THE VALUE OF CERTAIN COMBINATORICS SUM

RAMIZ VUGDALIĆ

Dedicated to Professor Harry Miller on the occasion of his 70th birthday

ABSTRACT. In this paper we analyze the values and the properties of the function $S(n,l) := \sum_{k=0}^{n} (-1)^{k} {n \choose k} (n-k)^{l}$ $(n, l \in \mathbb{N} \cup \{0\})$, for n < l. At first, we obtain two recurrence relations. Namely, we prove that for every $n \in \mathbb{N} \cup \{0\}$ and every $l \in \mathbb{N}$ such that l > n, we have

$$S(n+1,l) = \sum_{k=1}^{l=n} {l \choose k} S(n,l-k),$$

and also, for every $n \in \mathbb{N} \cup \{0\}$ and every $l \in \mathbb{N}$, we have

$$S(n+1,l) = (n+1)S(n,l-1) + (n+1)S(n+1,l-1).$$

Further, we conclude that for every $n \geq 2$ and every $l \geq n$ the following representation formula holds

$$S(n,l) = \sum_{k_1=1}^{l-(n-1)} {l \choose k_1} \sum_{k_2=1}^{l-k_1-(n-2)} {l-k_1 \choose k_2}$$
$$\cdot \sum_{k_3=1}^{l-k_1-k_2-(n-3)} {l-k_1-k_2 \choose k_3} \cdots \sum_{k_{n-1}=1}^{l-\sum_{i=1}^{n-2} k_i-1} {l-\sum_{i=1}^{n-2} k_i \choose k_{n-1}}.$$

We obtain an explicit formula for the calculation S(n, l), especially for l = n + 1, ..., n + 5, and later we give a general result.

1. Preliminaries

Define the function S of two nonnegative integers as

$$S(n,l) := \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^l \ (n,l \in \mathbb{N} \cup \{0\}).$$

2000 Mathematics Subject Classification. 40B05, 11Y55, 05A10.

Key words and phrases. Sum, function of two nonnegative integers, recurrence relations, representations formulas, Stirling's numbers of the second kind, number of all possible permutations with repetitions.

Especially, we define that S(0,0) := 1. It is a known fact that for $n \in \mathbb{N}$ and $l \in \{0, 1, \ldots, n-1\}$, S(n, l) = 0. Namely, by differentiating the function $(1+x)^n = \sum_{k=0}^n {n \choose k} x^k$ with respect to x, we obtain

$$n(1+x)^{n-1} = \sum_{k=0}^{n} k \binom{n}{k} x^{k-1}.$$
 (R1)

In particular, from (R1) for x = -1, we have that for $n \ge 2$

$$\sum_{k=0}^{n} (-1)^k k \binom{n}{k} = 0$$

By differentiating in relation (R1) we obtain

$$n(n-1)(1+x)^{n-2} = \sum_{k=0}^{n} k(k-1) \binom{n}{k} x^{k-2}.$$
 (R2)

From (R2) for x = -1, for $n \ge 3$ we have $\sum_{k=0}^{n} (-1)^k k(k-1) {n \choose k} = 0$. Since $\sum_{k=0}^{n} (-1)^k k {n \choose k} = 0$, for $n \ge 3$ we have

$$\sum_{k=0}^{n} (-1)^{k} k^{2} \binom{n}{k} = 0$$

Further, by differentiating of function $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k l$ -times, where l < n, and using mathematical induction one can easy to prove that

$$\sum_{k=0}^{n} (-1)^k k^l \binom{n}{k} = 0,$$

for every $n \in \mathbb{N}$ and $l \in \{0, 1, \dots, n-1\}$.

It is known that for every $n \in \mathbb{N}$, S(n, n) = n! (for example, see [1], page 28). For n < l, the sum S(n, l) is interesting because in combinatorics it represents the number of all possible permutations with repetitions of a set of l elements with n classes ([2], page 216), i.e., for n < l,

$$S(n,l) = \sum_{\substack{k_1,\dots,k_n \in \mathbb{N} \\ k_1 + \dots + k_n = l}} \frac{l!}{k_1!\dots k_n!} = l! \sum_{\substack{k_1,\dots,k_n \in \mathbb{N} \\ k_1 + \dots + k_n = l}} \frac{1}{k_1!\dots k_n!}.$$
 (R3)

Also, there exists a relationship for the sum S(n, l) using Stirling's numbers of the second kind. Namely, for $n, l \in \mathbb{N}$, $n \leq l$,

$$S(n,l) = n! \cdot S_2(l,n),$$

where with $S_2(l, n)$ we denote Stirling's numbers of the second kind ([2], pages 100-101).

