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B.-Y. CHEN INEQUALITIES FOR SLANT SUBMANIFOLDS
IN KENMOTSU SPACE FORMS II

SIMONA COSTACHE

ABSTRACT. In this article, we investigate sharp inequalities involving
Chen invariants for a slant submanifold M of a Kenmotsu space form
M (c), tangent to the structure vector field of the ambient space.

1. PRELIMINARIES

Let (M,g) be an odd-dimensional Riemannnian manifold. Then M is
said to be an almost contact metric manifold if it admits an endomorphism
¢ of its tangent bundle T'M, a vector field £ (structure vector field) and a
1-form 7, which satisfy:

¢ =—T+n@&nE) =1,p =000 =0,
9@ X, 0Y) = g(X,Y) = n(X)n(Y),n(X) = g(X, ),
for any vector fields X,Y on M.
An almost contact metric manifold is called a Kenmotsu manifold if
(Vxp)(Y) = g(pX,Y)E —n(Y)pX, Vx&=—-¢’X =X —n(X)E,
where V denotes the Riemannian connection with respect to g.
A plane section 7 in T, M is called a ¢ -section if it is spanned by X and
pX, where X is a unit tangent vector field orthogonal to &. The sectional

curvature K () of a p-section T is called p-sectional curvature. A Kenmotsu
manifold with constant (-sectional curvature c is called a Kenmotsu space

form and it is denoted by M (c). Then its curvature tensor R is expressed
by

AR(X,Y)Z = (c=3)[g(Y, Z2)X — g(X, Z2)Y] + (c + 1)[g(¢Y, Z)pX
—9(pX, Z)pY —29(oX, Y )9 Z + g(X, Z)n(Y)E — g(Y, Z)n(X)E
+n(X)n(2)Y —n(Y)n(Z2)X].
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Let M be an n-dimensional Riemannian manifold with induced metric g
isometrically immersed in M. We denote by TM and T-M the tangent and
the normal bundles of M respectively.

For any X € TM, we write pX = PX + FX, where PX (respectively
FX) denotes the tangential (respectively normal) component of ¢ X.

The equation of Gauss is given by

R(X,Y,Z W) =R(X,Y, Z,W)—g(h(X, Z), (Y, W))+g(h(X, W), h(Y, Z)),

for any vectors X,Y, Z, W tangent to M.
We denote by

)= Y. K(einey),
1<i<j<n

where p € M and {ey,...,e,} C T,M is an orthonormal basis, the scalar
curvature of M at p € M.

The mean curvature vector H is defined by H = m trace h.

From now on, let n (respectively 2m + 1) be the dimension of M (respec-

tively M). We denote by
hi; = g(h(ei,ej),er),i,5 €{1,...,n},r € {n+1,....2m+ 1};

then we have

1 m+1 n 2m+1 n
IHI* = — Z Qo) kP =Y >
+1 =1 r=n+14,j=1
Also we put
IP|I* = Z g°(Pei, ej),
t,j=1
where {e1,...,e,} is an orthonormal basis of T,M and {e,y1,...€2m+1} is

an orthonormal basis of TPLM .
A Chen invariant is defined by

63 (p) = 7(p) — inf { K ()|m C T,M a plane section invariant by P}.

If the structure vector field £ is tangent to M, we denote by D the or-
thogonal distribution to £ in 7'M and we can consider the orthogonal direct
decomposition TM = D & ().

Let 7 C D, a plane section at p € M, orthogonal to &,. Then, ®*(7r) =
g%(Pey, e3) is a real number which is independent of the choice of the or-
thonormal basis {e1,es} of 7.

Let L be a subspace of T,M of dimension r > 2 and {ei,...,e,} an
orthonormal basis of L.The scalar curvature 7(L) of the r-plane section L
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is given by:
(L) = Z K(ea Neg)
1<a<fB<r
and we denote by
V()= Y g(Pee)).
1<e<i<<r
For an integer k > 0, we denote by S(n, k) the finite set consisting of
k-tuples (nq,...,ng) of integers > 2 satisfying ny < n,ni + --- + nx < n.
Denote by S(n) the set of k-tuples with & > 0 for a fixed n.
For each k-tuples (ni,...,n;) € S(n), Chen introduced a Riemannian
invariant defined by:

o(ny,...,nk)(p) = 7(p) — S(ni,...,nk)(p),

where S(n1,...,ng)(p) = inf{r(L1)+---+7(Lx)} and at each point p € M,
Ly, ..., Li run over all k£ mutually orthogonal subspaces of T),M such that
diij :’I’Lj,j: 1,...,]{3.

