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SOME UNIQUENESS RESULTS ON MEROMORPHIC
FUNCTIONS SHARING TWO OR THREE SETS

ABHIJIT BANERJEE AND SONALI MUKHERJEE

Abstract. Using the notions of weighted and pseudo sharing of sets, we
prove some uniqueness theorems on meromorphic functions that share
two or three sets. The results in this paper improve and supplement
many known results.

1. Introduction and main results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the
Nevanlinna theory of meromorphic functions as explained in [11]. It will be
convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a nonconstant
meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic
of h and by S(r, h) any quantity satisfying

S(r, h) = o (T (r, h)) (r −→∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a
complex number. We say that f and g share a CM, provided that f −a and
g − a have the same zeros with the same multiplicities. Similarly, we say
that f and g share a IM, provided that f − a and g− a have the same zeros
ignoring multiplicities. In addition we say that f and g share ∞ CM, if 1/f
and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g
share 0 IM (see [23]).

Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
⋃

a∈S{z :
f(z) − a = 0}, where each zero is counted according to its multiplicity.
Denote by Ef (S) the reduced form of Ef (S). If Ef (S) = Eg(S) we say that
f and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say
that f and g share the set S IM (see [10]).
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Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote
by Em)(a; f) the set of all a-points of f with multiplicities not exceeding
m, where an a-point is counted according to its multiplicity. If for some
a ∈ C ∪ {∞}, E∞)(a; f)=E∞)(a; g) we say that f , g share the value a CM.
For a set S of distinct elements of C we define Em)(S, f) =

⋃
a∈S Em)(a, f).

The condition Em)(S, f) = Em)(S, g) obviously implies Ej)(S, f) = Ej)(S, g)
for all 1 ≤ j ≤ m.

The uniqueness problem for entire and meromorphic functions sharing sets
of distinct elements instead of values was initiated by a famous question of
F. Gross in [10]. In 1976 he posed the following question:
Question A [10] Can one find two finite sets Sj (j = 1, 2) such that any
two non-constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical ?

For meromorphic functions it is natural to ask the following question:
Question B [24] Can one find three finite sets Sj (j = 1, 2, 3) such that any
two non-constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj)
for j = 1, 2, 3 must be identical ?

Gradually the research on Question A corresponding to meromorphic
function as well as Question B gained pace and today it has become one
of the most prominent branches of the uniqueness theory. Among a num-
ber of situations, depending on the nature and the number of shared sets,
the uniqueness of two meromorphic functions was studied by many authors.
{cf.[1]-[9], [13], [16]-[18], [19]-[21], [27]-[28]}.

In [13] I. Lahiri proved the following result which dealt with Question B.

Theorem A. Let S1 = {z : zn + azn−1 + b = 0} and S2 = {∞}, where a,
b are nonzero constants such that zn + azn−1 + b = 0 has no repeated root
and n (≥ 8) is an integer. If f and g are two non-constant meromorphic
functions having no simple pole such that Ef (Si) = Eg(Si) for i = 1, 2 then
f ≡ g.

In 2003, Fang and Lahiri [9] obtained the following result which improved
Theorem A by reducing the cardinality of the range set S1.

Theorem B. Let S1 = {z : zn + azn−1 + b = 0} and S2 = {∞}, where a,
b are nonzero constants such that zn + azn−1 + b = 0 has no repeated root
and n (≥ 7) is an integer. If f and g are two non-constant meromorphic
functions having no simple pole such that Ef (Si) = Eg(Si) for i = 1, 2 then
f ≡ g.

To state the subsequent results we require the following definition which is
the gradation of sharing of values known as weighted sharing which measure
how close a shared value is to being shared IM or to being shared CM.
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Definition 1.1. [14, 15] Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with
weight k.

Definition 1.1 implies that if f , g share a value a with weight k then z0

is an a-point of f with multiplicity m (≤ k) if and only if it is an a-point
of g with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity
m (> k) if and only if it is an a-point of g with multiplicity n (> k), where
m is not necessarily equal to n.

We write f , g share (a, k) to mean that f, g share the value a with weight
k. Clearly if f, g share (a, k) then f , g share (a, p) for any integer p, 0 ≤
p < k. Also we note that f , g share a value a IM or CM if and only if f , g
share (a, 0) or (a,∞) respectively.

Definition 1.2. [14] Let S be a set of distinct elements of C ∪ {∞} and k
be a nonnegative integer or ∞. We denote by Ef (S, k) the set Ef (S, k) =⋃

a∈S Ek(a; f).

Remark 1.1. From Definition 1.1 we have Ef (S) = Ef (S,∞) and Ef (S) =
Ef (S, 0).

Recently the first author [4] proved the following result which improved
Theorem B by relaxing the nature of sharing the set S1.

Theorem C. Let S1 and S2 be defined as in Theorem B. If for two non-
constant meromorphic functions f and g, Θ(∞; f) > 1

2 , Θ(∞; g) > 1
2 and

E3)(S1, f) = E3)(S1, g), Ef (S2,∞) = Eg(S2,∞) then f ≡ g.

Since two meromorphic functions f and g having no simple poles imply
Θ(∞, f) ≥ 1

2 and Θ(∞, g) ≥ 1
2 so it will be better to concentrate the atten-

tion on the relaxation of sharing both the range sets in Theorem B. In this
paper, we will deal with this problem and improve Theorem B by relaxing
the nature of sharing of both the range sets.

In 1997, Fang and Xu proved the following result which dealt with Ques-
tion B.

