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ON THE LEBESGUE SUMMABILITY OF MULTIPLE
TRIGONOMETRIC SERIES
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Dedicated to Professor Harry 1. Miller on the occasion of his 70th birthday

ABSTRACT. The Lebesgue summability of a trigonometric series is de-
fined in terms of the symmetric differentiability of the sum of the for-
mally integrated trigonometric series in question. In this paper we
extend the theorems of Fatou and Zygmund from single to multiple
trigonometric series.

1. INTRODUCTION: SINGLE TRIGONOMETRIC SERIES

Let {cy, : n € Z} be a sequence of complex numbers, in symbols: {¢,} C C.
We consider the trigonometric series

Z e (1.1)

ne”L

with the symmetric partial sums

sy(x) == Z cne™. N =0,1,2,....
[n|<N

Formal integration of series (1.1) gives
— =L 1.2
cox + Z Cn in (H?), ( )
provided that the series in (1.2) converges. For example, if

> |
n

In>1

2
< 00,
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then the series in (1.2) converges almost everywhere, since it is the Fourier
series of a function in L? and Carleson’s celebrated theorem applies. On the
other hand, the series in (1.2) need not converge at every point even if

cn — 0 as |n| — oo,

while series (1.1) converges everywhere (see details in [3, p. 321]).
We recall that if the function L(z) in (1.2) exists in some neighborhood
of a point x € R and if

AnL(z) = %{L(erh) CLr—h)}—sash—0,  (13)

then series (1.1) is said to be summable to s € C at = € R by the Lebesgue
method of summability, or briefly: it is Lebesgue summable to s. Observe
that ApL(z) is the symmetric difference quotient and its limit, if exists as
h — 0, is the symmetric derivative DL(x) := s.

The following theorem was proved by Zygmund (see [3, p. 322]).

Theorem 1. If {c¢,} C C is such that

) 1
lim N Z Inen| =0, (1.4)

N—oo
In|<N
then the series in (1.2) converges for all x, and we have uniformly in x that
1
}Lir%{AhL(m) —sn(z)} = 0,; where N := [m}, (1.5)
and [-] means the integer part of a real number.

In the other words, a necessary and sufficient condition for series (1.1)
to have a (finite or infinite) limit s at some point z is that it is Lebesgue
summable to the same s at z.

Clearly, condition (1.4) is satisfied if

ney, — 0 as |n| — oo;

and in this special case Theorem 1 was proved by Fatou [1].

For references in Section 5, we present the representation of the difference
between the braces in (1.5) in terms of the coefficient sequence {c,}. By
(1.2) and (1.3), we have

inxsjnnh inT
ApL(z) — sy(z) = Z cne = Z Cne

n
n|>1 1<|n|<N

- sin nh . sinnh
_ Z cn eine (W - 1) + Z Cnezn;t - (16)
1<|n|<N In|>N
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2. KNOWN RESULTS: DOUBLE TRIGONOMETRIC SERIES

Let {cny.ny 1 (n1,n2) € Z?} be a double sequence of complex numbers, in
symbols: {cn, n,} € C. We consider the double trigonometric series

+
§ § Cnhng ”L TL1:El nzwg) (21)
N1EZ no€Z
with the symmetric rectangular partial sums
Z nix nax
SNy,N, (1, T2) § 5 Cny g €MTIEM2E2) NG Ny = 0,1
[n1|<N1 [n2|<N2

Formal integration of series (2.1) with respect to both 1 and zy gives

zn1a:1 zngazg

€0,021T2 + T2 E Cny,0 + 21 E Cony———
In1|>1 [n2|>1

et(niz1+nas)

+ Z Z Crine— 5 =: L(z1,22), (2.2)

)
2nin
[n1]>1 |na|>1 1

provided that each of the series in (2.2) converges.

Motivated by the definition of Lebesgue summability of series (1.1) in
Section 1, the double series (2.1) is said to be Lebesgue summable to s € C
at a point (x1, 1) € R?if L(-,-) exists in some neighborhood of (x1,x3) and
if

Ay o L1, 2) := ———{L(x1 + h1, 2 + h2) — L(z1 — h1, 22 + h)

4h ho
— L(xl + hi,x0 — hg) —i—L(CEl —hi,z9 — hg)} — s as hi,ho — 0. (23)

We note that Ay, p,L(21,22) may be considered as a symmetric difference
quotient and its limit, if exists as hi, hy — 0 independently of one another,
may be called the symmetric derivative DL(x1,x2) := s.

The following extension of Theorem 1 from single to double trigonometric
series was proved in [2].

