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THE VALUE OF CERTAIN COMBINATORICS SUM

RAMIZ VUGDALIĆ

Dedicated to Professor Harry Miller on the occasion of his 70th birthday

Abstract. In this paper we analyze the values and the properties of
the function S(n, l) :=

∑n
k=0(−1)k

(
n
k

)
(n−k)l (n, l ∈ N∪{0}), for n < l.

At first, we obtain two recurrence relations. Namely, we prove that for
every n ∈ N∪{0} and every l ∈ N such that l > n, we have

S(n + 1, l) =

l−n∑

k=1

(
l

k

)
S(n, l − k),

and also, for every n ∈ N∪{0}and every l ∈ N, we have

S(n + 1, l) = (n + 1)S(n, l − 1) + (n + 1)S(n + 1, l − 1).

Further, we conclude that for every n ≥ 2 and every l ≥ n the following
representation formula holds

S(n, l) =

l−(n−1)∑

k1=1

(
l

k1

)
l−k1−(n−2)∑

k2=1

(
l − k1

k2

)

·
l−k1−k2−(n−3)∑

k3=1

(
l − k1 − k2

k3

)
· · ·

l−
n−2∑
i=1

ki−1

∑

kn−1=1

(
l −

n−2∑
i=1

ki

kn−1

)
.

We obtain an explicit formula for the calculation S(n, l), especially for
l = n + 1, . . . , n + 5, and later we give a general result.

1. Preliminaries

Define the function S of two nonnegative integers as

S(n, l) :=
n∑

k=0

(−1)k

(
n

k

)
(n− k)l (n, l ∈ N∪{0}).
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Especially, we define that S(0, 0) := 1. It is a known fact that for n ∈ N
and l ∈ {0, 1, . . . , n−1}, S(n, l) = 0. Namely, by differentiating the function
(1 + x)n =

∑n
k=0

(
n
k

)
xk with respect to x, we obtain

n(1 + x)n−1 =
n∑

k=0

k

(
n

k

)
xk−1. (R1)

In particular, from (R1) for x = −1, we have that for n ≥ 2
n∑

k=0

(−1)kk

(
n

k

)
= 0.

By differentiating in relation (R1) we obtain

n(n− 1)(1 + x)n−2 =
n∑

k=0

k(k − 1)
(

n

k

)
xk−2. (R2)

From (R2) for x = −1, for n ≥ 3 we have
∑n

k=0(−1)kk(k− 1)
(
n
k

)
= 0. Since∑n

k=0(−1)kk
(
n
k

)
= 0, for n ≥ 3 we have

n∑

k=0

(−1)kk2

(
n

k

)
= 0.

Further, by differentiating of function (1+x)n =
∑n

k=0

(
n
k

)
xk l−times, where

l < n, and using mathematical induction one can easy to prove that
n∑

k=0

(−1)kkl

(
n

k

)
= 0,

for every n ∈ N and l ∈ {0, 1, . . . , n− 1}.
It is known that for every n ∈ N, S(n, n) = n! (for example, see [1], page

28). For n < l, the sum S(n, l) is interesting because in combinatorics it
represents the number of all possible permutations with repetitions of a set
of l elements with n classes ([2], page 216), i.e., for n < l,

S(n, l) =
∑

k1,...,kn∈N
k1+···+kn=l

l!
k1! . . . kn!

= l!
∑

k1,...,kn∈N
k1+···+kn=l

1
k1! . . . kn!

. (R3)

Also, there exists a relationship for the sum S(n, l) using Stirling’s numbers
of the second kind. Namely, for n, l ∈ N, n ≤ l,

S(n, l) = n! · S2(l, n),

where with S2(l, n) we denote Stirling’s numbers of the second kind ([2],
pages 100-101).
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In the following section we give our results about the values of the function
S(n, l) for n < l.

