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PICARD BOUNDARY VALUE PROBLEMS FOR SECOND
ORDER NONLINEAR FUNCTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS

YUJI LIU

Abstract. Sufficient conditions for the existence of solutions of the
Picard boundary value problem for the second order nonlinear integro-
differential equation are established. We allow G to grow linearly, su-
perlinearly or sublinearly in our obtained results, see Theorem 2.1 and
Theorem 2.2. Examples are presented to illustrate the efficiency of our
theorems.

1. Introduction

Recently, many papers have discussed the existence of solutions or positive
solutions of two-pint boundary value problems for second order differential
equations, one may see the text books [1,2] and references therein.

In this paper, we study the solvability of Picard boundary value problems
for second order of functional integro-differential equations





x′′(t) + lx′(t) + kx(t) + G(t,
∫ π
0 h(t, s)x(s)ds, x(t), x(t− τ1(t)),

. . . , x(t− τm(t))) = p(t), t ∈ (0, π),
x(0) = x(π) = 0,
x(t) = φ(t), t ∈ [−τ, 0],
x(t) = ψ(t), t ∈ [π, π + δ],

(1)

where l, k ∈ R, G : [0, π]×Rm+2 → R is a continuous function, p ∈ C0[0, π],
τi : [0, π] → R is continuous differentiable on [0, π], and τ ′i(t) < 1 for all
t ∈ [0, π] with its inverse function being denoted µi for i = 1, · · · ,m, h(·, ·) :
[0, π]× [0, π] → R+ is continuous, ψ : [π, π + δ] → R and φ : [−τ, 0] → R are
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continuous functions with φ(0) = ψ(π) = 0, τ and δ are defined by

τ = max{max
t∈[0,π]

{τi(t)} : i = 1, · · · ,m},

δ = −min{ min
t∈[0,π]

{τi(t)} : i = 1, · · · ,m}.

This study is similar to the recent papers in which solvability of Picard
boundary value problems for second order differential equations are studied.
First, we find that BVP{

x′′(t) + lx′(t) + x(t) = sin t, t ∈ (0, π),
x(0) = x(π) = 0 (2)

has no solution, see Remark 2 in Section 3. BVP(2) is a special case of
BVP(1) when k = 1, G(t, x, y) ≡ 0 and p(t) = sin t.

In [6], Kuo studied the boundary value problem{
u′′(t) + k2u + g(x, u) = h(x), x ∈ (0, π),
u(0) = u(π) = 0 (3)

under the assumption:
(H1) there is a constant r0 > 0 and nonnegative functions p and b

such that ||p||L1 < 2k(k + 1) tan π
2(k+1) , and for a.e x ∈ (0, π) and |u| ≥ r0

|g(x, u)| ≤ p(x)|u|+b(x), holds, where h ∈ L1(0, π) and g : (0, π)×R → R is
a Caratheodory function ( Condition (H1) admits g to grow linearly about
u.)

In [8,22], BVP(3) was also studied under the assumptions that (H1) holds
and k = 1 and

∫ π
0 h(x) sinxdx = 0. In [7,21], BVP(3) was studied under the

assumptions that ||p||L1 ≤ 2k, and a Landesman-Lazer condition∫ π

0
h(x)v(x) <

∫

v>0
g+(x)v(x)dx +

∫

v<0
g−(x)v(x)dx

holds, where

g+(x) = lim
u→+∞ inf g(x, u), g−(x) = lim

u→−∞ sup g(x, u)

and
v(x) = α sin kx for α ∈ R \ {0}.

In [20], Han studied BVP(3) when k = 1 under the following assumptions
(G) and one of (G1) and (G2) (Condition (G) allows g to grow linearly:

(G) lim|u|→∞
g(x,u)

u = γ(x), where γ ∈ L1(0, π) and the convergence is
uniform for a.e. x ∈ (0, π);

(G1) for every a(x) ∈ L1(0, π) with −1 ≤ a(x) ≤ γ(x), BVP

u′′(x) + u(x) + a(x)u(x) = 0, x ∈ (0, π), u(0) = u(π) = 0

has only trivial solution in H1
0 (0, π);



NONLINEAR FUNCTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 193

(G2) BVP

u′′(x) + u(x) + a(x)u(x) = 0, x ∈ (0, π), u(0) = u(π) = 0

has no sign-changing solution for all a(x) ∈ L1(0, π) satisfying 0 ≤ a(x) ≤
γ(x).

In [10], the authors investigated BVP(3) assuming that k = 1 and
(H2) there are constants a, λ, µ ≥ 0, λµ < 1, b ∈ L1(0, π) such that

for a.e. x ∈ (0, π) and all u ≥ 0 g(x, u) ≤ a|u|λ + b(x) holds and for a.e.
x ∈ (0, π) and all u ≤ 0 g(x, u) ≥ −a|u|µ−b(x) holds and other assumptions
((H2) allows g to grow superlinearly in u in one of the directions u → ∞
and u → −∞, and grow sublinearly in the other.)

Concerning the solvability of BVP(3), based upon above mentioned pa-
pers, the assumptions imposed on g are either Landesman-Lazer conditions
or growth conditions, there has been no paper concerned with the solvability
of BVP(1) when G grows superlinearly or sublinearly.