Theorem D. [8] Let S1 = {z : z3 − z2 − 1 = 0}, S2 = {0} and S3 = {∞}.
Suppose that f and g are two non-constant meromorphic functions satisfying
Θ(∞; f) > 1

2 and Θ(∞; g) > 1
2 . If Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3

then f ≡ g.

Afterwards Qiu and Fang proved the following result which improved
Theorem D.
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Theorem E. [21] Let n ≥ 3 be a positive integer S1 = {z : zn − zn−1 − 1 =
0}, S2 = {0} and and S3 = {∞}. Let f and g be two non-constant mero-
morphic functions whose poles are of multiplicities at least 2. If Ef (Si,∞) =
Eg(Si,∞) for i = 1, 2, 3 then f ≡ g.

In 2004, Lahiri and Banerjee investigated the situation for Θ(∞, f) ≤ 1
2

and Θ(∞, g) ≤ 1
2 and got the following result which improved and supple-

mented Theorem D.

Theorem F. [17] Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and
S3 = {∞}, where a, b are nonzero constants such that zn + azn−1 + b = 0
has no repeated root and n (≥ 4) is an integer. If for two non-constant
meromorphic functions f and g Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3 and
Θ(∞; f) + Θ(∞; g) > 0 then f ≡ g.

In 2004 Yi and Lin [27] proved the following theorem.

Theorem G. [27] Let S1, S2 and S3, be given as in Theorem F. If for two
non-constant meromorphic functions f and g, Ef (Si,∞) = Eg(Si,∞) for
i = 1, 3, Ef (S2, 0) = Eg(S2, 0) and Θ(∞; f) > 0 then f ≡ g.

In 2007, the first author [1] relaxed the nature of sharing the set S1 in
Theorem F by using the idea of weighted sharing. In this paper, we will
prove the following seven theorems by new methods that are different from
those in [1]. These results also improve Theorems E-G.

Theorem 1.1. Let S1 and S2 be defined as in Theorem B. If f and g are
two non-constant meromorphic functions having no simple poles such that
E3)(S1, f) = E3)(S1, g), Ef (S2, 3) = Eg(S2, 3) then f ≡ g.

Theorem 1.2. Let S1 and S2, be defined as in Theorem B. If f and g are
two non-constant meromorphic functions having no simple poles such that
E4)(S1, f) = E4)(S1, g), Ef (S2, 1) = Eg(S2, 1) then f ≡ g.

Theorem 1.3. Let S1, S2 and S3 be defined as in Theorem F and n (≥ 3) is
an integer. If f and g are two non-constant meromorphic functions having
no simple poles such that E10)(S1, f) = E10)(S1, g), Ef (S2, 0) = Eg(S2, 0)
and Ef (S3,∞) = Eg(S3,∞) then f ≡ g.

Theorem 1.4. Let S1, S2 and S3 be defined as in Theorem F and n (≥ 3) is
an integer. If f and g are two non-constant meromorphic functions having
no simple poles such that E9)(S1, f) = E9)(S1, g), Ef (S2, 1) = Eg(S2, 1) and
Ef (S3,∞) = Eg(S3,∞) then f ≡ g.

Theorem 1.5. Let S1, S2 and S3 be defined as in Theorem F and n (≥ 3) is
an integer. If f and g are two non-constant meromorphic functions having
no simple poles such that E8)(S1, f) = E8)(S1, g), Ef (S2,∞) = Eg(S2,∞)
and Ef (S3,∞) = Eg(S3,∞) then f ≡ g.
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Theorem 1.6. Let S1, S2 and S3 be defined as in Theorem F. If for
two non-constant meromorphic functions f and g E6)(S1, f) = E6)(S1, g),
Ef (S2, 0) = Eg(S2, 0) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f)+Θ(∞; g) >
0 then f ≡ g.

Theorem 1.7. Let S1, S2 and S3 be defined as in Theorem F. If for
two non-constant meromorphic functions f and g E5)(S1, f) = E5)(S1, g),
Ef (S2,∞) = Eg(S2,∞) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f)+Θ(∞; g)
> 0 then f ≡ g.

The following example shows that the condition Θ(∞; f) + Θ(∞; g) > 0
is sharp in Theorems 1.6-1.7.

Example 1.1. Let

g = −a
e(n−1)z − 1

enz − 1
, f(z) = ezg(z)

and S,
is be as in Theorem 1.1. Then Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3

because fn−1(f +a) ≡ gn−1(g+a) and f ≡ ezg. Also Θ(∞; f)+Θ(∞; g) = 0
and f 6≡ g.

Next we introduce some notations which are used throughout this paper.

Definition 1.3. [12] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the
counting function of the simple a points of f . For a positive integer m we
denote by N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those
a points of f whose multiplicities are not greater(less) than m, where each
a point is counted according to its multiplicity. We denote by N(r, a; f |<
m), (N(r, a; f |> m)) the counting function of those a-points of f whose
multiplicities are less (greater) than m, where each point is counted ac-
cording to its multiplicity. We denote by N(r, a; f |≤ m), N(r, a; f |≥
m), N(r, a; f |< m) and N(r, a; f |> m) the reduced forms of N(r, a; f |≤
m), N(r, a; f |≥ m), N(r, a; f |< m) and N(r, a; f |> m) respectively.

Definition 1.4. We denote by N(r, a; f |= k) the reduced counting function
of those a-points of f whose multiplicities are exactly k, where k ≥ 2 is an
integer.