Theorem 2. If {c,, n,} C C is such that

. 1
Nlllinoo N Z Z |n1cn, el =0, (2.4)

1<|n1|<Ny n2€Z

. 1
Nl;inoo ~ Z Z |n2cn, no| =0, (2.5)

1<[ng|<Ny n1€Z
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then each of the series in (2.2) converges for all (x1,x2), and we have uni-
formly in (x1,z2) that

Im {Ap, o L(z1,22) — 5Ny Ny (21, 22)} =0, (2.6)

hi,h2—0

where

wom ] e )

We note that the following two conditions are sufficient for the fulfillment
of conditions (2.4) and (2.5), respectively:

no€EZL

lim Z |n2cn, ma| =0
ez

[n2|—o0
For a reference in Section 5, we present the representation of the differ-

ence between the braces in (2.6) in terms of the double coefficient sequence
{¢ny.ny}- By (2.2) and (2.3), we have

Ah17h2L(x17 172) — 8N1,N2 (l'la 552)

smnlhl ;

’LTL xr mi1x

{ E Cny0 € 171 _ E Cny 0 € 1 1}
S nihy

Ini|>1 1<|n1|<Ny
sin nohsg :
mnoxT mox
{3 o e - Y com eme)
nghy
[n2|>1 1<|n2|<N2

Z Z il (n121+nawe) SIL N1 M1 SIN NNy
+ Cn1nz © nih nah
1l >1 fngl>1 T

= DD e @R (2)

1<|n1|<Ny 1<|n2|<N2

3. NEW RESULTS: MULTIPLE TRIGONOMETRIC SERIES

Let d > 1 be an integer and {cp, no,..ny : (1,N2,...,14) € 7} a d-
multiple sequence of complex numbers, in symbols: {c,, . n,} € C. We
consider the d-multiple trigonometric series

Z Z Cni,...,ng EXP ( me) (3.1)

n1€Z ndEZ
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with the symmetric rectangular partial sums

SNy, Ny (T1s. ., xq) = E E Cny,.. ,ndexp( g nkmk>

"I’L1|<N1 \nd|<Nd
where Ny,...,N;g=0,1,2,....
Integrating formally series (3.1) with respect to each of the variables

z1i,...,%q in turn, in case d = 3 we obtain
en1T1
€0,0,0L1T2%3 + X2T3 Z Cnl,O,OW
[ni|>1
'mzxg einga:g
+T123 Z COny,0——— T 122 Z Co, On3w
[n2|>1 [n3|>1
et(nizi+nazs)
+x3 Z Z Cni,n2,0 211N

|n1\>1 |n2\>1

+T2 Z § &I  w—

‘TL1|>1 ‘TL3|>1

I DD D

In2|>1 |n3|>1

LD IED DD DRI

[n1|>1 |n2|>1 [ns|>1

et(niz1+nazs)
Z ninsg

et(n2ma+nazs)
i2n9ns

i(n1@14+nozatnzes)

= L(flfl,xg,xg,), (32)

B3n1n9ns

provided that each series in (3.2) converges. In Theorem 3 below, we will
give sufficient conditions for the convergence of these series, which takes
place even uniformly in (z1, z9, z3).

Motivated by the definition of Lebesgue summability in the cases d = 1
and 2, we say that the triple series in (3.1) for d = 3 is Lebesgue summable
to s € C at a point (z1,x2,23) € R?if L(-,-,-) under those conditions. exists
in some neighborhood of (x1, 2, x3) and if

Ahl,h2,h3L(x1a z2, 373)

= 7{[/(3?1 + hl, To + hQ,.%'3 + hg) — L(.%'l — h1,1'2 + hg, xr3 + h3)
8hihohs

— L(x1 + hi, 9 — ho,x3 + hg) — L(x1 + h1,x2 + ho,x3 — h3)
+ L(z1 — h1,m2 — ha,x3 + h3) + L(xz1 — h1,x2 + ha,x3 — h3)
+ L(x1 + h1, 22 — ha, 23 — h3)
— L(x1 — h1,x9 — ho,x3 — hg) — s as hy, ha,hs — 0. (3.3)
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We note that Ap, p, he(21, T2, 23) may be considered as a symmetric differ-
ence quotient and its limit, if it exists as h1, ho, hg — 0 independently of one
another, may be called the symmetric derivative DL(x1, z2, z3) := s.

The form of the result of formal differentiation of series (3.1) with respect

to each of the variables z1,...,x4 in turn, as well as the form of the cor-
responding function Ap, . (21,...,24) in the case of general d > 4 are
obvious.

Our main new result is formulated in Theorem 3. It extends Theorems 1
and 2 for d-dimensional trigonometric series as follows.