In [9], the solvability of BVP
{

x′′′(t) + k2x′(t) + g(x, x′) = p(t), t ∈ (0, π),
x′(0) = x′(π) = x(η) = 0 (4)

was studied, where 0 < η < π, g is bounded and continuous. BVP(4) when
k = 1 was also studied in [11] by Nagle and Pothoven under the condition
that g is bounded on one side.

In [12], Gupta studied the existence of solutions to boundary value prob-
lems similar to (4) of the type

{
x′′′(t) + π2x′(t) + g(t, x, x′, x′′) = p(t), t ∈ (0, π),
x′(0) = x′(1) = x(η) = 0, 0 ≤ η ≤ 1 (5)

under the conditions that ∫ 1

0
p(t) sin πtdt = 0,

g(t, u, v, w)v ≥ 0, for t ∈ [0, 1], u, v, w ∈ R,

and

lim
|v|→∞

g(t, u, v, w)
v

< 3π2 uniformly for (t, u, v) ∈ [0, 1]×R2.

Take the transformation x(t) =
∫ t
η y(s)ds, BVP(4) is equivalent to

{
y′′(t) + k2y(t) + g

(∫ t
η y(r)dr, y(t)

)
= p(t), t ∈ (0, π),

y(0) = y(π),
(6)

which is a special case of BVP(1).
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Boundary value problem for the fourth-order differential equation
{

y′′′′(t) = f (t, y(t), y′′(t)) , t ∈ (0, π),
y(0) = y(π) = y′′(0) = y′′(π) = 0 (7)

has extensively applications and was studied by many authors, see [1,2,13-
16] and references therein. Let y′′(t) = x(t), then it becomes

{
x′′(t) = f

(
t,

∫ π
0 G(t, s)x(s)ds, x(t)

)
, t ∈ (0, π),

x(0) = x(π) = 0,
(∗)

which is a special case of BVP(1), where G(t, s) is Green’s function for the
problem y′′(t) = 0, y(0) = y(π) = 0. Obtaining solutions of problem (7)
is equivalent to obtaining solutions of the boundary value problem (∗) for
second order integro-differential equations.

The present work is also motivated by the fact that a boundary value prob-
lem models various dynamical systems, see [13]. BVP(1) describes a vast
spectrum of nonlinear phenomena such as gas diffusion through porous me-
dia, nonlinear diffusion generated by nonlinear sources, thermal self-ignition
of a chemically active mixture of gases in a vessel, catalysis theory, chemi-
cally reacting systems, adiabatic tubular reactor processes, as well as con-
centration in chemical or biological problems; see [13,18,19] and references
therein for examples. It is important to study the solvability of BVP(1).

The purpose of this paper is to establish existence results for solutions of
BVP(1). We allow G to grow linearly, superlinearly or sublinearly, which is
weaker or different from conditions in known results. To compare with the
conditions of known theorems mentioned above, i.e. (H3) and (H4) in next
section to (H1), (G), (G1), (G2) and (H2) in this section, the assumptions in
the results in this paper are even new when G(t, x0, y0, x1, . . . , xm) becomes
the special form G(t, x1), for example problem (3), G(t, x0, y0), for example
problem (6) and problem (∗). On the other hand, the results in this paper
show us that they are un-improvable, see Remarks in Section 3.

The outline of the paper is as follows. In Section 2, we prove the main
theorems in this paper. Examples and remarks will be given in Section 3.

2. Main Results

In this section, we establish existence results for solutions of BVP(1).

Lemma 2.1. [3] Let X and Y be Banach spaces. Suppose L : D(L) ⊂ X →
Y is a Fredholm operator of index zero with KerL = {0}, N : X → Y is
L−compact on each open bounded subset of X. If 0 ∈ Ω ⊂ X is an open
bounded subset and Lx 6= λNx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1], then
there exists at least one x ∈ Ω such that Lx = Nx.
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Choose X = C0[−τ, π + δ], Y = C0[−τ, π + δ]. Let X be endowed with
the norm ||x|| = supt∈[−τ,π+δ] |x(t| for x ∈ X and ||y|| = supt∈[−τ,π+δ] |x(t|
for y ∈ Y , then X and Y are Banach spaces. Let

DomL =
{

x ∈ X : x′, x′′ ∈ C [0, π] with x(0) = x(π) = 0
}

.

Define the linear operator L : DomL ∩X → Y by

Lx(t) =





x′′(t) + lx′(t) for t ∈ [0, π],
x(t) for t ∈ [−τ, 0],
x(t) for t ∈ [π, π + δ],

x ∈ DomL.