Definition 1.5. Let f and g be two non-constant meromorphic functions
such that f and g share the value a IM where a ∈ C ∪ {∞}. Let z0 be an
a-point of f with multiplicity p, an a-point of g with multiplicity q. We
denote by NL(r, a; f) (NL(r, a; g)) the counting function of those a-points
of f and g where p > q (q > p), each point in these counting functions is
counted only once.
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Definition 1.6. Let f and g be two non-constant meromorphic functions
and m be a positive integer such that Em)(a; f) = Em)(a; g) where a ∈
C ∪ {∞}. Let z0 be an a-point of f with multiplicity p > 0, an a-point
of g with multiplicity q > 0. We denote by N

m)
L (r, a; f) (Nm)

L (r, a; g)) the
counting function of those a-points of f and g where p > q (q > p), each
a-point is counted only once.

Definition 1.7. [15] We define N2(r, a; f) by N2(r, a; f) = N(r, a; f) +
N(r, a; f |≥ 2).

Definition 1.8. Let m be a positive integer and for a ∈ C, Em)(a; f) =
Em)(a; g). Let z0 be a zero of f − a of multiplicity p and a zero of g − a of
multiplicity q. We denote by Nf≥m+1(r, a; f | g 6= a) (Ng≥m+1(r, a; g | f 6=
a)) the reduced counting functions of those a-points of f and g for which
p ≥ m + 1 and q = 0 (q ≥ m + 1 and p = 0).

Definition 1.9. [15] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Remark 1.2. From Definition 1.5 and Definition 1.9 we have N∗(r, a; f, g) ≡
N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Definition 1.10. For Em)(1; f) = Em)(1; g), let z0 be a zero of f − 1 with
multiplicity p(≥ 0) and a zero of g − 1 with multiplicity q(≥ 0). We denote
by N⊗(r, 1; f, g) the reduced counting function of those common 1 points of
f and g with p 6= q.

Remark 1.3. From Definition 1.6 and Definition 1.10 we have

N⊗(r, 1; f, g) = N
m)
L (r, 1; f) + N

m)
L (r, 1; g) + Nf≥m+1(r, 1; f | g 6= 1)

+ Ng≥m+1(r, 1; g | f 6= 1).

Definition 1.11. [18] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b)
the counting function of those a-points of f , counted according to multiplic-
ity, which are b-points of g.

Definition 1.12. [18] Let a, b1, b2, . . . , bq ∈ C∪{∞}. We denote by N(r, a;
f | g 6= b1, b2, . . . , bq) the counting function of those a-points of f , counted
according to their multiplicities, which are not the bi-points of g for i =
1, 2, . . . , q.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F and G be two non-constant meromorphic functions defined as follows.

F =
fn−1(f + a)

−b
,G =

gn−1(g + a)
−b

. (2.1)

Henceforth we will denote respectively by H, Φ and V the following three
functions

H = (
F
′′

F ′ −
2F

′

F − 1
)− (

G
′′

G′ −
2G

′

G− 1
),

Φ =
F
′

F − 1
− G

′

G− 1
and

V = (
F
′

F − 1
− F ′

F
)− (

G
′

G− 1
− G′

G
) =

F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 2.1. [20] For Em)(1;F ) = Em)(1;G) and H 6≡ 0 then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let S1, S2 and S3 be defined as in Theorem F and F , G be
given by (2.1). If for two non-constant meromorphic functions f and g,
Em)(S1, f) = Em)(S1, g), Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0) and
H 6≡ 0 then

N(r,H) ≤ N∗(r, 0, f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)

+ N⊗(r, 1;F, G) + N∗(r,∞; f, g) + N0(r, 0;F
′
) + N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which

are not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Proof. Since Em)(S1, f) = Em)(S1, g), it follows that Em)(1;F ) = Em)(1;G).
We can easily verify that possible poles of H occur at (i) those zeros of f
and g whose multiplicities are distinct from the multiplicities of the cor-
responding zeros of g and f respectively, (ii) multiple zeros of f + a and
g + a, (iii) those poles of f and g whose multiplicities are distinct from the
multiplicities of the corresponding poles of g and f respectively, (iv) those
1-points of F and G with different multiplicities, (v) zeros of F

′
which are

not the zeros of F (F−1), (v) zeros of G
′
which are not the zeros of G(G−1).

Since H has only simple poles, the lemma follows from Remark 1.3 and
from the above explanations. This proves the lemma. ¤
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Lemma 2.3. ([17], Lemma 4) If two non-constant meromorphic functions
F and G share (1, 0), (∞, 0) and H 6≡ 0 then

N(r,H) ≤ N(r, 0;F |≥ 2) + N(r, 0;G |≥ 2) + N∗(r, 1;F, G)

+ N∗(r,∞; F, G) + N0(r, 0;F
′
) + N0(r, 0;G

′
).

Lemma 2.4. [22] Let f be a non-constant meromorphic function and P (f)=
a0+a1f +a2f

2+· · ·+anfn, where a0, a1, a2 . . . , an are constants and an 6= 0.
Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.5. [2] Let F and G be given by (2.1). If f , g share (0, 0) and 0
is not a Picard exceptional value of f and g. Then Φ ≡ 0 implies F ≡ G.

Lemma 2.6. Let F and G be given by (2.1), n ≥ 3 an integer and Φ 6≡ 0.
If Em)(1, F ) = Em)(1, G) and f , g share (0, p), (∞, k), where 0 ≤ p < ∞
then

[(n− 1)p + n− 2] N(r, 0; f |≥ p + 1)

≤ N⊗(r, 1;F, G) + N∗(r,∞;F, G) + S(r, f) + S(r, g).