We will consider the Chen invariant

0'(na,. ) (p) = 7(p) — inf{7(L1) + -+ + 7(Lg)},

where Lq,...,L; run over all k& mutually orthogonal subspaces of T,M,
invariant by P, such that dimL; =n;,j =1,... k.
For each (ni,...,n;) € S(n), let:

n? (n+k—1—2§:1nj)
Q(n—}—kz—z;?:lnj)

d(nl,...,nk) =

Y

b(na, ... mg) = ;[n(n 1y zk;nj(nj - 1)].
-

According to Lotta’s definition (see [10]), a submanifold M immersed
into an almost contact metric manifold M is called slant if the angle 0(X)
between ¢ X and T),M is a constant ¢, which is independent of the choice of
pe€ M and X € T,M — (§,). The angle 6 of a slant immersion is called the
slant angle of the immersion.

Invariant and anti-invariant immersions are slant immersions with slant
angle 0 equal to 0 and 7, respectively. A slant immersions which is neither
invariant nor anti-invariant is called a proper slant immersion.

2. INEQUALITIES

We recall the following lemma due to Chen.
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Lemma 1. Let ai,...an,b be n+ 1 (n > 2) real numbers such that:

n 2 n
(Zal) :(nl)(Za%qu).
i=1 i=1

Then, 2ai1as > b, with the equality holding if and only if a1 + as = ag =
e — an_

Using the above lemma, we proved a Chen first inequality (see [7]).

Theorem 2. Let M(c) be a (2m + 1)-dimensional Kenmotsu space form
and M an (n = 2k+1)-dimensional non anti-invariant 6-slant submanifold,
tangent to £. Then, for any point p € M and any plane section m C D,,, we
have:

n— n2 C — n
r- k) < " e E2

2 n—1 4
1 —1 1
+ (C—{_)8(n)(3cos2 0—2)— SC+ ().
The equality case of the inequality holds at p € M if and only if there
ezists an orthonormal basis {e1,...,e,}of TyM and an orthonormal basis
{ent1,---y€2mr1} of TpJ-M such that e, = &, w is spanned by e1,es and the
shape operators of M in M(c) at p take the following forms:
a 0 0 ... O
0 b 0 0
An—i—l =(0 0 & 0 , a+b=up,
0 0 0 I
71“1 ’5?2 0 .« .. 0
9 —h7; 0 ... 0
A= 0 0 0 ... 0 ,re{n+2,....2m+1}.
0 0 0 ... 0

From Theorem 2 we derive the following.

Corollary 3. Let M(c) be a (2m + 1)-dimensional Kenmotsu space form
and M an (n = 2k + 1)-dimensional invariant submanifold, tangent to &.
Then, for any point p € M and any plane section m C D,, we have:

(c=3)(n—2)(n+1) +c+1 n—

1
3 3 — 39%(m)].

T—K(m) <




CHEN INEQUALITIES 129

Theorem 4. Let M(c) be a (2m + 1)-dimensional Kenmotsu space form
and M an (n = 2k+ 1)-dimensional non anti-invariant 0-slant submanifold,
tangent to £&. Then:

, n—2( n? s (¢c—=3)(n+1)
< A
Oy < 3 {n_1||H|| + 1

c+1

+ [3(n —3)cos? 0 — 2(n —1)].