2. Results

Lemma 1. For every n ∈ N∪{0} and every l ∈ N such that l > n, we have

S(n + 1, l) =
l−n∑

k=1

(
l

k

)
S(n, l − k) (1)

Proof. For a fixed n ∈ N∪{0} and l ∈ N, l > n, we have

S(n + 1, l) = (−1)n+1
n+1∑

k=0

(−1)k

(
n + 1

k

)
kl

= (−1)n+1
n+1∑

k=1

(−1)k

[(
n

k

)
+

(
n

k − 1

)]
kl

= (−1)n+1
n+1∑

k=1

(−1)k

(
n

k

)
kl + (−1)n+1

n+1∑

k=1

(−1)k

(
n

k − 1

)
kl

= (−1)n+1
n∑

k=0

(−1)k

(
n

k

)
kl + (−1)n+1

n∑

k=0

(−1)k+1

(
n

k

)
(k + 1)l

= −S(n, l) + (−1)n
n∑

k=0

(−1)k

(
n

k

)

·
[
kl +

(
l

1

)
kl−1 + · · ·+

(
l

l − 1

)
k + 1

]

= −S(n, l) + S(n, l) +
(

l

1

)
S(n, l − 1) + . . .

+
(

l

l − 1

)
S(n, 1) + S(n, 0)

=
l∑

k=1

(
l

k

)
S(n, l − k).

If k ∈ {l − n + 1, . . . , l} , then l − k ∈ {0, . . . , n− 1} , so that for k ∈
{l − n + 1, . . . , l} we have S(n, l − k) = 0. Therefore (1) holds. ¤

Theorem 2. For every n ∈ N∪{0} and every l ∈ N,

S(n + 1, l) = (n + 1)S(n, l − 1) + (n + 1)S(n + 1, l − 1). (2)
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Proof.

S(n + 1, l) = (n + 1)l −
(

n + 1
1

)
nl +

(
n + 1

2

)
(n− 1)l + . . .

+ (−1)n

(
n + 1

n

)
1l

= (n + 1)
[
(n + 1)l−1−

(
n + 1

1

)
nl−1+· · ·+ (−1)n

(
n + 1

n

)
1l−1

]

+ (n + 1)
[(

n + 1
1

)
nl−1 −

(
n + 1

2

)
(n− 1)l−1 + · · ·+ (−1)n−1

(
n + 1

n

)
1l−1

]

−
(

n + 1
1

)
nl +

(
n + 1

2

)
(n− 1)l − · · ·+ (−1)n

(
n + 1

n

)
1l

= (n + 1)S(n + 1, l − 1) + [(n + 1)(n + 1)− n(n + 1)]nl−1

+
[
(n− 1)

(
n + 1

2

)
− (n + 1)

(
n + 1

2

)]
(n− 1)l−1

+ · · ·+
[
(−1)n

(
n + 1

n

)
+ (n + 1)(−1)n−1

(
n + 1

n

)]
1l−1

= (n + 1)S(n + 1, l − 1) +
(

n + 1
1

)
nl−1 − 2

(
n + 1

2

)
(n− 1)l−1

+ · · ·+ (−1)n−1n

(
n + 1

n

)
1l−1.

For every k ∈ {2, . . . , n} we have

k

(
n + 1

k

)
= k

(n + 1)!
k!(n + 1− k)!

= (n + 1)
n!

(k − 1)!(n− (k − 1))!
= (n + 1)

(
n

k − 1

)
.

Therefore, we have further

S(n + 1, l) = (n + 1)S(n + 1, l − 1)

+ (n + 1)
[
nl−1 −

(
n

1

)
(n− 1)l−1 + · · ·+ (−1)n−1

(
n

n− 1

)
1l−1

]

= (n + 1)S(n + 1, l − 1) + (n + 1)S(n, l − 1).

¤
By (1), we obtain for l ≥ 2,

S(2, l) =
l−1∑

k=1

(
l

k

)
S(1, l − k) =

l−1∑

k=1

(
l

k

)
= 2l − 2, (3)
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because S(1, l) = 1 for every l ∈ N. Also, for l ≥ 3,

S(3, l) =
l−2∑

k=1

(
l

k

)
S(2, l − k) =

l−2∑

k=1

(
l

k

) l−k−1∑

i=1

(
l − k

i

)
. (4)

Now, for l ≥ 4 we have

S(4, l) =
l−3∑

k=1

(
l

k

)
S(3, l − k) =

l−3∑

k=1

(
l

k

) l−k−2∑

i=1

(
l − k

i

) l−k−i−1∑

j=1

(
l − k − i

j

)
.

(5)
If we continue this procedure (n− 1)-times, then we obtain the following

result.