Proof. Suppose 0 is an e.v.P. (Picard exceptional value) of f and g then the
lemma follows immediately.

Next suppose 0 is not an e.v.P. of f and g. Let z0 is a zero of f with
multiplicity q and a zero of g with multiplicity r. From (2.1) we know
that z0 is a zero of F with multiplicity (n − 1)q and a zero of G with
multiplicity (n− 1)r. We note that F and G have no zero of multiplicity t
where (n− 1)p < t < (n− 1)(p + 1). So from the definition of Φ it is clear
that z0 is a zero of Φ with multiplicity at least (n − 1)(p + 1) − 1. So we
have

[(n− 1)p + n− 2]N(r, 0; f |≥ p + 1)

= [(n− 1)p + n− 2]N(r, 0; g |≥ p + 1)

= [(n− 1)p + n− 2]N (r, 0;F |≥ (n− 1)(p + 1))

≤ N(r, 0;Φ)

≤ N(r,∞; Φ) + S(r, f) + S(r, g)

≤ N⊗(r, 1;F, G) + N∗(r,∞; F, G) + S(r, f) + S(r, g).

The lemma follows from above. ¤

Lemma 2.7. [2] Let F and G be given by (2.1) and f , g share (∞, 0) and
∞ is not a Picard exceptional value of f and g. Then V ≡ 0 implies F ≡ G.
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Lemma 2.8. Let F , G be given by (2.1) and V 6≡ 0. If f , g share (0, 0),
(∞, k), where 0 ≤ k < ∞, and Em)(1, F ) = Em)(1, G), then the poles of F
and G are the zeros of V and

(n− 1) N(r,∞; f |= 1) + (2n− 1)N(r,∞; f |= 2) + . . .

+ (nk − 1)N(r,∞; f |= k) + (nk + n− 1)N(r,∞; f |≥ k + 1)

≤ N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a)

+ N⊗(r, 1;F, G) + S(r, f) + S(r, g).

Proof. Suppose ∞ is an e.v.P. of f and g then the lemma follows immedi-
ately.

Next suppose ∞ is not an e.v.P. of f and g. Since f , g share (∞, k),
it follows that F , G share (∞, nk) and so a pole of F with multiplicity
p(≥ nk + 1) is a pole of G with multiplicity r(≥ nk + 1) and vice versa. We
note that F and G have no pole of multiplicity q where nk < q < nk + n.
Also any common pole of F and G of multiplicity p ≤ nk is a zero of V of
multiplicity ≥ p− 1. Using Lemma 2.4 we get from the definition of V

(n− 1)N(r,∞; f)

≤ (2n− 1)N(r,∞; f)− nN(r,∞; f |= 1)

≤ (n− 1) N(r,∞; f |= 1) + (2n− 1)N(r,∞; f |= 2) + . . .

+ (nk − 1)N(r,∞; f |= k) + (nk + n− 1)N(r,∞; f |≥ k + 1)

≤ N(r, 0;V ) ≤ N(r,∞; V ) + S(r, f) + S(r, g)

≤ N∗(r, 0; f, g) + N(r, 0; f + a)

+ N(r, 0; g + a) + N⊗(r, 1;F, G) + S(r, f) + S(r, g),

which yields the conclusion of Lemma 2.8. ¤

Proceeding as in the proof of Lemma 2.8, we get the following result.

Lemma 2.9. Let F , G be given by (2.1) and V 6≡ 0. If f , g share (∞, k),
where 0 ≤ k < ∞ and F , G share (1,m) then the poles of F and G are the
zeros of V and

(n− 1) N(r,∞; f |= 1) + (2n− 1)N(r,∞; f |= 2) + . . .

+ (nk − 1)N(r,∞; f |= k) + (nk + n− 1)N(r,∞; f |≥ k + 1)

≤ N(r, 0; f) + N(r, 0; g) + N(r, 0; f + a) + N(r, 0; g + a)

+ N⊗(r, 1;F, G) + S(r, f) + S(r, g).
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Lemma 2.10. Let f and g be two meromorphic meromorphic functions
such that Em)(1; f) = Em)(1; g), where 1 ≤ m < ∞. Then

N(r, 1; f)+N(r, 1; g)−N(r, 1; f |= 1)+
(m

2
− 1

2

){
Nf≥m+1(r, 1; f | g 6= 1)

+Ng≥m+1(r, 1; g | f 6= 1)
}
+

(
m− 1

2

) {
N

m)
L (r, 1; f)+ N

m)
L (r, 1; g)

}

≤ 1
2

[N(r, 1; f) + N(r, 1; g)]

Proof. Since Em)(1; f) = Em)(1; g), we note that common zeros of f − 1
and g − 1 up-to multiplicity m are the same. Let z0 be a 1-point of f with
multiplicity p and a 1-point of g with multiplicity q. If p = m+1 the possible
values of q are as follows (i) q = m + 1 (ii) q ≥ m + 2 (iii) q = 0. Similarly
when p = m+2 the possible values of q are (i) q = m+1 (ii) q = m+2 (iii)
q ≥ m + 3 (iv) q = 0. If p ≥ m + 3 we can similarly find the possible values
of q. Now the lemma follows from above explanation. ¤

Lemma 2.11. Let F , G be given by (2.1) and H 6≡ 0. If Em)(1;F ) =
Em)(1;G), f , g share (∞, k), (0, p), where 1 ≤ m < ∞. Then

(n

2
− 1

)
{T (r, f) + T (r, g)} ≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g)