In the following section we give our results about the values of the function S(n, l) for n < l.

2. Results

Lemma 1. For every $n \in \mathbb{N} \cup \{0\}$ and every $l \in \mathbb{N}$ such that l > n, we have

$$S(n+1,l) = \sum_{k=1}^{l-n} \binom{l}{k} S(n,l-k)$$
(1)

Proof. For a fixed $n \in \mathbb{N} \cup \{0\}$ and $l \in \mathbb{N}, l > n$, we have

$$\begin{split} S(n+1,l) &= (-1)^{n+1} \sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} k^l \\ &= (-1)^{n+1} \sum_{k=1}^{n+1} (-1)^k \left[\binom{n}{k} + \binom{n}{k-1} \right] k^l \\ &= (-1)^{n+1} \sum_{k=1}^{n+1} (-1)^k \binom{n}{k} k^l + (-1)^{n+1} \sum_{k=1}^{n+1} (-1)^k \binom{n}{k-1} k^l \\ &= (-1)^{n+1} \sum_{k=0}^{n} (-1)^k \binom{n}{k} k^l + (-1)^{n+1} \sum_{k=0}^{n} (-1)^{k+1} \binom{n}{k} (k+1)^l \\ &= -S(n,l) + (-1)^n \sum_{k=0}^{n} (-1)^k \binom{n}{k} \\ & \cdot \left[k^l + \binom{l}{1} k^{l-1} + \dots + \binom{l}{l-1} k + 1 \right] \\ &= -S(n,l) + S(n,l) + \binom{l}{1} S(n,l-1) + \dots \\ &+ \binom{l}{l-1} S(n,1) + S(n,0) \\ &= \sum_{k=1}^{l} \binom{l}{k} S(n,l-k). \end{split}$$

If $k \in \{l-n+1,\ldots,l\}$, then $l-k \in \{0,\ldots,n-1\}$, so that for $k \in \{l-n+1,\ldots,l\}$ we have S(n,l-k) = 0. Therefore (1) holds.

Theorem 2. For every $n \in \mathbb{N} \cup \{0\}$ and every $l \in \mathbb{N}$,

$$S(n+1,l) = (n+1)S(n,l-1) + (n+1)S(n+1,l-1).$$
(2)

Proof.

$$\begin{split} S(n+1,l) &= (n+1)^l - \binom{n+1}{1} n^l + \binom{n+1}{2} (n-1)^l + \dots \\ &+ (-1)^n \binom{n+1}{n} 1^l \\ &= (n+1) \left[(n+1)^{l-1} - \binom{n+1}{1} n^{l-1} + \dots + (-1)^n \binom{n+1}{n} 1^{l-1} \right] \\ &+ (n+1) \left[\binom{n+1}{1} n^{l-1} - \binom{n+1}{2} (n-1)^{l-1} + \dots + (-1)^{n-1} \binom{n+1}{n} 1^{l-1} \right] \\ &- \binom{n+1}{1} n^l + \binom{n+1}{2} (n-1)^l - \dots + (-1)^n \binom{n+1}{n} 1^l \\ &= (n+1)S(n+1,l-1) + \left[(n+1)(n+1) - n(n+1) \right] n^{l-1} \\ &+ \left[(n-1)\binom{n+1}{2} - (n+1)\binom{n+1}{2} \right] (n-1)^{l-1} \\ &+ \dots + \left[(-1)^n\binom{n+1}{n} + (n+1)(-1)^{n-1}\binom{n+1}{n} \right] 1^{l-1} \\ &= (n+1)S(n+1,l-1) + \binom{n+1}{1} n^{l-1} - 2\binom{n+1}{2} (n-1)^{l-1} \\ &+ \dots + (-1)^{n-1} n\binom{n+1}{n} 1^{l-1}. \end{split}$$