Theorem 3. If {cp, . n,: (R1,...,04) € 7%} is such that

Nlllinoo ]\1[1 Z Z cee Z ’nlcnl,nz,...,nd’ = 07 (34)

1<|n1|<N1n2€Z  ng€Z

NEE‘OOJ% S Y Y memmmnd =0 (35)

1<|n2|<Na m1€Z n3€Z  ng€Z

1<|ng|<Ng mi€Z  ng1€Z
then each of the series occurring in the definition of L(x1,...,xq) (cf. (3.2))

converges for all (x1,...,x4) and we have uniformly in (x1,...,x4) that
lim {Ah17...7hd(1’1, Ceey :L‘d) — 5N1,...,Nd(l'1a e ,:L'd)} = 0, (37)
hi,...,hqg—0
where .
Ny = [—} k=1,2,....d.
Al

In other words, under conditions (3.4), (3.5), ..., (3.6), a necessary and
sufficient condition for the d-multiple series (3.1) to have a (finite or infinite)
limit s at some point (z1,...,xq) € R? is that it is Lebesgue summable to
the same limit at (z1,...,2q).

We note that the following conditions are sufficient for the fulfillment of
conditions (3.4), (3.5), ..., (3.6), respectively:

lim Z Z In1Cny ng,...ngl = 0,
€z

[ni|—o0 nael

lim Z Z . Z In2Cn; noma,.mgl =0, .,

no|—oo
2] n1€Z n3€Z ngEL

Z Z . Z |’I’Ld0n1,...,nd,1,nd| =0.

‘nd|—>oo ni1EZ ng_1€%Z
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4. AUXILIARY RESULTS

Lemma 1. (see [2, Lemma 1]). For any sequence {c,} C C, the following
two conditions are equivalent:

. 1
lim N Z |nen| =0

and

The next Lemma 2 is folklore.

Lemma 2. The following estimate holds for all 0 <t < 1:

sint 2
0<1— "<,
t — 3!

5. PROOF OF THEOREM 3

In the case d = 1, Theorem 3 was proved by Zygmund [3, p. 322], and
his proof was somewhat simplified by us in [2, p. 559]. In the case d = 2,
Theorem 3 was proved also in [2, pp. 559-561], and our proof was based
on a natural decomposition of the lattice points of the first quadrant of the
real plane into four disjoint regions (see the representation of the difference
in question in [2, p. 560, formula (4.9)]). In the case d = 3, Theorem 3
could be proved in an analogous way; that is, by decomposing the lattice
points of the first octant of the 3-dimensional real space into eight disjoint
regions, and then by estimating the corresponding differences over various
appropriate unions of these regions. The problem with this method of proof
is that these estimations get more and more complicated.

Therefore, we will prove Theorem 3 by induction with respect to the
dimension d. In order to avoid cumbersome notations, we present the in-
duction step from (d — 1) to d in the case d = 3. By conditions (3.4), (3.5),
(3.6) in the case d = 3, it is easy to check that each series in (3.1) converges
uniformly in (x,x9, x3).

Now, we proceed to prove (3.7) in the case d = 3, while relying on the
validity of (3.7) in the cases d =1 and d = 2. By (3.2) and (3.3), we may
write that

Aby ho s L(21, T2, 23) — SN, No, N3 (21, T2, 23)

: Sinn1h1 :
mi1x milx
:{ > cmoo, €IS = YT ey ™ 1}
nihy
[n1]>1 1<|n1|<Ny
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; sianhg ;
mox mox
+{ E COmo,0 € 22— — § COma,0 €2 2}

naoh
Ina|>1 22 1<|na|<No
sin nghs -
ln X msx
+{ E €003 € 0 T E €0,0,n3 € ° 3}
Ina|>1 B 1<ingl<ig

i(n121+nae) SIL N1 A1 SIN DAY
N En1,m2,0 € nihi ngh
1 [nal>1 1 2112

_ § E Crs 1o 0 €(n1$1+n2x2)}
1,12,

1<|ng|<N1 1<]n2|<N2

+{ Z Z Cn1,0,ns ei(n1x1+n3w3)81nnlh1 Slnn3h3
1,Y,3 nlhl n3h3
[n1|>1 |ns|>1

i(n1x1+n3z
- E , E Cn1,0,n3 e( rhs 3)}

1<In1|<Ny 1<|n3|<N3

n pilnazatnsas) SN nohg sinnghs
COnams n2ha  nshs
[n2|>1 |n3|>1

- g § C0,na,n3 ei(n2z2+n3$3) }

1<|na|<N2 1<|n3|<N3

pilmiz+nazstngas) sinnihy sinnghy sinnghs
+ Cninang €

nih noh nah
In1]>1 |n2|>1 |ng|>1 L 272 373

_ c ei(nlx1+nzxz+n3x3)}
E E , § n1,m2,n3

1<|n1|[<N1 1<|n2|<N2 1<|n3|<N3

= {0 - sl } + {a ) - Qe+ {a0) ) - e}
—i—{Aﬁi)hg(m,m) — ngz N, (1, 2) } + {Ahl h3($1’$3) _ ngl) Nj(x17x3)}
+{Al(162),h3 (z2,23) — 55\?’37]\73 (22, xg)}