Define the nonlinear operator N : X → Y by

Nx(t) =





−kx(t)−G(t,
∫ π
0 h(t, s)x(s)ds, x(t), x(t− τ1(t)),

. . . , x(t− τm(t))) + p(t), t ∈ [0, π],
φ(t), t ∈ [−τ, 0],
ψ(t), t ∈ [π, π + δ]

for x ∈ X. It is easy to prove that
(i) x(t) is a solution of BVP(1) if and only if x is a solution of the

operator equation Lx = Nx in DomL and
(ii) KerL = {x(t) ≡ 0, t ∈ [−τ, π + δ]};
(iii) L is a Fredholm operator of index zero, N is L-compact on any open

bounded subset of X.
Suppose that (H3) there are continuous functions g and h such that

G(t, x0, y0, x1, . . . , xm) = g(t, x0, y0, x1, . . . , xm) + h(t, x0, y0, x1, . . . , xm),

and there are numbers β > 0 and θ ≥ 1 such that

g(t, x0, y0, x1, . . . , xm)y0 ≤ −β|y0|θ+1,

and there are continuous functions h1, h2, gi, q1, q2, pi, e such that

|h(t, x0, y0, x1, . . . , xm)| ≤ h1(t, x0) + h2(t, y0) +
m∑

i=1

gi(t, xi) + e(t)

with

lim
x→∞

|h1(t, x)|
|x|θ = q1(t) uniformly for t ∈ [0, π],

lim
x→∞

|h2(t, x)|
|x|θ = q2(t) uniformly for t ∈ [0, π],

and

lim
x→∞

|gi(t, x)|
|x|θ = pi(t) uniformly for t ∈ [0, π], i = 1, . . . , m;



196 YUJI LIU

(H4) there are continuous functions h1, h2, gi, and functions q1, q2, pi, e ∈
L1(0, π), and number 0 < θ < 1 such that

|G(t, x0, y0, x1, . . . , xm)| ≤ h1(t, x0) + h2(t, y0) +
m∑

i=1

gi(t, xi) + e(t)

and

lim
x→∞

|h1(t, x)|
|x|θ = q1(t) uniformly for t ∈ [0, π],

lim
x→∞

|h2(t, x)|
|x|θ = q2(t) uniformly for t ∈ [0, π],

and

lim
x→∞

|gi(t, x)|
|x|θ = pi(t) uniformly for t ∈ [0, π], i = 1, . . . ,m

hold.

Theorem 2.1. Let λi = maxt∈[0,π]

∣∣∣ 1
1−τ ′i(µi(t))

∣∣∣, i = 1, . . . ,m. Suppose that
(H3) holds. Then BVP(1) has at least one solution provided

k + ||q1|| max
(t,s)∈[0,π]2

h(t, s)π + ||q2||+
m∑

i=1

||pi||λi < β if θ = 1, (8)

||q1|| max
(t,s)∈[0,π]2

h(t, s)πθ + ||q2||+
m∑

i=1

||pi||λθ
i < β if θ > 1. (9)

Proof. To apply Lemma 2.1, we should define an open bounded subset Ω of
X such that conditions Lemma 2.1 hold. Let

Ω1 = {x ∈ DomL, Lx = λNx for some λ ∈ (0, 1)}.
We prove Ω1 is bounded. For y ∈ Ω1, we get

y′′(t) + ly′(t) = λ

[
− ky(t)−G

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)),

. . . , y(t− τm(t))
)

+ p(t)
]

(10)

and

y(t) = λφ(t), t ∈ [−τ, 0],

y(t) = λψ(t), t ∈ [π, π + δ].
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Hence

∫ π

0
[y′′(t) + ly′(t)]y(t)dt

= λ

∫ π

0

[
− ky(t)−G

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)),

. . . , y(t− τm(t))
)

+ p(t)
]
y(t)dt.

Since y(0) = y(π) = 0, integrating (10) from 0 to π, we get

−
∫ π

0
[y′(t)]2dt = −kλ

∫ π

0
y2(t)dt + λ

∫ π

0
p(t)y(t)dt

− λ

∫ π

0
G

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt.

So

k

∫ π

0
y2(t)dt−

∫ π

0
p(t)y(t)dt

+
∫ π

0
G

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t−τ1(t)), . . . , y(t−τm(t))

)
y(t)dt ≥ 0.

We will prove that there is a constant B > 0 such that ||x|| ≤ B. We divide
this into two steps.

Step 1. Prove that there are constants M > 0 such that
∫ π
0 |y(t)|θ+1dt ≤

M . It follows from (H3) that

k

∫ π

0
y2(t)dt

+
∫ π

0
g

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt

+
∫ π

0
h

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt

−
∫ π

0
p(t)y(t)dt ≥ 0.
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Hence (H3) implies that

β

∫ π

0
|y(t)|θ+1dt ≤ k

∫ π

0
y2(t)dt

+
∫ π

0
h

(
t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt

−
∫ π

0
p(t)y(t)dt ≤ k

∫ π

0
y2(t)dt

+
∫ π

0

∣∣∣∣h
(

t,

∫ π

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)∣∣∣∣ |y(t)|dt

+
∫ π

0
|p(t)||y(t)|dt ≤ k

∫ π

0
y2(t)dt

+
∫ π

0

∣∣∣∣h1

(
t,

∫ π

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt +
∫ π

0
|h2(t, y(t))||y(t)|dt

+
m∑

i=1

∫ π

0
|gi(t, y(t− τi(t))|y(t)|dt +

∫ π

0
(|e(t)|+ |p(t)|)|y(t)|dt.