For every $k \in \{2, \ldots, n\}$ we have

$$k\binom{n+1}{k} = k\frac{(n+1)!}{k!(n+1-k)!}$$
$$= (n+1)\frac{n!}{(k-1)!(n-(k-1))!} = (n+1)\binom{n}{k-1}.$$

Therefore, we have further

$$S(n+1,l) = (n+1)S(n+1,l-1) + (n+1)\left[n^{l-1} - \binom{n}{1}(n-1)^{l-1} + \dots + (-1)^{n-1}\binom{n}{n-1}1^{l-1}\right] = (n+1)S(n+1,l-1) + (n+1)S(n,l-1).$$

By (1), we obtain for $l \geq 2$,

$$S(2,l) = \sum_{k=1}^{l-1} \binom{l}{k} S(1,l-k) = \sum_{k=1}^{l-1} \binom{l}{k} = 2^l - 2,$$
(3)

because S(1, l) = 1 for every $l \in \mathbb{N}$. Also, for $l \ge 3$,

$$S(3,l) = \sum_{k=1}^{l-2} \binom{l}{k} S(2,l-k) = \sum_{k=1}^{l-2} \binom{l}{k} \sum_{i=1}^{l-k-1} \binom{l-k}{i}.$$
 (4)

Now, for $l \ge 4$ we have

$$S(4,l) = \sum_{k=1}^{l-3} \binom{l}{k} S(3,l-k) = \sum_{k=1}^{l-3} \binom{l}{k} \sum_{i=1}^{l-k-2} \binom{l-k}{i} \sum_{j=1}^{l-k-i-1} \binom{l-k-i}{j}.$$
(5)

If we continue this procedure (n-1)-times, then we obtain the following result.

Theorem 3. For every $n \ge 2$ and every $l \ge n$ it holds

$$S(n,l) = \sum_{k_1=1}^{l-(n-1)} {l \choose k_1} \sum_{k_2=1}^{l-k_1-(n-2)} {l-k_1 \choose k_2}$$
$$\cdot \sum_{k_3=1}^{l-k_1-k_2-(n-3)} {l-k_1-k_2 \choose k_3} \cdots \sum_{k_{n-1}=1}^{l-\sum_{i=1}^{n-2} k_i-1} {l-\sum_{i=1}^{n-2} k_i \choose k_{n-1}}.$$
 (6)

Example 4. a) By (4) we have

$$S(3,5) = \sum_{k=1}^{3} {5 \choose k} \sum_{i=1}^{4-k} {5-k \choose i}$$

= ${5 \choose 1} \left[{4 \choose 1} + {4 \choose 2} + {4 \choose 3} \right] + {5 \choose 2} \left[{3 \choose 1} + {3 \choose 2} \right] + {5 \choose 3} {2 \choose 1}$
= $5 \cdot 14 + 10 \cdot 6 + 10 \cdot 2 = 150.$

b) By
$$(5)$$
 we have

$$S(4,6) = \sum_{k=1}^{3} \binom{6}{k} \sum_{i=1}^{4-k} \binom{6-k}{i} \sum_{j=1}^{5-k-i} \binom{6-k-i}{j}$$
$$= \binom{6}{1} \binom{5}{1} \sum_{j=1}^{3} \binom{4}{j} + \binom{6}{1} \binom{5}{2} \sum_{j=1}^{2} \binom{3}{j} + \binom{6}{1} \binom{5}{3} \binom{2}{1}$$
$$+ \binom{6}{2} \binom{4}{1} \sum_{j=1}^{2} \binom{3}{j} + \binom{6}{2} \binom{4}{2} \binom{2}{1} + \binom{6}{3} \binom{3}{1} \binom{2}{1}$$
$$= 30(2^{4}-2) + 60(2^{3}-2) + 120 + 60(2^{3}-2) + 180 + 120 = 1560.$$

Proposition 5. For every $n \in \mathbb{N} \cup \{0\}$

$$S(n, n+1) = \frac{n}{2}(n+1)!$$
(7)

Proof. 1) Obviously, the assertion of the proposition holds for n = 0 and n = 1. Assume that (7) holds for a fixed $n \in \mathbb{N}$. Then, by (2) we have

$$S(n+1, n+2) = (n+1)S(n, n+1) + (n+1)S(n+1, n+1)$$
$$= (n+1)\frac{n}{2}(n+1)! + (n+1)(n+1)! = \frac{n+1}{2}(n+2)!$$

