
]
≥ η

2
+

1
2

2m+1∑

r=n+1

∑

(α,β)/∈D2

(hr
αβ)2

+
1
2

2m+1∑

r=n+2

k∑

j=1

( ∑

αj∈Dj

hr
αjαj

)2

≥ η

2
,

where D2 = (D1 ×D1) ∪ · · · ∪ (Dk ×Dk).
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Thus

k∑

j=1

τ(Lj) ≥ η

2
+

k∑

j=1

[
nj(nj − 1)(c− 3)

8
+

3(c + 1)
4

Ψ(Lj)
]

= τ − d(n1, . . . , nk) ‖H‖2 − c− 3
8

n(n− 1)− c + 1
8

[
3 ‖P‖2 − 2(n− 1)

]

+
k∑

j=1

[
nj(nj − 1)(c− 3)

8
+

3(c + 1)
4

Ψ(Lj)
]

,

which is equivalent with the relation that we want to prove. ¤

In particular, for slant submanifolds we derive:

Theorem 6. Let M be an (n = 2k + 1)-dimensional non anti-invariant θ-
slant submanifold, tangent to ξ of a (2m + 1)-dimensional Kenmotsu space
form M̃(c). Let n1, . . . , nk be integers ≥ 2 satisfying n1 < n, n1 + · · ·+nk ≤
n. For p ∈ M , let Lj ⊂ TpM be subspaces of TpM , orthogonal to ξ such
that dimLj = nj , ∀j ∈ {1, . . . , k}. Then, we have:

τ(p)−
k∑

j=1

τ(Lj) ≤ d(n1, . . . , nk) ‖H‖2 + b(n1, . . . , nk)
c− 3

4

+
c + 1

8

[
(n− 1)(3 cos2 θ − 2)−

k∑

j=1

6Ψ(Lj)
]
.

The equality case of the inequality holds at p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , en} of TpM and an orthonormal basis
{en+1, . . . , e2m+1} of T⊥p M such that the shape operators of M in M̃(c) at
p have the following forms:

An+1 =




a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an


 , a1 + · · ·+ an1 =an1+1 + · · ·+ an1+n2 = · · ·

= an1+···+nk−1+1 + · · ·+ an1+···+nk
= an1+···+nk+1 = · · · = an,
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Ar =




Ar
1 0 0 0 . . . 0

0
. . . 0 0 . . . 0

0 0 Ar
k 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0




, Ar
j ∈ Mnj (R),t Ar

j = Ar
j , T rAr

j = 0,

∀j = 1, k, ∀r ∈ {n + 2, . . . , 2m + 1}.
Proof. For a θ-slant submanifold of a Kenmotsu space form we have ‖P‖2 =
(n− 1) cos2 θ.

Equality at a point p ∈ M holds if and only if the equality holds in all
the previous inequalities and we have the equality in the algebraic lemma:

hr
αβ = 0, ∀r = n + 1, 2m + 1, ∀(α, β) /∈ D2,∑

αj∈Dj

hr
αjαj

= 0, ∀r = n + 2, 2m + 1, ∀j = 1, k,

b1 + b2 = b3 = · · · = bγ+1. ¤

For invariant submanifolds we have the following.

Corollary 7. Let M be an (n = 2k+1)-dimensional invariant submanifold,
tangent to ξ of a (2m + 1)-dimensional Kenmotsu space form M̃(c). Let
n1, . . . , nk be integers ≥ 2 satisfying n1 < n, n1 + · · ·+ nk ≤ n. For p ∈ M ,
let Lj ⊂ TpM be subspaces of TpM , orthogonal to ξ such that dimLj =
nj , ∀j ∈ {1, . . . , k}. Then, we have:

τ(p)−
k∑

j=1

τ(Lj) ≤ b(n1, . . . , nk)
c− 3

4
+

c + 1
8

[
(n− 1)−

k∑

j=1

6Ψ(Lj)
]
.

Proof. It is known that every invariant submanifold of a Kenmotsu space
form is minimal. ¤

We obtain the following Chen inequality.

Theorem 8. Let M be an (n = 2k + 1)-dimensional non anti-invariant θ-
slant submanifold, tangent to ξ of a (2m + 1)-dimensional Kenmotsu space
form M̃(c). Let n1, . . . , nk be integers ≥ 2 satisfying n1 < n, n1 + · · ·+nk ≤
n. Then, we have:

δ′(n1, . . . , nk) ≤ d(n1, . . . , nk) ‖H‖2 + b(n1, . . . , nk)
c− 3

4

+
c + 1

8

[
3(n− 1−

k∑

j=1

nj) cos2 θ − 2(n− 1)
]
.
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The equality case of the inequality holds at p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , en} of TpM and an orthonormal basis
{en+1, . . . , e2m+1} of T⊥p M such that the shape operators of M in M̃(c) at
p have the following forms:

An+1 =




a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an


 , a1 + · · ·+ an1 = an1+1 + · · ·+ an1+n2 = · · ·

= an1+···+nk−1+1 + · · ·+ an1+···+nk
= an1+···+nk+1 = · · · = an,

Ar =




Ar
1 0 0 0 . . . 0

0
. . . 0 0 . . . 0

0 0 Ar
k 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0




, Ar
j ∈ Mnj (R),t Ar

j = Ar
j , T rAr

j = 0,

∀j = 1, k, ∀r ∈ {n + 2, . . . , 2m + 1}.
Proof. Let p ∈ M and {e1, . . . , en = ξ} be an orthonormal basis of TpM .
Since we use subspaces invariant by P , we may choose e2 = 1

cos θPe1, . . . , e2k

= 1
cos θPe2k−1.
Let L1, . . . , Lk be k mutually orthogonal subspaces of TpM , dimLj = nj ,

defined by:
L1 = Sp {e1, . . . , en1},
L2 = Sp {en1+1, . . . , en1+n2},
...
Lk = Sp

{
en1+···+nk−1+1, . . . , en1+···+nk

}
.

Thus
Ψ(Lj) =

nj

2
cos2 θ, ∀j = 1, . . . , k.

¤
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