From (8) and (9), choosing ε > 0 so that

β−k−(||q1||+ε) max
(t,s)∈[0,π]2

h(t, s)π−(||q2||+ε)−
m∑

i=1

(||pi||∞+ε)λi > 0 for θ = 1,

(11)
and

β−(||q1||+ε) max
(t,s)∈[0,π]2

h(t, s)πθ−(||q2||+ε)−
m∑

i=0

(||pi||∞+ε)λθ
i > 0 for θ > 1.

(12)
For such ε, there is δ > 0 so that

|gi(t, x)| ≤ (pi(t) + ε)|x|θ for |x| ≥ δ, t ∈ [0, π], i = 1, · · · ,m

and
h1(t, x) ≤ (q1(t) + ε)|x|θ for |x| ≥ δ, t ∈ [0, π],

h2(t, x) ≤ (q2(t) + ε)|x|θ for |x| ≥ δ, t ∈ [0, π].
Denote,

gδ,i = max
t∈[0,π]
|y|≤δ

|gi(t, y)|,

and
hδ,1 = max

t∈[0,π]
|y|≤δ

|h1(t, y)|, hδ,2 = max
t∈[0,π]
|y|≤δ

|h2(t, y)|,
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and for i = 1, . . . , m and

∆1,i = {t : t ∈ [0, π], |y(t− τi(t))| ≤ δ},
∆2,i = {t : t ∈ [0, π], |y(t− τi(t))| > δ},

and

∆′
1 = {t ∈ [0, π],

∣∣∣∣
∫ π

0
h(t, s)y(s)ds

∣∣∣∣ ≤ δ},

∆′
2 = {t ∈ [0, π],

∣∣∣∣
∫ π

0
h(t, s)y(s)ds

∣∣∣∣ > δ},

∆1 = {t ∈ [0, π], |y(t)| ≤ δ}, ∆2 = {t ∈ [0, π], |y(t)| > δ}.
Hence

β

∫ ω

0
|y(s)|θ+1 ds ≤ k

∫ π

0
y2(t)dt

+
∫

∆′1

∣∣∣∣h1

(
t,

∫ π

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt +
∫

∆1

|h2(t, y(t))||y(t)|dt

+
m∑

i=1

∫

∆1,i

|gi(t, y(t− τi(t))||y(t)|dt +
∫ π

0
(|e(t)|+ |p(t)|)|y(t)|dt

+
m∑

i=1

∫

∆2,i

|gi(t, y(t− τi(t))||y(t)|dt +
∫

∆2

|h2(t, y(t))||y(t)|dt

+
∫

∆′2

∣∣∣∣h1

(
t,

∫ π

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt

≤ k

∫ π

0
y2(t)dt +

∫

∆′2

∣∣∣∣h1

(
t,

∫ π

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt

+
∫

∆2

|h2(t, y(t))||y(t)|dt+
m∑

i=1

∫

∆2,i

|gi(t, y(t−τi(t))|y(t)|dt+hδ,1

∫

∆′1
|y(t)|dt

+hδ,2

∫

∆1

|y(t)|dt+
m∑

i=1

gδ,i

∫

∆1,i

|y(t)|dt+(||e||+||p||)
∫ π

0
|y(t)|dt≤ k

∫ π

0
y2(t)dt

+
∫

∆′2

∣∣∣∣h1

(
t,

∫ π

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt +
∫

∆2

|h2(t, y(t))||y(t)|dt

+
m∑

i=1

∫

∆2,i

|gi(t, y(t− τi(t))|y(t)|dt +
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

∫ π

0
|y(t)|dt ≤ k

∫ π

0
y2(t)dt +

∫

∆′2
(q1(t) + ε)

(∫ π

0
h(t, s)|y(s)|ds

)θ

|y(t)|dt
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+
∫

∆2

(q2(t) + ε)|y(t)|θ+1dt +
m∑

i=1

∫

∆1,i

(pi(t) + ε)|y(t− τi(t))|θ|y(t)|dt

+
(

hδ,2 +hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
) ∫ π

0
|y(t)|dt ≤ k

∫ π

0
y2(t)dt+(||q1||+ ε)

max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt

+
m∑

i=1

(||pi||∞ + ε)
(∫ π

0
|y(s− τi(s))|θ+1ds

) θ
θ+1

(∫ π

0
||x(s)|θ+1ds

) θ
θ+1

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)∫ π

0
|y(t)|dt.

Since τ ′i(t) < 1, and µi is the inverse function of τi, we see

∫ π

0
|y(t− τi(t))|θ+1dt =

∫

s∈{t−τi(t), t∈[0,π]u[0,π]

( |y(s)|
1− τ ′i(µi(s))

)θ+1

ds

+
∫

s∈{t−τi(t), t∈[0,π]u[π,π+δ]

( |y(s)|
1− τ ′i(µi(s))

)θ+1

ds

+
∫

s∈{t−τi(t), t∈[0,π]u[−τ,0]

( |y(s)|
1− τ ′i(µi(s))

)θ+1

ds

≤ λθ+1
i

∫ π

0
|y(s)|θ+1ds +

∫ π+δ

π

( |ψ(s)|
1− τ ′i(µi(s))

)θ+1

ds

+
∫ 0

−τ

(
φ(s)|

1− τ ′i(µi(s))

)θ+1

ds =: λθ+1
i

∫ π

0
|x(s)|θ+1ds + Qi.