2) By (1) we have

$$S(n, n+1) = (n+1)S(n-1, n) + \binom{n+1}{2}S(n-1, n-1)$$
$$= (n+1)S(n-1, n) + \binom{n+1}{2}(n-1)!$$

If we divide the last relation with (n + 1)!, then we obtain

$$\frac{S(n,n+1)}{(n+1)!} - \frac{S(n-1,n)}{n!} = \frac{1}{2}$$

Put $f(n) := \frac{S(n,n+1)}{(n+1)!}$. Then we have the equation $f(n) - f(n-1) = \frac{1}{2}$. If f(n) = an for some real constant a, then $an - a(n-1) = \frac{1}{2}$ implies $a = \frac{1}{2}$. Hence, $f(n) = \frac{S(n,n+1)}{(n+1)!} = \frac{n}{2}$, i.e. (7) holds.

Now we want to find the formulas for calculation of S(n, n+2) and S(n, n+3). By (1) and (7), for $n \in \mathbb{N}$ we have

$$S(n, n+2) = (n+2)S(n-1, n+1) + \binom{n+2}{2}S(n-1, n) + \binom{n+2}{3}S(n-1, n-1)$$
$$= (n+2)S(n-1, n+1) + \binom{n+2}{2}\frac{n-1}{2}n! + \binom{n+2}{3}(n-1)$$

If we divide the last relation with (n+2)! and by putting $f(n) := \frac{S(n,n+2)}{(n+2)!}$, then we have

$$f(n) - f(n-1) = \frac{n-1}{4} + \frac{1}{6} = \frac{3n-1}{12}$$

If we assume that $f(n) = an^2 + bn$ for some real constants a and b, then the equation

$$an^{2} + bn - a(n-1)^{2} - b(n-1) = \frac{3n-1}{12}$$

has a unique solution : $a = \frac{3}{24}, b = \frac{1}{24}$. Hence,

$$S(n, n+2) = \frac{3n^2 + n}{24}(n+2)!$$
(8)

Obviously, relation (8) holds for n = 0, too. By (1), (7) and (8) for $n \in \mathbb{N}$ we have

$$\begin{split} S(n,n+3) &= (n+3)S(n-1,n+2) + \binom{n+3}{2}S(n-1,n+1) \\ &+ \binom{n+3}{3}S(n-1,n) + \binom{n+3}{4}S(n-1,n-1) \\ &= (n+3)S(n-1,n+2) + \binom{n+3}{2}\frac{3(n-1)^2 + n - 1}{24}(n+1)! \\ &+ \binom{n+3}{3}\frac{n-1}{2}n! + \binom{n+3}{4}(n-1)! \end{split}$$

If we divide the last relation with (n+3)! and by putting $f(n) := \frac{S(n,n+3)}{(n+3)!}$, then we obtain

$$f(n) - f(n-1) = \frac{3n^2 - 5n + 2}{48} + \frac{n-1}{12} + \frac{1}{24} = \frac{3n^2 - n}{48}.$$

If we assume that $f(n) = an^3 + bn^2 + cn$ for some real constants a, b and c, then the equation

$$an^{3} + bn^{2} + cn - a(n-1)^{3} - b(n-1)^{2} - c(n-1) = \frac{3n^{2} - n}{48}$$

has a unique solution : $a = \frac{1}{48}, b = \frac{1}{48}, c = 0$. Hence,

$$S(n, n+3) = \frac{n^3 + n^2}{48}(n+3)!$$
(9)

Relation (9) holds also for n = 0. In the same manner one can prove that for every $n \in \mathbb{N} \cup \{0\}$,

$$S(n, n+4) = \frac{15n^4 + 30n^3 + 5n^2 - 2n}{5760}(n+4)!$$
(10)

and

$$S(n, n+5) = \frac{9n^5 + 30n^4 + 15n^3 - 6n^2}{34560}(n+5)!$$
(11)

Note that each of the formulas (8), (9), (10) and (11) can be proved by mathematical induction, too.