Theorem 3. For every n ≥ 2 and every l ≥ n it holds

S(n, l) =
l−(n−1)∑

k1=1

(
l

k1

) l−k1−(n−2)∑

k2=1

(
l − k1

k2

)

·
l−k1−k2−(n−3)∑

k3=1

(
l − k1 − k2

k3

)
· · ·

l−
n−2∑
i=1

ki−1

∑

kn−1=1

(l −
n−2∑
i=1

ki

kn−1

)
. (6)

Example 4. a) By (4) we have

S(3, 5) =
3∑

k=1

(
5
k

) 4−k∑

i=1

(
5− k

i

)

=
(

5
1

)[(
4
1

)
+

(
4
2

)
+

(
4
3

)]
+

(
5
2

)[(
3
1

)
+

(
3
2

)]
+

(
5
3

)(
2
1

)

= 5 · 14 + 10 · 6 + 10 · 2 = 150.

b) By (5) we have

S(4, 6) =
3∑

k=1

(
6
k

) 4−k∑

i=1

(
6− k

i

) 5−k−i∑

j=1

(
6− k − i

j

)

=
(

6
1

)(
5
1

) 3∑

j=1

(
4
j

)
+

(
6
1

)(
5
2

) 2∑

j=1

(
3
j

)
+

(
6
1

)(
5
3

)(
2
1

)

+
(

6
2

)(
4
1

) 2∑

j=1

(
3
j

)
+

(
6
2

)(
4
2

)(
2
1

)
+

(
6
3

)(
3
1

)(
2
1

)

= 30(24 − 2) + 60(23 − 2) + 120 + 60(23 − 2) + 180 + 120 = 1560.
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Proposition 5. For every n ∈ N∪{0}
S(n, n + 1) =

n

2
(n + 1)! (7)

Proof. 1) Obviously, the assertion of the proposition holds for n = 0 and
n = 1. Assume that (7) holds for a fixed n ∈ N. Then, by (2) we have

S(n + 1, n + 2) = (n + 1)S(n, n + 1) + (n + 1)S(n + 1, n + 1)

= (n + 1)
n

2
(n + 1)! + (n + 1)(n + 1)! =

n + 1
2

(n + 2)!

2) By (1) we have

S(n, n + 1) = (n + 1)S(n− 1, n) +
(

n + 1
2

)
S(n− 1, n− 1)

= (n + 1)S(n− 1, n) +
(

n + 1
2

)
(n− 1)!

If we divide the last relation with (n + 1)!, then we obtain

S(n, n + 1)
(n + 1)!

− S(n− 1, n)
n!

=
1
2
.

Put f(n) := S(n,n+1)
(n+1)! . Then we have the equation f(n)− f(n− 1) = 1

2 . If
f(n) = an for some real constant a, then an− a(n− 1) = 1

2 implies a = 1
2 .

Hence, f(n) = S(n,n+1)
(n+1)! = n

2 , i.e. (7) holds. ¤

Now we want to find the formulas for calculation of S(n, n+2) and S(n, n+
3). By (1) and (7), for n ∈ N we have

S(n, n + 2) = (n + 2)S(n− 1, n + 1) +
(

n + 2
2

)
S(n− 1, n)

+
(

n + 2
3

)
S(n− 1, n− 1)

= (n + 2)S(n− 1, n + 1) +
(

n + 2
2

)
n− 1

2
n! +

(
n + 2

3

)
(n− 1)!

If we divide the last relation with (n + 2)! and by putting f(n) := S(n,n+2)
(n+2)! ,

then we have
f(n)− f(n− 1) =

n− 1
4

+
1
6

=
3n− 1

12
.

If we assume that f(n) = an2 + bn for some real constants a and b, then
the equation

an2 + bn− a(n− 1)2 − b(n− 1) =
3n− 1

12
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has a unique solution : a = 3
24 , b = 1

24 . Hence,

S(n, n + 2) =
3n2 + n

24
(n + 2)! (8)

Obviously, relation (8) holds for n = 0, too. By (1), (7) and (8) for n ∈ N
we have

S(n, n + 3) = (n + 3)S(n− 1, n + 2) +
(

n + 3
2

)
S(n− 1, n + 1)

+
(

n + 3
3

)
S(n− 1, n) +

(
n + 3

4

)
S(n− 1, n− 1)

= (n + 3)S(n− 1, n + 2) +
(

n + 3
2

)
3(n− 1)2 + n− 1

24
(n + 1)!

+
(

n + 3
3

)
n− 1

2
n! +

(
n + 3

4

)
(n− 1)!

