PROFINITE COMPLETIONS AND CONTINUOUS EXTENSIONS OF MORPHISMS BETWEEN FREE GROUPS AND THEIRS PROFINITE COMPLETIONS

KATIJA LONZA

Dedicated to Professor Harry Miller on the occasion of his 70th birthday

ABSTRACT. It is known that every morphism $\varphi: F \to F'$ between free groups of pseudovariety \mathbf{V} of finite groups is uniformly continuous when both groups are equipped with their respective pro- \mathbf{V} topologies. In this paper we prove that this morphism can be uniquely extended to a continuous morphism between their pro- \mathbf{V} completions $\hat{\varphi}: \hat{F} \to \hat{F}'$?

1. Preliminaries

Throughout this paper we use the following definitions and assertions.

Definition 1.1. ([7]) Let \mathcal{C} be a formation of finite groups (i.e. nonempty class of finite groups closed under quotients and finite subdirect products), and let G be a group that belongs to \mathcal{C} . If the nonempty collection $\mathcal{N}_{\mathcal{C}}(G) = \{ \mathbb{N} \triangleleft_f G \mid G/\mathbb{N} \in \mathcal{C} \}$, is filtered, then the corresponding topology on G is called a full pro- \mathcal{C} topology of G. In particular, the pro- \mathcal{C} topology of G is Hausdorff if and only if $\bigcap_{\mathbb{N} \in \mathcal{N}_{\mathcal{C}}(G)} \mathbb{N} = 1$. A group G which satisfies this condition is called residually \mathcal{C} . The Pro- \mathcal{C} completion of G with respect to pro- \mathcal{C} topology is $\mathcal{K}_{\mathcal{C}}(G) = \varprojlim_{\mathbb{N} \in \mathcal{N}_{\mathcal{C}}(G)} G/\mathbb{N}$ and usually is denoted by $G_{\widehat{G}}$.

Note that $\mathcal{K}_{\mathcal{C}}(G)$ is a profinite group, and there is a natural continuous homomorphism $\iota = \iota_{\mathcal{N}_{\mathcal{C}}(G)} : G \to \mathcal{K}_{\mathcal{C}}(G)$, induced by the epimorphisms $G \to G/N$ $(N \in \mathcal{N}_{\mathcal{C}}(G))$, defined by $\iota(g) = (gN)_{N \in \mathcal{N}_{\mathcal{C}}(G)}$, for each $g \in G$. The map ι is *injective* if and only if $\bigcap_{N \in \mathcal{N}_{\mathcal{C}}(G)} N = 1$. Moreover, whenever $\theta : G \to H$ is a continuous homomorphism, there exists a uniquely continuous homomorphism $\hat{\theta} : \mathcal{K}_{\mathcal{C}}(G) \to H$ such that $\theta = \hat{\theta}\iota$.

²⁰⁰⁰ Mathematics Subject Classification. 20E18; 20E05.

 $[\]it Key\ words\ and\ phrases.$ Pseudovariety, free group, profinite topology, profinite group, profinite completion.

The notation \hat{G} is usually used for the *profinite completion* of G, (i.e. for the completion $G_{\hat{C}}$ where C is the formation of all finite groups) and the respective topology is called the *profinite topology*.

Proposition 1.2. ([7]) Let C be a formation of finite groups and let G be a residually C group. Identify G with its image in its pro-C completion $G_{\hat{C}}$. Let \bar{X} denote the closure in $G_{\hat{C}}$ of a subset X of G. Then

- (i) Let $\phi : \{N \mid N \leq_o G\} \to \{U \mid U \leq_o G_{\hat{C}}\}$ be the mapping that assigns to each open subgroup H of G its closure \bar{H} in $G_{\hat{C}}$. Then ϕ is a one-to-one correspondence between the set of all open subgroups H in the pro-C topology of G and the set of all open subgroups of $G_{\hat{C}}$.
- (ii) The map ϕ sends normal subgroups to normal subgroups.
- (iii) The topology of $G_{\hat{C}}$ induces on G its full pro-C topology.

Lemma 1.3. ([7]) Let C be a variety (respectively, a formation closed under taking normal subgroups) of finite groups. Assume that $K \leq G$ (respectively, $K \triangleleft G$), and let $i: K \rightarrow G$ denote the inclusion map. Then $i_{\hat{C}}: K_{\hat{C}} \rightarrow G_{\hat{C}}$ is injective if and only if the pro-C topology of G induces on K its full pro-C topology.

We will continue our examination of *pseudovariety* of finite groups \mathbf{V} , i.e. on the class of finite groups closed under subgroups, homomorphic images, and finite direct products. In this case, the pro- \mathbf{V} topology on a group G is defined as the initial topology which makes all morphisms from G into elements of \mathbf{V} continuous, and the normal subgroups H of G such that $G/H \in \mathbf{V}$ form a basis of neighborhoods of 1. By definition, the pro- \mathbf{V} topology on a group G is Hausdorff if and only if G is residually \mathbf{V} .