Hence

β

∫ 1

0
|x(s)|θ+1ds ≤ k

∫ π

0
y2(t)dt + (||q1||+ ε)

· max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt

+
m∑

i=1

(||pi||∞ + ε)
(

λθ+1
i

∫ π

0
|y(s)|θ+1ds + Qi

) θ
θ+1

(∫ π

0
||x(s)|θ+1ds

) θ
θ+1

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

.
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Since limx→0+
(1+x)y−1
(1+y)x = y

1+y < 1 for y > 0, then there is σ > 0 such
that (1 + x)y ≤ 1 + (1 + y)x for 0 ≤ x ≤ σ. Let

I1 =

{
i ∈ {1, . . . , m} :

∫ π

0
|y(t)|θ+1dt ≤ Qi

σλθ+1
i

}
,

I2 =

{
i ∈ {1, . . . , m} :

∫ π

0
|y(t)|θ+1dt >

Qi

σλθ+1
i

}
.

Then

β

∫ 1

0
|x(s)|θ+1ds ≤ k

∫ π

0
y2(t)dt + (||q1||+ ε)

· max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
|y(s)|θ+1ds

) θ
θ+1

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

Qi

λθ+1
i

∫ π
0 |y(t)|θ+1dt

) θ
θ+1

∫ π

0
|y(s)|θ+1ds

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

≤ k

∫ π

0
y2(t)dt + (||q1||+ ε)

· max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
|y(s)|θ+1ds

) θ
θ+1

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

[
1 +

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

∫ π
0 |y(t)|θ+1dt

] ∫ π

0
|y(s)|θ+1ds

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

= k

∫ π

0
y2(t)dt + (||q1||+ ε)

· max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt
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+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
|y(s)|θ+1ds

) θ
θ+1

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

∫ π

0
|y(s)|θ+1ds +

∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

.

If θ = 1, then

(
β − k − (||q1||+ ε) max

(t,s)∈[0,π]2
h(t, s)π − (||q2||+ ε)−

∑

i∈I2

(||pi||∞ + ε)λi

)

·
∫ 1

0
|y(s)|2ds ≤

∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) 1
2
(∫ π

0
||x(s)|2ds

) 1
2

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

1
2

)
Qi

λ2
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

π

(∫ π

0
|y(t)|2dt

) 1
2

.

It follows from (11) that there is an M1 > 0 such that
∫ π
0 |y(t)|2dt ≤ M1.

If θ > 1, then

β

∫ 1

0
|x(s)|θ+1ds ≤ |k|π θ−1

θ+1

(∫ π

0
|y(t)|θ+1dt

) 2
θ+1

+ (||q1||+ ε) max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
||x(s)|θ+1ds

) θ
θ+1

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

∫ π

0
||x(s)|θ+1ds +

∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

.
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Then
(

β − (||q1||+ ε) max
(t,s)∈[0,π]2

h(t, s)πθ − (||q2||+ ε)−
∑

i∈I2

(||pi||∞ + ε)λθ
i

)

·
∫ 1

0
|y(s)|θ+1ds ≤

∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
||x(s)|θ+1ds

) θ
θ+1

+ |k|π θ−1
θ+1

(∫ π

0
|y(t)|θ+1dt

) 2
θ+1

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

.

It follows from (12) that there is an M2 > 0 such that
∫ π
0 |y(t)|θ+1dt ≤ M2.

Hence above discussions imply that there is M > 0 such that
∫ π

0
|y(s)|θ+1ds ≤ M = max{M1,M2}.

Step 2. Prove that there is a constant B > 0 so that ||x|| ≤ B.
Since

∫ π

0
[y′(t)]2dt = λk

∫ π

0
y2(t)dt− λ

∫ π

0
p(t)y(t)dt

+ λ

∫ π

0
G

(
t,

∫ 1

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt

≤ λk

∫ π

0
y2(t)dt− λ

∫ π

0
p(t)y(t)dt− λβ

∫ π

0
|y(t)|θ+1dt

+ λ

∫ π

0
g

(
t,

∫ 1

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt

≤ k

∫ π

0
y2(t)dt +

∫ π

0
|p(t)||y(t)|dt

∫ π

0

∣∣∣∣g
(

t,

∫ 1

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)∣∣∣∣ |y(t)|dt

≤ k

∫ π

0
y2(t)dt +

∫ π

0

∣∣∣∣h1

(
t,

∫ π

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt

+
∫ π

0
|h2(t, y(t))||y(t)|dt+

m∑

i=1

∫ π

0
|gi(t, y(t− τi(t))|y(t)|dt+

∫ π

0
|e(t)||y(t)|dt.
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Similar to the proof of that of Step 1, we get
∫ π

0
[y′(t)]2dt ≤ k

∫ π

0
y2(t)dt + (||q1||+ ε) max

(t,s)∈[0,π]2
h(t, s)πθ

∫ π

0
|y(s)|θ+1ds

+ (||q2||+ ε)
∫ π

0
|y(t)|θ+1dt

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
|y(s)|θ+1ds

) θ
θ+1

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

∫ π

0
|y(s)|θ+1ds

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

+ ||e||πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

.