+ N(r,∞; g) + N∗(r, 0; f, g) + N∗(r,∞; f, g)

−
(m

2
− 3

2

){
NF≥m+1(r, 1;F | G 6= 1)

+ NG≥m+1(r, 1;G | F 6= 1)
}
−

(
m− 3

2

)

{
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+ S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

T (r, F ) + T (r,G) ≤ N(r, 1;F ) + N(r, 0;F ) + N(r,∞;F )

+ N(r, 1;G) + N(r, 0;G) + N(r,∞; G)

−N0(r, 0;F
′
)−N0(r, 0;G

′
) + S(r, F ) + S(r,G). (2.2)

Using Lemmas 2.1, 2.2, 2.4 and 2.10 we see that

N(r, 1;F ) + N(r, 1;G)

≤ 1
2

[N(r, 1;F ) + N(r, 1;G)] + N(r, 1;F |= 1)

−
(m

2
− 1

2

){
NF≥m+1(r, 1;F | G 6= 1)
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+ NG≥m+1(r, 1;G | F 6= 1)
}
−

(
m− 1

2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}

≤ n

2
{T (r, f) + T (r, g)}+ N∗(r, 0; f, g) + N∗(r,∞; f, g)

+ N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2) + N⊗(r, 1;F, G)

−
(m

2
− 1

2

){
NF≥m+1(r, 1;F | g 6= 1)

+ NG≥m+1(r, 1;G | F 6= 1)
}
−

(
m− 1

2

){
N

m)
L (r, 1;F )

+ N
m)
L (r, 1;G)

}
+ N0(r, 0;F

′
) + N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ n

2
{T (r, f) + T (r, g)}+ N∗(r, 0; f, g) + N∗(r,∞; f, g)

+ N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)−
(m

2
− 3

2

)

{
NF≥m+1(r, 1;F | G 6= 1) + NG≥m+1(r, 1;G | F 6= 1)

}

−
(
m− 3

2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+ N0(r, 0;F

′
)

+ N0(r, 0;G
′
) + S(r, f) + S(r, g). (2.3)

Using (2.3) in (2.2) the lemma follows. ¤

Lemma 2.12. Let F , G be given by (2.1) and H 6≡ 0. If Em)(1;F ) =
Em)(1;G), f , g share (∞, k), where 1 ≤ m < ∞. Then

(n

2
− 1

)
{T (r, f) + T (r, g)} ≤ 2N(r, 0; f) + N(r,∞; f) + 2N(r, 0; g)

+ N(r,∞; g) + N∗(r,∞; f, g)−
(m

2
− 3

2

){
NF≥m+1(r, 1;F | G 6= 1)

+ NG≥m+1(r, 1;G | F 6= 1)
}
−

(
m− 3

2

)

{
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+ S(r, f) + S(r, g).

Proof. Using Lemmas 2.1, 2.3, 2.4 and 2.10 and using the same procedure
as that in the proof of Lemma 2.11 we see that

N(r, 1;F ) + N(r, 1;G)

≤ n

2
{T (r, f) + T (r, g)}+ N(r, 0; f) + N(r, 0; f + a |≥ 2) + N(r, 0; g)

+ N(r, 0; g + a |≥ 2) + N∗(r,∞; f, g) + N⊗(r, 1;F, G)

−
(m

2
− 1

2

){
NF≥m+1(r, 1;F | g 6= 1)



180 ABHIJIT BANERJEE AND SONALI MUKHERJEE

+ NG≥m+1(r, 1;G | F 6= 1)
}
−

(
m− 1

2

){
N

m)
L (r, 1;F )

+ N
m)
L (r, 1;G)

}
+ N0(r, 0;F

′
) + N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ n

2
{T (r, f) + T (r, g)}+ N(r, 0; f) + N(r, 0; f + a |≥ 2) + N(r, 0; g)

+ N(r, 0; g + a |≥ 2) + N∗(r,∞; f, g)−
(m

2
− 3

2

)

{
NF≥m+1(r, 1;F | G 6= 1) + NG≥m+1(r, 1;G | F 6= 1)

}

−
(
m− 3

2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+ N0(r, 0;F

′
)

+ N0(r, 0;G
′
) + S(r, f) + S(r, g). (2.4)

Using (2.4) in (2.2) the lemma follows. ¤

Lemma 2.13. [5] Let F = fn−1(f+a)
−b , G = gn−1(g+a)

−b , where n(≥ 7) is an
integer. If H ≡ 0 then fn−1(f + a)gn−1(g + a) ≡ b2 or fn−1(f + a) ≡
gn−1(g + a).

Lemma 2.14. ([16], Lemma 5) If f , g share (∞, 0) then for n(≥ 2)

fn−1(f + a)gn−1(g + a) 6≡ b2,

where a,b are finite nonzero constants.

Lemma 2.15. ([17], Lemma 9) Let f , g be two meromorphic functions
such that Θ(∞; f) + Θ(∞; g) > 4

n−1 , where n(≥ 4) is an integer. Then
fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g, a is a nonzero finite constant.

Lemma 2.16. If N(r, 0; f
′ | f 6= 0) denotes the counting function of those

zeros of f
′

which are not the zeros of f , where a zero of f
′

is counted
according to its multiplicity, then

N(r, 0; f
′ | f 6= 0) ≤ N(r,∞; f) + N(r, 0; f) + S(r, f).