7
{Aél)m hs (T1, T2, T3) — S§V1)7N27N3 (:L‘l,:r:Q,azg)}, say. (5.1)
Due to (3.4) - (3.6) for d = 3, we may apply Theorem 1 to get that the
first three differences in braces on the right-hand side of (5.1) converge to 0
as hi, ho, hg — 0, respectively:

. (k) (k) _ _
Jim, {Ahk () — i) (xk)} =0, k=123 (5.2)
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(cf. (1.6)). Similarly, for the next three differences in braces on the right-
hand side of (5.1) way may apply Theorem 2 to conclude that these differ-
ences also converge to 0 as hy, ha, hg — 0, respectively:
. k+e+1 k+e+1

i LA () — s (@) =0, (5.3)

where k =1,2 and =k + 1,k +2 < 3 (cf. (2.7)).
Thus, it remains to prove that the last difference in braces on the right-
hand side of (5.1) also converges to 0 as hq, ha, hs — 0:
- (7 (7) _

hhhl;f}g_)o {Ahth,hZ3 (x1,x2,23) — 8N1,N2,N3} =0. (5.4)

To this effect, we define the double sequence {Cy,n,} C C as follows:

; sinn3h3
. ingT 2
Cnyny 1= § Cninams€ o , (n1,n2) €27,
nzhs
[ng|>1

Clearly, we may write that

(7) (7
Ah17h2,h3 (.731, L2, 353) ~ SN1,N2,N3 (xlv X2, .73‘3)

:{ Z Z Cn . ei(mleran)smnlhl Slnn2h2
1,12

nih noh
n1|>1no|>1 171 2142

o Z Z Cn1,n2 ei(n1x1+n2$2) }

1<|n1|<Ny 1<|n2|<N2

1<|n1|<N1 1<]n2|<N2

_ c ei(n1m1+n2x2+n3w3
ni,n2,n3

1<|n1|<N1 1<|n2|<N2 1< ng|<N3

_. () (2)
=: TNl,NQ (1,2, 23) + TNLNQ,NS (r1,29,23), say. (5.5)
Since
1 1
N § E |n10n1,n2| < E , E E ’nlcnl,n27n3|7
Ny Ny
1§|n1|§N1 no€Z 1§\n1|§N1 no€Z |n3\21

it follows from (3.4) that condition (2.4) is satisfied with C,, ,, in place of
Cnime- In the same way, it follows from (3.5) that condition (2.5) is also
satisfied with C),, ,, is place of ¢, n,. Thus, we may apply Theorem 2 for
the double sequence {Cy, »,} and to obtain that

1 1
lim TU —0, N = [—] Ny = {—] 5.6
hl,;LIQHHO N17N2(x1ax27x3) ) 1 ’hg‘ 5 4V2 ’hg‘ ( )

Next, we consider the following representation (cf. (1.6)):
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(2
TN17N2,N3 (xl’ X2, :Ug)

_ i(n1z1+n2ma+ngas) (S nzhs 1
= Cni,na,n3€

nzhs
1< na [ <Ny 1<l <Np 1<[ns] <N

ci(n1w1+noza+nars) sinnshs
+ C?’Ll,TLQ,?’LQ,

nghg
1<|n1| <Ny 1<|n2|<N2 |ng|>N3

21 22
=: T](V&V%Ng (r1,29,23) + TJ(\7173V27N3 (x1,x9,23), say. (5.7)

Applying Lemma 2 (with ¢ instead of ¢ on the right-hand side, since
O<t2§tfor0<t§1) gives

21
|TN1,3\72,N3 (:L'l, 2, 1"3)|

h
< €3 Z Z Z |n3cn1,n2,n3|

1<|n1 | <Ny 1<|n2| <N2 1<|n3|<N3
1

SoNe 2 2L 2 Imstmmanl = 0 as Ny = [@} w0, (5.8)

1<|ng|<N3n1€Z n2€Z

due to (3.6) (in the case d = 3).
On the other hand, by Lemma 1 applied for the sequence {C),,} defined

by
- Z Z ’Cnhnz,ng’, ng € 7,

ni1E€Zno €L

we obtain the following limit relation:

22
TN, v, (21, 22, 23))

D D S S

— |h
P3| 1<|n1|<Ny 1<[n2|<Ns |n3|>N3

<) Y XY

|n3|>N3 ni1€Zn2€Z

=N +1) Y ‘0"3

ns3
[n3|>N3

Cn17n2,n3

Cm,nz,ng

— 0 as N3 := [|h13|}

, (5.9)

again due to (3.6) (in the case d = 3).
Combining (5.5) - (5.9) results in (5.4) as we claimed. Finally, putting
(5.1)-(5.4) together yields (3.7) (in the case d = 3) to be proved.
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