It follows from
∫ π
0 |y(t)|θ+1dt ≤ M that there is M3 > 0 such that∫ π

0 [y′(t)]2dt ≤ M3. For each t ∈ [0, π], we get

1
2
[y(t)]2 =

∫ t

0
y(s)y′(s)ds =

∣∣∣∣
∫ t

0
y(s)y′(s)ds

∣∣∣∣ ≤
∫ π

0
|y(s)||y′(s)|ds

≤
(∫ π

0
|y(t)|2dt

) 1
2
(∫ π

0
|y′(t)|2dt

) 1
2

≤
(∫ π

0
|y(t)|2dt

) 1
2

M
1
2
3

≤




M
1
2
1 M

1
2
3 , θ = 1,[

π
θ−1
θ+1

(∫ π
0 |y(t)|θ+1dt

) 2
θ+1

] 1
2
M

1
2
3 , θ > 1

≤





M
1
2
1 M

1
2
3 , θ = 1,[

π
θ−1
θ+1 M

2
θ+1

2

] 1
2

M
1
2
3 , θ > 1.

It follows that there is a constant B > 0 such that supt∈[0,π] |y(t)| ≤ B. It
follows that

||y|| ≤ max
{

B, max
t∈[−τ,0]

|φ(t)|, max
t∈[π,π+δ]

|ψ(t)|
}

for all x ∈ Ω1.

Then Ω1 is bounded.
Let Ω ⊇ Ω1 be a bounded open subset of X centered at zero. It is easy

to see that Lx 6= λNx for λ ∈ (0, 1] and x ∈ D(L)
⋂

∂Ω. It follows from
Lemma 2.1 that Lx = Nx has at least one solution x in Ω. Then x is a
solution of BVP(1). ¤
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Theorem 2.2. Suppose that (H4) holds. Then BVP(1) has at least one
solution if |k| < 1.

Proof. Similar to that of the proof of Theorem 2.1, we get (10). It follows
that

∫ π

0
[y′(t)]2dt = λ

(
k

∫ π

0
[y(t)]2dt

+
∫ π

0
G

(
t,

∫ 1

0
h(t, s)y(s)ds, y(t), y(t− τ1(t)), . . . , y(t− τm(t))

)
y(t)dt

−
∫ π

0
p(t)y(t)dt

)
.

Let

y1(t) =

{
y(t), t ∈ [0, π],
−y(t), t ∈ −π, 0].

Suppose

y1(t) =
∞∑

n=1

an sinnt,

then

y′1(t) =
∞∑

n=1

nan cosnt.

It is easy to see that
∫ π
−π y1(t)dt = 0. It follows from the Parseval equality,∫ π

−π[y(t)]2dt=
∑∞

n=1 |an|2 and
∫ π
−π[y′(t)]2dt=

∑∞
n=1 n2|an|2, that

∫ π
0 [y(t)]2dt

≤ ∫ π
0 [y′(t)]2dt, and the equality holds if and only if y(t) = c sin t, see [17].

Hence
∫ π

0
[y′(t)]2dt ≤ |k|

∫ π

0
[y(t)]2dt +

∫ π

0

∣∣∣∣h1

(
t,

∫ 1

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt

+
∫ π

0
|h2(t, y(t))||y(t)dt+

m∑

i=1

∫ π

0
|gi(t, y(t− τi(t))||y(t)dt+

∫ π

0
|e(t)||y(t)|dt

+ ||p||
∫ π

0
|y(t)|dt ≤ |k|

∫ π

0
[y′(t)]2dt

+
∫ π

0

∣∣∣∣h1

(
t,

∫ 1

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt +
∫ π

0
|h2(t, y(t))||y(t)dt

+
m∑

i=1

∫ π

0
|gi(t, y(t− τi(t))||y(t)dt + (||e||+ ||p||)

∫ π

0
|y(t)|dt.
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Then

(1− |k|)
∫ π

0
[y′(t)]2dt

≤
∫ π

0

∣∣∣∣h1

(
t,

∫ 1

0
h(t, s)y(s)ds

)∣∣∣∣ |y(t)|dt +
∫ π

0
|h2(t, y(t))||y(t)|dt

+
m∑

i=1

∫ π

0
|gi(t, y(t− τi(t))||y(t)|dt + (||e||+ ||p||)

∫ π

0
|y(t)|dt.

Now, using the notations defined in the proof of Theorem 2.1, the methods
used in the proof of Theorem 2.1, we get

(1− |k|)
∫ π

0
[y′(t)]2dt

≤ (||q1||+ ε) max
(t,s)∈[0,π]2

h(t, s)πθ

∫ π

0
|y(s)|θ+1ds + (||q2||+ ε)

∫ π

0
|y(t)|θ+1dt

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

(∫ π

0
|y(s)|θ+1ds

) θ
θ+1

+
∑

i∈I2

λθ
i (||pi||∞+ε)

∫ π

0
|y(s)|θ+1ds+

∑

i∈I2

λθ
i (||pi||∞+ε)