If H is a subgroup of G, we denote by $Cl_{\mathbf{V}}(\mathbf{H})$ or simply $Cl(\mathbf{H})$ its topological closure in the pro- \mathbf{V} topology of G, and by $\overline{\mathbf{H}}$ its topological closure in the completion $\hat{\mathbf{G}}$.

When G = F(A) is a free group over a nonempty finite set (alphabet) A, we denote the pro-**V** completion of F(A) by $\hat{G} = \hat{F}_{\mathbf{V}}(A)$. Moreover, $\hat{F}_{\mathbf{V}}(A)$ is the free pro-**V** group over A.

We note that every morphism $\varphi : F(A) \to F(B)$ between free groups of pseudovariety **V** is uniformly continuous when both groups are equipped with their respective pro-**V** topologies.

Now, we ask if it is possible to uniquely extend this morphism to a continuous morphism between their pro- \mathbf{V} completions $\hat{\varphi}: \hat{\mathbf{F}}_{\mathbf{V}}(A) \to \hat{\mathbf{F}}_{\mathbf{V}}(B)$, respectively if Proposition 1.2 and Lemma 1.3 is satisfied in the case of pseudovariety of finite groups \mathbf{V} ?

2. Continuous extension morphisms between free groups to their profinite completions

It is known that a finitely generated subgroup H of a free group F(B) has a *property of coincidence* if the pro-V topology on H coincides with the topology on H induced by the pro-V topology on F(B).

Lemma 2.1. Let $\varphi : F(A) \to F(B)$ be a morphism between finitely generated free groups and let $\hat{\varphi} : \hat{F}_{\mathbf{V}}(A) \to \hat{F}_{\mathbf{V}}(B)$ be the continuous extension of φ between their pro- \mathbf{V} completions. If the range of φ is $\mathbf{H} = \varphi(F(A))$, then the range of $\hat{\varphi}$ is $\bar{\mathbf{H}}$.

Proof. It is trivial to see that $H \subseteq \hat{\varphi}(\hat{F}_{\mathbf{V}}(A))$ and by continuity, $\hat{\varphi}(\hat{F}_{\mathbf{V}}(A)) = \hat{\varphi}(\overline{F}(A)) \subseteq \overline{\varphi}(\overline{F}(A)) = \overline{H}$. As the free group $\hat{F}_{\mathbf{V}}(A)$ is compact and $\hat{\varphi}$ is a continuous morphism, we can conclude that the group $\hat{\varphi}(\hat{F}_{\mathbf{V}}(A))$ is closed and so $\hat{\varphi}(\hat{F}_{\mathbf{V}}(A)) = \overline{H}$.

Applying Lemma 1.3 on free groups, we obtain

Lemma 2.2. Let H be a finitely generated subgroup of a free group F(B) and let $\iota: H \to F(B)$ be the natural injection of H into F(B). Then the continuous extension of ι between their pro-V completions, $\hat{\iota}: \hat{H} \to \hat{F}_{V}(B)$ is injective if and only if the subgroup H has the property of coincidence.

By Lemma 2.1 the range of morphism $\hat{\iota}$ is \bar{H} and the closure \bar{H} is homeomorphic to the completion \hat{H} .

It is also known that pseudovariety V is closed under extension whenever $1 \to G_1 \to G_2 \to G_3 \to 1$ is a short exact sequence of finite groups such that if $G_1, G_3 \in V$, then $G_2 \in V$.

The next two theorems give us the answer to the posed question.

Theorem 2.3. Let V be a pseudovariety of groups such that free groups are residually V and let $\varphi : F(A) \to F(B)$ be a injective morphism between finitely generated free groups and $H = \varphi(F(A))$. Then the continuous extension of φ , $\hat{\varphi} : \hat{F}_{\mathbf{V}}(A) \to \hat{F}_{\mathbf{V}}(B)$ is injective if and only if H has a property of coincidence.

Proof. Let us assume that $\rho: F(A) \to H$ is a restriction of the morphism φ . Now, we can define $\hat{\rho}: \hat{F}_{\mathbf{V}}(A) \to H$ as a continuous extension of ρ . Since ρ is an isomorphism, we can conclude that $\hat{\rho}$ is a homeomorphism. As in Lemma 2.2 we can choose the natural injection $\iota: H \to F(B)$ and its continuous extension between theirs pro- \mathbf{V} completions $\hat{\iota}: \hat{H} \to \hat{F}_{\mathbf{V}}(B)$. In this case $\varphi = \iota \circ \rho$, as well as $\hat{\varphi} = \hat{\iota} \circ \hat{\rho}$. As the mapping $\hat{\rho}$ is a homeomorphism, $\hat{\varphi}$ is injective if and only if $\hat{\iota}$ is injective too, or by Lemma 2.2, if and only if \hat{H} has the property of coincidence, as we wanted to prove.