Proof. By the first fundamental theorem and the Milloux theorem ([see [11],
Theorem 3.1]) we get

N
(
r, 0; f

′ | f 6= 0
)
≤ N

(
r, 0;

f
′

f

)

≤ N

(
r,∞;

f
′

f

)
+ m

(
r,

f
′

f

)
+ O(1)

≤ N(r, 0; f) + N(r,∞; f) + S(r, f).

¤
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Lemma 2.17. Let F , G be given by (2.1). If Em)(1;F ) = Em)(1;G),
f , g share (∞; 0) and ω1, ω2 . . . ωn are the distinct roots of the equation
zn + azn−1 + b = 0 and n ≥ 3. Then

N⊗(r, 1;F, G) ≤ 1
m

[
N(r, 0; f) + N(r, 0; g) + 2N(r,∞; f)−N⊕(r, 0; f

′
)

−N⊕(r, 0; g
′
)
]

+ S(r, f) + S(r, g),

where N⊕(r, 0; f
′
) = N(r, 0; f

′ | f 6= 0, ω1, ω2 . . . ωn) and N⊕(r, 0; g
′
) is

similarly defined.

Proof. In view of Definition 1.3 and Remark 1.3 and Lemma 2.16 we note
that

N⊗(r, 1;F,G) ≤ N(r, 1;F |≥ m + 1) + N(r, 1;F |≥ m + 1)

≤ 1
m

[
N(r, 1;F )−N(r, 1;F ) + N(r, 1;G)−N(r, 1;G)

]

≤ 1
m

[ n∑

j=1

(
N(r, ωj ; f)−N(r, ωj ; f)

)
+

n∑

j=1

(
N(r, ωj ; g)−N(r, ωj ; g)

) ]

≤ 1
m

(
N(r, 0; f

′ | f 6= 0)−N⊕(r, 0; f
′
) + N(r, 0; g

′ | g 6= 0)−N⊕(r, 0; g
′
)
)

≤ 1
m

[
N(r, 0; f) + N(r, 0; g) + 2N(r,∞; f)−N⊕(r, 0; f

′
)−N⊕(r, 0; g

′
)
]

+ S(r, f) + S(r, g).

¤

Lemma 2.18. Let F , G be given by (2.1) and V 6≡ 0. If Em)(1;F ) =
Em)(1;G), f , g having no simple poles such that they share (∞, 1), then

[m(2n− 1)− 2] N(r,∞; f |≥ 2)

≤ (m + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Proof. Using Lemma 2.17, we obtain from Lemma 2.9 with k = 1 that

(2n− 1)N(r,∞; f |≥ 2) ≤ 2T (r, f) + 2T (r, g) +
1
m
{N(r, 0; f) + N(r, 0; g)}

+
2
m

N(r,∞; f) + S(r, f) + S(r, g)

≤ m + 2
m

{T (r, f) + T (r, g)}+
2
m

N(r,∞; f) + S(r, f) + S(r, g).

Now the lemma follows. ¤
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Lemma 2.19. Let F and G be given by (2.1), n ≥ 3 an integer and Φ 6≡ 0.
If Em)(1;F ) = Em)(1;G), f , g share (0, p), (∞,∞), where 0 ≤ p < ∞ then

{m(n− 2)− 2} N(r, 0; f) ≤ 2 N(r,∞; f) + S(r, f) + S(r, g).

Proof. Since f , g share (0, p) it follows that they share (0, 0). So using
Lemma 2.6 for p = 0, Lemma 2.17 and noting that f , g share (∞,∞) we
see that

(n− 2) N(r, 0; f) ≤ N⊗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 2
m

[N(r, 0; f) + N(r,∞; f)] + S(r, f) + S(r, g),

from which the lemma follows. ¤

Lemma 2.20. ([26], Lemma 6) If H ≡ 0, then F , G share (1,∞). If further
F , G share (∞, 0) then F , G share (∞,∞).

Lemma 2.21. ([17], Lemma 3) Let f , g be two non-constant meromor-
phic functions sharing (0,∞), (∞,∞) and Θ(∞; f) + Θ(∞; g) > 0. Then
fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g, where n (≥ 2) is an integer and
a is a nonzero complex number.

Lemma 2.22. [25] Let F , G be two non-constant meromorphic functions
sharing (1,∞) and (∞,∞). If

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞; F ) < λT1(r) + S1(r),

where λ < 1 and T1(r) = max{T (r, F ), T (r,G)} and S1(r) = o(T1(r)),
r −→ ∞, outside of a possible exceptional set of finite linear measure, then
F ≡ G or FG ≡ 1.

Lemma 2.23. Let F , G be given by (2.1) and n ≥ 3. If Em)(1;F ) =
Em)(1;G), f , g are two non-constant meromorphic functions having no sim-
ple poles such that they share (0, 0), (∞, 1), where 1 ≤ m < ∞ and H ≡ 0.
Then f ≡ g.

Proof. Since f and g share (∞, 1), we get from H ≡ 0 and Lemma 2.20 that
F and G share (1,∞) and (∞,∞). Thus f and g share (∞,∞). Assume
that F 6≡ G. Then from Lemma 2.5 and Lemma 2.6 we have

N(r, 0; f) = N(r, 0; g) = S(r).

Again from Lemma 2.7 and the supposition F 6≡ G we see that V 6≡ 0 or
∞ is a Picard exceptional value of f and g. Combining the condition n ≥ 3
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and the condition that f and g have no simple poles we get from Lemma 2.8

N(r,∞; f) + N(r,∞; g) = N(r,∞; f |≥ 2) + N(r,∞; g |≥ 2)

≤ 2
2n− 1

N(r, 0;V )

=
2

2n− 1
N(r,∞; V ) + S(r)

≤ 2
2n− 1

{N(r,−a; f) + N(r,−a; g)}T (r) + S(r)

≤ 4
2n− 1

T (r) + S(r).