(
1+

θ

θ + 1

)
Qi

λθ+1
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||bigg)πθ

(∫ π

0
|y(t)|θ+1dt

) 1
θ+1

≤ (||q1||+ ε) max
(t,s)∈[0,π]2

h(t, s)πθπ
1−θ
2

(∫ π

0
|y(s)|2ds

) θ+1
2

+ (||q2||+ ε)π
1−θ
2

(∫ π

0
|y(s)|2ds

) θ+1
2

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

π
θ(1−θ)
2(θ+1)

(∫ π

0
|y(s)|2ds

) θ
2

+
∑

i∈I2

λθ
i (||pi||∞ + ε)π

1−θ
2

(∫ π

0
|y(s)|2ds

) θ+1
2

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθπ
1−θ

2(θ+1)

(∫ π

0
|y(s)|2ds

) 1
2
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≤ (||q1||+ ε) max
(t,s)∈[0,π]2

h(t, s)πθπ
1−θ
2

(∫ π

0
|y′(s)|2ds

) θ+1
2

+ (||q2||+ ε)π
1−θ
2

(∫ π

0
|y′(s)|2ds

) θ+1
2

+
∑

i∈I1

(||pi||∞ + ε)
(

Qi

σ
+ Qi

) θ
θ+1

π
θ(1−θ)
2(θ+1)

(∫ π

0
|y′(s)|2ds

) θ
2

+
∑

i∈I2

λθ
i (||pi||∞ + ε)π

1−θ
2

(∫ π

0
|y′(s)|2ds

) θ+1
2

+
∑

i∈I2

λθ
i (||pi||∞ + ε)

(
1 +

θ

θ + 1

)
Qi

λθ+1
i

+
(

hδ,2 + hδ,1 +
m∑

i=1

gδ,i + ||e||+ ||p||
)

πθπ
1−θ

2(θ+1)

(∫ π

0
|y′(s)|2ds

) 1
2

.

It follows from |k| < 1 that there is M > 0 such that
∫ π
0 [y′(t)]2dt ≤ M . One

sees that

|y(t)| =
∣∣∣∣
∫ t

0
y′(s)ds

∣∣∣∣ ≤
∫ π

0
|y′(t)|dt ≤ π

1
2

(∫ π

0
[y′(t)]2dt

) 1
2

≤ π
1
2 M

1
2 .

Hence there exists a constant B > 0 such that maxt∈[0,π] |y(t)| ≤ B. Then

||y|| = max
t∈[−τ,π+δ]

|y(t)| ≤ max
{

B, max
t∈[−τ,0]

|φ(t)|, max
t∈[π,π+δ]

|ψ(t)|
}

for all x ∈ Ω1. Then Ω1 is bounded. The remainder of the proof is similar
to that of the proof of Theorem 2.1 and is omitted. ¤

3. Examples

In this section, we present examples of equations, which can not be solved
by known theorems in [4-8,10], to illustrate the main result in Section 2.

Example 3.1. Consider the following problem for delay differential equa-
tion




x′′(t) + lx′(t) + kx(t) =
∑2n

i=1 ai[x(t)]i + a0[x(t)]2n+1

+
∑m

i=1 pi(t)
[
x

(
2i−1
2i t

)]2n+1 + p(t), t ∈ (0, π),
x(0) = x(π) = 0,
x(t) = φ(t), t ∈ [−1/2, 0], φ(0) = 0,

(13)

where n ≥ 0 an integer, l, k ∈ R, ai ∈ R for i = 1, . . . , 2n, a0 < 0, t− τi(t) =
2i−1
2i t, and pi and p are continuous functions. Corresponding to BVP(1), we
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get

−G(t, x0, y0, x1, . . . , xm) = a0y
2n+1
0 +

2n∑

i=1

aiy
i
0 +

m∑

i=1

pi(t)x2k+1
i + p(t),

−g(t, x0, y0, x1, . . . , xm) = a0y
2n+1
0 ,

−h(t, x0, y0, x1, . . . , xm) =
2n∑

i=1

aiy
i
0 +

m∑

i=1

pi(t)x2k+1
i + p(t),

h1(t, x0) = 0,

h2(t, y0) =
2n∑

i=1

aiy
i
0,

gi(t, xi) = pi(t)x2n+1
i ,

λi = max
t∈[0,π]

∣∣∣∣
1

1− τ ′i(µi(t))

∣∣∣∣ =
2i

2i− 1
.

We see that q2(t) ≡ 0. It follows from Theorem 2.1 that, for each p, BVP(15)
has at least one solution if n = 0 and

k +
m∑

i=1

2i

2i− 1
||pi|| < −a0,

and n > 0 and
m∑

i=1

(
2i

2i− 1

)2n+1

||pi|| < −a0.

Example 3.2. Consider the following problem for the delay differential
equation




x′′(t) + lx′(t) + kx(t) = p0(t)[x(t)]θ

+
∑m

i=1 pi(t)
[
x

(
2i−1
2i t

)]θ + p(t), t ∈ (0, π),
x(0) = x(π) = 0,
x(t) = φ(t), t ∈ [−1/2, 0], φ(0) = 0,

(14)

where l, k ∈ R, t − τi(t) = 2i−1
2i t, and pi are continuous functions as in

problem (1). It follows from Theorem 2.2 that problem (16) has at least one
solution if θ ∈ [0, 1) and |k| < 1.