Theorem 2.4. Let V be a pseudovariety of groups closed under extension such that free groups are residually V. Let $\varphi : F(A) \to F(B)$ be an injective morphism between finitely generated free groups and $H = \varphi(F(A))$. Then the continuous extension of φ , $\hat{\varphi} : \hat{F}_{\mathbf{V}}(A) \to \hat{F}_{\mathbf{V}}(B)$ is injective if and only if H and its closure Cl(H) have the same rank.

Proof. Since, by Lemma 2.1, the range of extension $\hat{\varphi}$ is the closure $\bar{\mathbf{H}}$ and since φ is an injective mapping between two compact free groups, than the homeomorphism onto its image is also injective and $\bar{\mathbf{H}}$ is homeomorphic to the free pro- \mathbf{V} group for which $rank|A|=rank(\mathbf{H})$. By Proposition 1.2, if pseudovariety of groups \mathbf{V} is closed under extension, then every finitely generated and closed subgroup of the free group F(A) has the property of coincidence. Thus $Cl(\mathbf{H})$ also has the property of coincidence. Now, applying Lemma 2.2 to $Cl(\mathbf{H})$, we conclude that $\overline{Cl(\mathbf{H})}$ is homeomorphic to the free pro- \mathbf{V} group of $rank(Cl(\mathbf{H}))$. Since $\bar{\mathbf{H}} = \overline{Cl(\mathbf{H})}$, we have proved that $rank(\mathbf{H}) = rank(Cl(\mathbf{H}))$.

Conversely, let us assume that H and closure Cl(H) have the same rank. As we have shown, if pseudovariety of groups \mathbf{V} is closed under extension, then every finitely generated, closed subgroup of a free group has the property of coincidence, and so pro- \mathbf{V} topology on Cl(H) coincides with the topology on Cl(H) induced by the pro- \mathbf{V} topology on the free group. Therefore H is dense in the pro- \mathbf{V} topology on Cl(H).

Finally, it remains to prove the claim: if H is a finitely generated subgroup of the free group F(A) which is dense in the pro-V topology of F(A) and if rank(H) = rank(F(A)), then the subgroup H has the property of coincidence. Indeed, when H and F(A) have the same rank, we may consider an injective endomorphism $\rho: F(A) \to H$. If $\hat{\rho}: \hat{F}_{V}(A) \to \hat{F}_{V}(A)$ is the continuous extension of ρ , then by Lemma 2.1, we can conclude that $\hat{\rho}$ is a surjective endomorphism of $\hat{F}_{V}(A)$. Since every continuous surjective endomorphism of a finitely generated profinite group is injective [1, Prop. 15.3], $\hat{\rho}$ is injective too. Theorem 2.3, implies that the subgroup H has the property of coincidence.

Hence, by using this claim, we can conclude that the pro-V topology on the subgroup H coincides with the topology on H induced by the pro-V topology on Cl(H). By Theorem 2.3, the continuous extension of φ , $\hat{\varphi}: \hat{\mathbf{F}}_{\mathbf{V}}(A) \to \hat{\mathbf{F}}_{\mathbf{V}}(B)$ is injective.

It is known that for a profinite topology, every finitely generated subgroup of the free group is closed [7]. Applying this to Theorem 2.4 we obtain the following result Corollary 2.5. Every injective morphism between free groups of finite rank can be extended to a injective continuous morphism between their profinite completions.

REFERENCES

- [1] M. Fried and M. Jarden, Field Arithmetic, Springer, Berlin (1986).
- [2] M. Hall Jr., A topology for free groups and related groups, Annal. Math., 52 (1950), 127-139.
- [3] K. Lonza, Profinitne grupe, Masters Thesis, University of East Sarajevo, (2006).
- [4] S. Margolis, M. Sapir and P. Weil, Closed subgroups in pro-V topologies and the extension problem for inverse automata, Int. J. Algebra Comput., (2001), 405-445.
- [5] V. Perić, Algebra I, 3 rd ed, IP "Svjetlost", Sarajevo (1991).
- [6] L. Ribes and P.A. Zaleskii, On the profinite topology on a free group, Bull. London Math. Soc., 25 (1993), 37-43.
- [7] L. Ribes and P. Zalesskii, *Profinite Groups*, Springer (2000).
- [8] John S. Wilson, *Profinite Groups*, Clarendon Press, Oxford (1998).

(Received: June 24, 2009) (Revised: September 1, 2009) ITI-Computers 20000 Dubrovnik Ćira Carića 3 Croatia

E-mail: katija.lonza1@du.htnet.hr