The equality case of the inequality holds at p € M if and only if there
exists an orthonormal basis {e1,...,e,}of TyM and an orthonormal basis
{ent1,. .- eams1} of T-M such that the shape operators of M in M(c) at
p have the following forms:

a 0 0 0
0 b 0 0
Api1 = 00 g ... O La+b=p,
0 0 0 J
Wy R, 0 .0
h;Q _haﬁl 0 DY O
A= 0 0 0 .. O refn+2,...,2m+1}.
0 0O 0 ... 0

Proof. The proof of Theorem 4 is similar with the proof of Theorem 2 con-
sidering m = Sp{ey,ea}, with e = ﬁpel, because 7 is invariant by P and
so ®?(m) = cos? . O
Lemma 5. Let M be an (n = 2k + 1)-dimensional submanifold, tangent to
€ of a (2m + 1)-dimensional Kenmotsu space form ]\7(0) Let ny,...,ng be
integers > 2 satisfying n1 < n,ni+---+n, <n. Forpe M, let L; C T,M
be subspaces of T,M , orthogonal to § such that dim L; = n;,Vj € {1,...,k}.
Then, we have:

c—3
4

7(p) = > 7(L;) < d(na,...,ng) [HI? +b(na, ... )
j=1

- BIIPI* —2n+2 ) 6W(L;)

c+1 u ]
j=1
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Proof. Let p € M and {ey,...,e, = £} be an orthonormal basis of T, M.
From the Gauss equation we get

-3 +1
2r = n? |H| = |A]* + = =nin — 1)+ == [3]IPIP = 2(0 - 1)] .
Denoting by
c—3 c+1
n =27 —2d(n,...,m) | H|* = = n(n—1) - = [3 I1P)? = 2(n — 1)] ,
it follows that
n? [HIP = (n+1n]?) 7, (1)

where y =n + k — Z§:1 n;j.

Let e,4+1 be a unit normal vector at p parallel to H(p) and {ep+1,...,
€o2m+1} an orthonormal basis of T/pLM .

We denote by a; = hZH = g(h(ei,€i), ent1)-

The relation (1) becomes

n 2 n 2m+1 n
(Xa) =alot Sope oz e 3 Yopr| @
i=1 i i=1 r=n+2ij=1

Let L1,..., L be k mutually orthogonal subspaces of T),M, dim L; = n;,
defined by:

Ly = Sp{ei,...,en},
Ly = Sp{€n1+1, S en1+n2}’

Ly =Sp {en1+---+nk71+17 oo 7en1+---+nk}-
We denote by Dj,j =1,...,k the sets:
D1 = {1,...,77,1},

Dy = {n1+1,...,n1+n2},

Dk:{n1—|—---—|—nk,1—|—1,...,n1—i—---—|—nk}.
Also we put:

b1 = a1,

by =ag + -+ an,,

b3 = any+1 + -+ + Gnytng,

bk+1 = Qny4-+4ng_q1+1 + -+ Any4-4ng s
bk+2 - an1+~~~+nk+17

b’y—l—l = Qp.
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Then the relation (2) is equivalent to

y+1 2 v+1 2m+1 n
(S0) =St Do 3 o
1=1

i=1 i#£j r=n+21,7=1
-2 E Ao, 08, — 2 E AayQp, — "+ — 2 E aakaﬁk].
2<a1<p1<ni az< B2 ap <P
az,B2€D2 a,Br €Dy

Applying the algebraic lemma we have:

2m+1 n
1\2 2
251522?7+Z(h§}+) + Z Z(h;})
i#£] r=n+21i,j=1
2 X et X wantet X ono).
2<a1<p1<n az2<f2 <P
az,B82€D2 o, Bk €Dk

which is equivalent to:

2m+1 n
Z A 08, + -+ + Z Qo 08, = ;[77 + Z(h%ﬂrl)Z 4 Z Z (hgj)2]’

a1<fr <P i#j r=n+21i,j=1
with oy, 8; € D;,Vi=1,...,k.
From the Gauss equation we obtain:
nin; —1)(c—3 3(c+1
8 4
2m—+1 9
' T T
£ 3 X [t ()]
r=n+1o;<p;

It follows that
k  2m+1 2m—+1

T T T 2 1 T
Z Z Z [hajaj BiBi _( O‘jﬁj) } = g+§ ( aﬁ)z

where D? = (D1 X Dl) U---u (Dk X Dk)
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k
—|—Z [nj(nj —81)(6— 3) i 3(C+ 1)\I/(LJ):| ’

which is equivalent with the relation that we want to prove. O

In particular, for slant submanifolds we derive:

Theorem 6. Let M be an (n = 2k + 1)-dimensional non anti-invariant 0-
slant submanifold, tangent to & of a (2m + 1)-dimensional Kenmotsu space
form M(c) Let nq,...,ng be integers > 2 satisfyingny < n,ni+---+ng <
n. Forp e M, let L; C T,M be subspaces of T,M, orthogonal to & such
that dim L; = n;,Vj € {1,...,k}. Then, we have:

k

T(p) = Y _7(Ly) <d(na,...,ng) [|H|* + b(na, ... ,ng)
j=1

c—3
4

c+1
+

k
(n —1)(3cos?0 —2) — ZG\II(Lj)] .