Therefore we see that

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F )

≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a) + 2N(r,∞; f)

≤ N2(r, 0; f + a) + N2(r, 0; g + a) + N(r,∞; f) + N(r,∞; g) + S(r) (2.5)

Using Lemma 2.4 we obtain

T1(r) = n max{T (r, f), T (r, g)}+ O(1) = n T (r) + O(1). (2.6)

So again using Lemma 2.4 we get from (2.5) and (2.6)

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞; F ) ≤ 2 + 4
2n−1

n
T1(r) + S1(r).

Since
2+ 4

2n−1

n < 1 for n ≥ 3 by Lemma 2.22 we have FG ≡ 1, which is
impossible by Lemma 2.14. Hence F ≡ G i.e. fn−1(f + a) ≡ gn−1(g + a).
This together with the assumption that f and g share (0, 0) implies that f
and g share (0,∞). Combining Lemma 2.21 and the fact that f and g share
(∞,∞), we get the conclusion of Lemma 2.23. ¤

Lemma 2.24. Let F , G be given by (2.1) and n ≥ 4. Also let Em)(1;F ) =
Em)(1;G). If f , g share (0, 0), (∞, k), where 0 ≤ k < ∞, Θ(∞; f) +
Θ(∞; g) > 0 and H ≡ 0. Then f ≡ g.

Proof. Since H ≡ 0 we get from Lemma 2.20 F and G share (1,∞) and
(∞,∞). We omit the proof since the proof can be found in Lemma 2.17 [3].

¤

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then E3)(1, F ) = E3)

(1, G) and they share (∞, 4n−1). Since f and g share (∞, 3) no simple poles
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clearly N∗(r,∞; f, g) = N(r,∞; f |≥ 4) = N(r,∞; g |≥ 4). We consider the
following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. If ∞ is an e.v.P. of f and g, from
Lemma 2.12 we get
(n

2
− 1

)
{T (r, f) + T (r, g)} ≤ 2N(r, 0; f) + 2N(r, 0; g) + S(r, f) + S(r, g)

≤ 2{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

which implies n ≤ 6. From this and the condition n ≥ 7 we get a contra-
diction. Thus ∞ is not an e.v.P. of f and g. Then by Lemma 2.7 we get
V 6≡ 0. Noting that f and g have no simple poles and applying Lemma 2.9,
Lemma 2.12 and Lemma 2.17 with m = k = 3 we obtain(n

2
− 3

)
{T (r, f) + T (r, g)}

≤ 2N(r,∞; f |≥ 2) + N(r,∞; f |≥ 4) + S(r, f) + S(r, g)

≤ 2
2n− 1

{ 2T (r, f) + 2T (r, g) + N⊗(r, 1;F, G)}

+
1

4n− 1
{ 2T (r, f) + 2T (r, g) + N⊗(r, 1;F, G)}+ S(r, f) + S(r, g)

≤
[

14
3(2n− 1)

+
7

3(4n− 1)

]
{T (r, f) + T (r, g)}

+
[

4
3(2n− 1)

+
2

3(4n− 1)

]
N(r,∞; f |≥ 2) + S(r, f) + S(r, g).

(3.1)

Using Lemma 2.18 for m = 3 in (3.1) we obtain
[
n

2
− 3−

{
14

3(2n− 1)
+

7
3(4n− 1)

+
20

3(6n− 5)(2n− 1)

+
10

3(6n− 5)(4n− 1)

}]

{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which leads to a contradiction for n ≥ 7.
Case 2. Let H ≡ 0. Now since by the given condition Θ(∞; f)+Θ(∞; g) ≥
1 > 4

n−1 the theorem follows from Lemmas 2.13, 2.14 and 2.15. ¤

Proof of Theorem 1.2. Let F , G be given by (2.1). Then E4)(1, F ) = E4)

(1, G) and they share (∞, 2n− 1). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Proceeding as in the proof of Theorem
1.1 we see that ∞ is not an e.v.P. of f and g. Then by Lemma 2.7 we
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get V 6≡ 0. Noting that f and g have no simple poles using Lemma 2.9 in
Lemma 2.12 with m = 4 and k = 1 we obtain

(n

2
− 3

)
{T (r, f) + T (r, g)}

≤ 3N(r,∞; f |≥ 2)− 1
2
N⊗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 3
2n− 1

{ 2T (r, f) + 2T (r, g)}+ S(r, f) + S(r, g). (3.2)

From (3.2) we have
[
n

2
− 3− 6

(2n− 1)

]
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction for n ≥ 7.
Case 2. Let H ≡ 0. Now since by the given condition Θ(∞; f)+Θ(∞; g) ≥
1 > 4

n−1 the theorem follows from Lemmas 2.13, 2.14 and 2.15. ¤

Proof of Theorem 1.3. Let F , G be given by (2.1). Then E10)(1, F ) =
E10)(1, G) and they share (∞,∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0, ∞ are not exceptional values
Picard of f and g. Then by Lemma 2.5 and Lemma 2.7 we get Φ 6≡ 0 and
V 6≡ 0. Hence from Lemmas 2.6, 2.8, 2.11 and 2.19 with k = ∞, p = 0 and
m = 10 we obtain

(n

2
− 1

)
{T (r, f) + T (r, g)}

≤ 3N(r, 0; f)+ N(r,∞; f)+ N(r,∞; g)− 7
2
N⊗(r, 1;F, G)+ S(r, f)+ S(r, g)