Remark 6. Using the same procedure one can obtain a formula for S(n, n+6), S(n, n+7), and so forth. However, it is hard to find a general formula.

Theorem 7. For every $k \in \mathbb{N}$ there exists a polynomial $f_k(n) = a_1 n^k + \cdots + a_k n$ with rational coefficients and with property that for every $n \in \mathbb{N} \cup \{0\}$

$$S(n, n+k) = f_k(n)(n+k)!$$
(12)

Also, the following holds

$$\sum_{i=1}^{k} a_i = \frac{1}{(k+1)!}.$$
(13)

Proof. The assertion of the theorem is proved for k = 1, ..., 5. Note, that (12) and (13) hold also for k = 0 with $f_0(n) = 1$. Assume that the assertion of theorem holds for $S(n, n + i), i \in \{1, ..., k\}$. By (1), for every $n \in \mathbb{N}$ we have

$$S(n, n + k + 1) = \sum_{i=1}^{k+2} \binom{n+k+1}{i} S(n-1, n+k+1-i)$$

= $(n+k+1)S(n-1, n+k)$
+ $\sum_{i=2}^{k+2} \binom{n+k+1}{i} S(n-1, n+k+1-i)$

If $i \in \{2, \ldots, k+2\}$, then $n+k+1-i \in \{n-1, \ldots, n+k-1\}$, and, therefore, $0 \leq (n+k+1-i) - (n-1) \leq k$. By assumption, for every $i \in \{2, \ldots, k+2\}$ there exists a polynomial of degree (n+k+1-i)-(n-1) = k+2-i, such that $S(n-1, n+k+1-i) = f_{k+2-i}(n-1) \cdot (n+k+1-i)!$ Now we have further

$$S(n, n+k+1) - (n+k+1)S(n-1, n+k) = \sum_{i=2}^{k+2} \frac{(n+k+1)!}{i!} f_{k+2-i}(n-1).$$

If we divide the last relation with (n + k + 1)! and by putting $f_{k+1}(n) := \frac{S(n,n+k+1)}{(n+k+1)!}$, then we obtain

$$f_{k+1}(n) - f_{k+1}(n-1) = \sum_{i=2}^{k+2} \frac{1}{i!} f_{k+2-i}(n-1).$$
(*)

The sum on the right side of (*) is a polynomial of degree k in variable n. Therefore, there exists a unique polynomial $f_{k+1}(n)$ of degree (k + 1) in variable n, with rational coefficients, such that the relation (*) is satisfied. Hence, (12) is satisfied for every $k \in \mathbb{N}$. From (12) and S(1, l) = 1, for every $l \in \mathbb{N}$, we conclude that for every $k \in \mathbb{N}$, $f_k(1) = \frac{1}{(k+1)!}$, i.e. (13) holds. \Box

Example 8. a) By (9) we have

$$\sum_{k=0}^{100} (-1)^k \binom{100}{k} k^{103} = \sum_{k=0}^{100} (-1)^k \binom{100}{k} (100-k)^{103} = S(100, 103)$$
$$= \frac{100^3 + 100^2}{48} \cdot 103!$$

b) By (11) we have

$$\sum_{k=0}^{77} (-1)^k \binom{77}{k} k^{82} = -\sum_{k=0}^{77} (-1)^k \binom{77}{k} (77-k)^{82} = -S(77,82)$$
$$= -\frac{9 \cdot 77^5 + 30 \cdot 77^4 + 15 \cdot 77^3 - 6 \cdot 77^2}{34560} \cdot 82!$$

Remark 9. From (R3) and (12) we conclude that for every $k \in \mathbb{N}$ the polynomial $f_k(n)$ equals

$$f_k(n) = \sum_{\substack{k_1, \dots, k_n \in \mathbb{N} \\ k_1 + \dots + k_n = n+k}} \frac{1}{k_1! \dots k_n!}.$$

References

[1] Herbert John Ryser, *Combinatorial Mathematics*, The Mathematical Association of America, 1963.

[2] Darko Veljan, Kombinatorna i diskretna matematika, Zagreb, Algoritam, 2001.

(Received: June 18, 2009)

Department of Mathematics Faculty of Science University of Tuzla Bosnia and Herzegovina E-mail: ramiz.vugdalic@untz.ba