Remark 3.1. In Example 3.1, G may grow superlinearly and linearly. In
Example 3.2, G grows sublinearly.

Remark 3.2. For BVP(2), we have k = 1. BVP(2) has no solution. In
fact, if (2) has a solution x, then

x′′(t) + lx′(t) + x(t) = sin t, t ∈ (0, π), x(0) = x(π) = 0.
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If l = 0, we get∫ π

0
x′′(t) sin t dt +

∫ π

0
x(t) sin t dt =

∫ π

0
[sin t]2dt.

It follows that
∫ π
0 [sin t]2dt = 0, a contradiction.

If l 6= 0, we get∫ π

0
x′′(t)x(t)dt + l

∫ π

0
x′(t)x(t)dt +

∫ π

0
[x(t)]2dt =

∫ π

0
x(t) sin t dt,

∫ π

0
x′′(t) cos t dt + l

∫ π

0
x′(t) cos t dt +

∫ π

0
x(t) cos t dt =

∫ π

0
sin t cos t dt.

It follows that

−
∫ π

0
[x′(t)]2dt +

∫ π

0
[x(t)]2dt

=
∫ π

0
x(t) sin t dt, l

∫ π

0
x(t) sin t dt =

∫ π

0
sin t cos t dt.

Since x(t) 6≡ c sin t we have
∫ π
0 [x′(t)]2dt >

∫ π
0 [x(t)]2dt, we get

∫ π
0 x(t) sin tdt

< 0. l 6= 0 implies
∫ π
0 sin t cos tdt 6= 0, a contradiction. One sees that

conditions (H4) and |k| < 1 in Theorem 2.2 are un-improvable sufficient
conditions.

References

[1] R. P. Agarwal, Focal Boundary Value Problems for Differential and Difference Equa-
tions, Kluwer, Dordrecht, 1998.

[2] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive Solutions of Differential,
Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.

[3] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
[4] C. P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying

a sign condition, J. Math. Anal. Appl., 129 (1988), 231–242.
[5] Z. Han, An extension of Duo’s theorem and its applications, Northeast. Math. J., 7

(1991), 480–485.
[6] C. Kuo, Solvability of a nonlinear two-point boundary value problem at resonance, J.

Differ. Equations, 140 (1997), 1–9.
[7] C. W. Ha and C. Kuo, Solvability of a nonlinear two-point boundary value problem

at resonance (II), Topol. Methods Nonlinear Anal., 11 (1998), 159–168.
[8] E. N. Dancer and C. P. Gupta, A Lyapunov-type result with application to a Dirichlet-

type two-point boundary value problem at resonance, Nonlinear Anal., 22 ( 1994),
305–318.

[9] R. Ma, Multiplicity results for a third order boundary value problem at resonance,
Nonlinear Anal., Theory Methods Appl,, 32 (1998), 493–499.

[10] C. Kuo, Solvability of a nonlinear two-point boundary value problem at resonance (II),
Nonlinear Anal., Theory Methods Appl., 54 (2003), 565–573.



210 YUJI LIU

[11] P. K. Nagle and K. L. Pothoven, On a third order nonlineqar boundary value problem
at resonance, J. Math. Anal. Appl., 195 (1995), 149–159.

[12] C. P. Gupta, On a third order boundary value problem at resonance, Differ. Integral
Equ., 2 (1989), 1–12.

[13] C. J. Chyan and J. Henderson, Positive solutions of 2mth-order boundary value prob-
lems, Appl. Math. Lett., 15 (2002), 767–774.

[14] Y. Liu and W. Ge, Double positive solutions of fourth-order nonlinear boundary value
problems, Appl. Anal., 82(4)(2003), 369–380.

[15] R. Ma and H. Y. Wang, On the existence of positive solutions of fourth-order ordinary
differential equations, Appl. Anal. 59 (1995), 225–231.

[16] C. P. Gupta, Existence and uniqueness theorem for a bending of an elastic beam
equation, Appl. Anal., 26 (1988), 289–340.

[17] E. F. Beckenbach and R. Bellman, Inequalities, Erg. Math. N. F. 30, Springer, 1961,
p.p. 177–179.

[18] D. S. Cohen, Multiple stable solutions nonlinear boundary value problems arising in
chemical reactor theory, SIAM J. Appl. Math., 20 (1971), 1–13.

[19] E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a
parameter is large, J. Differ. Equations, 37 (1980), 404–437.

[20] Z. Han, Solvability of nonlinear ordinary differential equation when its associated
linear equation has no nontrivial or sign-changing solution, Taiwanese J. Math. 8
(2004), 503–513.

[21] A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary
value problems for nonlinear second order ordinary differential equations, Proc. R.
Soc. Edinb., 112A (1989), 145–153.

[22] I. Iannacci and M. N. Nakashama, Nonlinear two-point boundary value problems at
resonance without Landesman-Lazer conditions, Proc. Amer. Math. Soc., 106 (1989),
943–952.

(Received: August 23, 2008) Department of Mathematics
(Revised: January 18, 2009) Hunan Institute of Science and Technology

Yueyang 414000, P.R. China

Department of Mathematics
Guangdong University of Business Studies,
Guangzhou 510000, P.R. China
E–mail: liuyuji888@sohu.com