≤ 3
n− 2

N⊗(r, 1;F,G)+2N(r,∞; f |≥2)− 7
2
N⊗(r, 1;F, G)+S(r, f)+S(r, g)

≤ 2
2n− 1

[
T (r, f) + T (r, g) + N(r, 0; f)

+N⊗(r, 1;F,G)
]− 1

2
N⊗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 2
2n− 1

[
T (r, f) + T (r, g) +

2
10n− 22

N(r,∞; f)
]

+ S(r, f) + S(r, g)

≤ 2
2n− 1

(
1 +

1
10n− 22

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.3)

If 0, ∞ are Picard exceptional values of f and g, from Lemma 2.11 and
n ≥ 3 we get

T (r, f) + T (r, g) ≤ S(r, f) + S(r, g),
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which is impossible. Thus at least one of 0 and∞ is not a Picard exceptional
value of f and g, and so (3.3) automatically holds. From (3.3) we see that
[
n

2
− 1− 2

2n− 1

(
1 +

1
2(5n− 11)

)]
{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g)

which is a contradiction for n ≥ 3.
Case 2. Let H ≡ 0. The theorem follows from Lemma 2.23. ¤

Proof of Theorem 1.4. Let F , G be given by (2.1). Then E9)(1, F ) = E9)

(1, G) and they share (∞,∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0, ∞ are not exceptional values
Picard of f and g. Then by Lemma 2.5 and Lemma 2.7 we get Φ 6≡ 0 and
V 6≡ 0. Hence from Lemmas 2.6, 2.8 and 2.11 with k = ∞, p = 1 and m = 9
we obtain

(n

2
− 1

)
{T (r, f) + T (r, g)} ≤ 2N(r, 0; f) + N(r, 0; f |≥ 2) + N(r,∞; f)

+ N(r,∞; g)− 3 N⊗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 2
n− 2

N⊗(r, 1;F, G) + N(r, 0; f |≥ 2)

+ 2N(r,∞; f |≥ 2)− 3 N⊗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 2n + 1
2n− 1

N(r, 0; f |≥ 2) +
2

2n− 1
[T (r, f) + T (r, g)]

− 2n− 3
2n− 1

N⊗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 2
2n− 1

[T (r, f) + T (r, g)]

+
[

2n + 1
(2n− 1)(2n− 3)

− 2n− 3
2n− 1

]
N⊗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 2
2n− 1

[T (r, f) + T (r, g)] + S(r, f) + S(r, g). (3.4)

Proceeding as in the proof of Theorem 1.3 we see that at least one of 0, ∞ is
not a Picard exceptional value of f and g, and so (3.4) automatically holds.
Clearly from (3.4) we can deduce a contradiction for n ≥ 3.
Case 2. Let H ≡ 0. The theorem follows from Lemma 2.23. ¤

Proof of Theorem 1.5. Proceeding as in the proof of Theorem 1.4 we get the
conclusion of Theorem 1.5. ¤

Proof of Theorem 1.6. Let F , G be given by (2.1). Then E6)(1, F ) = E6)

(1, G) and they share (∞,∞). We consider the following cases.
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Case 1. Let H 6≡ 0. Then F 6≡ G. If N(r, 0; f) + N(r, 0; g) = S(r, f) +
S(r, g), from Lemma 2.11 we get
(n

2
− 1

)
{T (r, f) + T (r, g)} ≤ N(r,∞; f) + N(r,∞; g) + S(r, f) + S(r, g)

= T (r, f) + T (r, g) + S(r, f) + S(r, g),

which implies n
2 − 1 ≤ 1. From this and n ≥ 4 we get n = 4 and T (r, f) =

N(r,∞; f) + O(1), T (r, g) = N(r,∞; g) + O(1). From this we get

Θ(∞; f) + Θ(∞; g) = 0,

which contradicts Θ(∞; f) + Θ(∞; g) > 0. Thus N(r, 0; f) + N(r, 0; g) 6=
S(r, f) + S(r, g). This together with Lemma 2.19 we see that 0 and ∞ are
not Picard exceptional values of f and g. Then by Lemma 2.5 and Lemma
2.7 we get Φ 6≡ 0 and V 6≡ 0. Hence from Lemmas 2.6, 2.8, 2.11, 2.17 and
2.19 with k = ∞, p = 0 and m = 6 we obtain(n

2
− 1

)
{T (r, f) + T (r, g)}

≤ 3N(r, 0; f)+N(r,∞; f)+N(r,∞; g)− 3
2
N⊗(r, 1;F, G)+S(r, f)+S(r, g)

≤ 3
n− 2

N⊗(r, 1;F, G) + 2N(r,∞; f)− 3
2
N⊗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 2
n− 1

[
T (r, f) + T (r, g) + N(r, 0; f) + N⊗(r, 1;F, G)

]
+ S(r, f) + S(r, g)

≤ 2
n− 1

[
T (r, f) + T (r, g) +

4
3
N(r, 0; f) +

1
3
N(r,∞; f)

]
+ S(r, f) + S(r, g)

≤ 2
n− 1

[
7
6

+
4

3(6n− 14)

]
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.5)

It is easy to verify that (3.5) gives a contradiction for n ≥ 4.
Case 2. Let H ≡ 0. Now the theorem follows from Lemma 2.24. ¤
Proof of Theorem 1.7. Proceeding as in the proof of Theorem 1.6 we get the
conclusion of Theorem 1.7. ¤
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