If we divide the last relation with (n+3)! and by putting f(n) := S(n,n+3)
(n+3)! ,

then we obtain

f(n)− f(n− 1) =
3n2 − 5n + 2

48
+

n− 1
12

+
1
24

=
3n2 − n

48
.

If we assume that f(n) = an3 + bn2 + cn for some real constants a, b and
c, then the equation

an3 + bn2 + cn− a(n− 1)3 − b(n− 1)2 − c(n− 1) =
3n2 − n

48
has a unique solution : a = 1

48 , b = 1
48 , c = 0. Hence,

S(n, n + 3) =
n3 + n2

48
(n + 3)! (9)

Relation (9) holds also for n = 0. In the same manner one can prove that
for every n ∈ N∪{0},

S(n, n + 4) =
15n4 + 30n3 + 5n2 − 2n

5760
(n + 4)! (10)

and

S(n, n + 5) =
9n5 + 30n4 + 15n3 − 6n2

34560
(n + 5)! (11)

Note that each of the formulas (8), (9), (10) and (11) can be proved by
mathematical induction, too.

Remark 6. Using the same procedure one can obtain a formula for S(n, n+
6), S(n, n + 7), and so forth. However, it is hard to find a general formula.
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Theorem 7. For every k ∈ N there exists a polynomial fk(n) = a1n
k + · · ·+

akn with rational coefficients and with property that for every n ∈ N∪{0}
S(n, n + k) = fk(n)(n + k)! (12)

Also, the following holds

k∑

i=1

ai =
1

(k + 1)!
. (13)

Proof. The assertion of the theorem is proved for k = 1, . . . , 5. Note, that
(12) and (13) hold also for k = 0 with f0(n) = 1. Assume that the assertion
of theorem holds for S(n, n + i), i ∈ {1, . . . , k} . By (1), for every n ∈ N we
have

S(n, n + k + 1) =
k+2∑

i=1

(
n + k + 1

i

)
S(n− 1, n + k + 1− i)

= (n + k + 1)S(n− 1, n + k)

+
k+2∑

i=2

(
n + k + 1

i

)
S(n− 1, n + k + 1− i).

If i ∈ {2, . . . , k + 2} ,then n + k + 1 − i ∈ {n− 1, . . . , n + k − 1} , and,
therefore, 0 ≤ (n + k + 1 − i) − (n − 1) ≤ k. By assumption, for every
i ∈ {2, . . . , k + 2} there exists a polynomial of degree (n+k+1−i)−(n−1) =
k + 2− i, such that S(n− 1, n + k + 1− i) = fk+2−i(n− 1) · (n + k + 1− i)!
Now we have further

S(n, n+ k +1)− (n+ k +1)S(n− 1, n+ k) =
k+2∑

i=2

(n + k + 1)!
i!

fk+2−i(n− 1).

If we divide the last relation with (n + k + 1)! and by putting fk+1(n) :=
S(n,n+k+1)
(n+k+1)! , then we obtain

fk+1(n)− fk+1(n− 1) =
k+2∑

i=2

1
i!

fk+2−i(n− 1). (*)

The sum on the right side of (*) is a polynomial of degree k in variable
n. Therefore, there exists a unique polynomial fk+1(n) of degree (k + 1) in
variable n, with rational coefficients, such that the relation (*) is satisfied.
Hence, (12) is satisfied for every k ∈ N. From (12) and S(1, l) = 1, for every
l ∈ N, we conclude that for every k ∈ N, fk(1) = 1

(k+1)! , i.e. (13) holds. ¤
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Example 8. a) By (9) we have
100∑

k=0

(−1)k

(
100
k

)
k103 =

100∑

k=0

(−1)k

(
100
k

)
(100− k)103 = S(100, 103)

=
1003 + 1002

48
· 103!

b) By (11) we have
77∑

k=0

(−1)k

(
77
k

)
k82 = −

77∑

k=0

(−1)k

(
77
k

)
(77− k)82 = −S(77, 82)

= −9 · 775 + 30 · 774 + 15 · 773 − 6 · 772

34560
· 82!

Remark 9. From (R3) and (12) we conclude that for every k ∈ N the
polynomial fk(n) equals

fk(n) =
∑

k1,...,kn∈N
k1+···+kn=n+k

1
k1! . . . kn!

.
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