The equality case of the inequality holds at p € M if and only if there
exists an orthonormal basis {e1,...,e,} of T,M and an orthonormal basis
{ent1,- .- eami1} of T-M such that the shape operators of M in M(c) at
p have the following forms:

aq 0 0
0 as ... 0

Apt1 = : - : y A1+ Gpy =Apy 41+ Apggny =
o 0 ... ap

= Qny4-+4ng_q1+1 + -+ Ani+-4ny = Ani+-AFnp+1 = = Qn,
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AT 0 0 0 0
0O . 0 0 ... 0
0 0 AL 0 ... 0 :
A=l o & o ool Al e MR A} = AL TrA} =0,
0 0 0 ... 0

Vi=1k Vre{n+2,...,2m+1}.

Proof. For a 0-slant submanifold of a Kenmotsu space form we have || P||* =
(n — 1) cos? 6.
Equality at a point p € M holds if and only if the equality holds in all
the previous inequalities and we have the equality in the algebraic lemma:
hrﬁ—OVr—n+12m+1V( B) ¢ D%

> h =0,Vr=n+22m+1,Vj =1,k
a;€D;
b1+b2:b3:...:b,y+1_ ‘:’

For invariant submanifolds we have the following.

Corollary 7. Let M be an (n = 2k+ 1)-dimensional invariant submanifold,
tangent to & of a (2m + 1)-dimensional Kenmotsu space form M(c). Let
ni,...,nk be integers > 2 satisfying n1 <n,ni+---+np <n. Forp e M,
let Lj C T,M be subspaces of T,M, orthogonal to § such that dim L; =
n;,Vj € {1,...,k}. Then, we have:

k
c—3 c+1
)= (L ) <b(n,. )=+ [ 26\11 }

7j=1

Proof. It is known that every invariant submanifold of a Kenmotsu space
form is minimal. O

We obtain the following Chen inequality.

Theorem 8. Let M be an (n = 2k + 1)-dimensional non anti-invariant 0-
slant submanifold, tangent to & of a (2m + 1)-dimensional Kenmotsu space
form M(c). Let nq,...,ny be integers > 2 satisfying ny < n,my+---+ng <
n. Then, we have:

8 (na, . ng) < d(na, .., mg) | H| + b(n, ., mi)

k
3(n—1-) nj)cos®d —2(n—1)|.
j=1

+

c—i—l[
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The equality case of the inequality holds at p € M if and only if there
exists an orthonormal basis {e1,...,e,} of T,M and an orthonormal basis
{en+1y---y€2my1} of TpLM such that the shape operators of M in M(C) at
p have the following forms:

al 0 e 0
0 as ... 0
An+1: . . . . , @1+ aQpy = Apyg1 s+ Apygng =
o 0 ... ay
= an1+...+nk_1+1 + -4 an1+...+nk = an1+...+nk+1 = = Qp,
AT 0 0 0 0
0O . 0 0 0
0O O 70 0
A=16 0 o o o | A7 € My, (R)! Aj = A}, TrAj =0,
0O O 0 0

Vi=1,kVre{n+2,...,2m+1}.

Proof. Let p € M and {e1,...,e, = £} be an orthonormal basis of T,,M.

Since we use subspaces invariant by P, we may choose ey = COIS gPe1, ... ex
1

= t:osc9f)62k*1 :

Let L1, ..., L; be k mutually orthogonal subspaces of T,M, dim L; = n;,
defined by:

Ly = Sp{eb . '7€n1}a

Ly = Sp{enlJrla SRR en1+n2}7

Lk = Sp {€n1+~~~+nk_1+1a e ,€n1+...+nk}.
Thus

\I/(Lj) - %005297Vj =1,...,k
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