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Dedicated to Professor Harry I. Miller on the occasion of his 70th birthday

Abstract. The Lebesgue summability of a trigonometric series is de-
fined in terms of the symmetric differentiability of the sum of the for-
mally integrated trigonometric series in question. In this paper we
extend the theorems of Fatou and Zygmund from single to multiple
trigonometric series.

1. Introduction: single trigonometric series

Let {cn : n ∈ Z} be a sequence of complex numbers, in symbols: {cn} ⊂ C.
We consider the trigonometric series

∑

n∈Z
cneinx (1.1)

with the symmetric partial sums

sN (x) :=
∑

|n|≤N

cneinx, N = 0, 1, 2, . . . .

Formal integration of series (1.1) gives

c0x +
∑

|n|≥1

cn
einx

in
=: L(x), (1.2)

provided that the series in (1.2) converges. For example, if
∑

|n|≥1

∣∣∣cn

n

∣∣∣
2

< ∞,
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then the series in (1.2) converges almost everywhere, since it is the Fourier
series of a function in L2 and Carleson’s celebrated theorem applies. On the
other hand, the series in (1.2) need not converge at every point even if

cn → 0 as |n| → ∞,

while series (1.1) converges everywhere (see details in [3, p. 321]).
We recall that if the function L(x) in (1.2) exists in some neighborhood

of a point x ∈ R and if

∆hL(x) :=
1
2h
{L(x + h)− L(x− h)} → s as h → 0, (1.3)

then series (1.1) is said to be summable to s ∈ C at x ∈ R by the Lebesgue
method of summability, or briefly: it is Lebesgue summable to s. Observe
that ∆hL(x) is the symmetric difference quotient and its limit, if exists as
h → 0, is the symmetric derivative DL(x) := s.

The following theorem was proved by Zygmund (see [3, p. 322]).

Theorem 1. If {cn} ⊂ C is such that

lim
N→∞

1
N

∑

|n|≤N

|ncn| = 0, (1.4)

then the series in (1.2) converges for all x, and we have uniformly in x that

lim
h→0

{∆hL(x)− sN (x)} = 0, ; where N :=
[ 1
|h|

]
, (1.5)

and [·] means the integer part of a real number.

In the other words, a necessary and sufficient condition for series (1.1)
to have a (finite or infinite) limit s at some point x is that it is Lebesgue
summable to the same s at x.

Clearly, condition (1.4) is satisfied if

ncn → 0 as |n| → ∞;

and in this special case Theorem 1 was proved by Fatou [1].
For references in Section 5, we present the representation of the difference

between the braces in (1.5) in terms of the coefficient sequence {cn}. By
(1.2) and (1.3), we have

∆hL(x)− sN (x) =
∑

|n|≥1

cneinx sinnh

nh
−

∑

1≤|n|≤N

cneinx

=
∑

1≤|n|≤N

cn einx
(sinnh

nh
− 1

)
+

∑

|n|>N

cneinx sinnh

nh
. (1.6)
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2. Known results: Double trigonometric series

Let {cn1,n2 : (n1, n2) ∈ Z2} be a double sequence of complex numbers, in
symbols: {cn1,n2} ∈ C. We consider the double trigonometric series

∑

n1∈Z

∑

n2∈Z
cn1,n2 ei(n1x1+n2x2) (2.1)

with the symmetric rectangular partial sums

sN1,N2(x1, x2) :=
∑

|n1|≤N1

∑

|n2|≤N2

cn1,n2 ei(n1x1+n2x2), N1, N2 = 0, 1, 2, . . . .

Formal integration of series (2.1) with respect to both x1 and x2 gives

c0,0x1x2 + x2

∑

|n1|≥1

cn1,0
ein1x1

in1
+ x1

∑

|n2|≥1

c0,n2

ein2x2

in2

+
∑

|n1|≥1

∑

|n2|≥1

cn1,n2

ei(n1x1+n2x2)

i2n1n2
=: L(x1, x2), (2.2)

provided that each of the series in (2.2) converges.
Motivated by the definition of Lebesgue summability of series (1.1) in

Section 1, the double series (2.1) is said to be Lebesgue summable to s ∈ C
at a point (x1, x2) ∈ R2 if L(·, ·) exists in some neighborhood of (x1, x2) and
if

∆h1,h2L(x1, x2) :=
1

4h1h2

{
L(x1 + h1, x2 + h2)− L(x1 − h1, x2 + h2)

− L(x1 + h1, x2 − h2) + L(x1 − h1, x2 − h2)} → s as h1, h2 → 0. (2.3)

We note that ∆h1,h2L(x1, x2) may be considered as a symmetric difference
quotient and its limit, if exists as h1, h2 → 0 independently of one another,
may be called the symmetric derivative DL(x1, x2) := s.

The following extension of Theorem 1 from single to double trigonometric
series was proved in [2].

Theorem 2. If {cn1,n2} ⊂ C is such that

lim
N1→∞

1
N1

∑

1≤|n1|≤N1

∑

n2∈Z
|n1cn1,n2 | = 0, (2.4)

lim
N2→∞

1
N2

∑

1≤|n2|≤N2

∑

n1∈Z
|n2cn1,n2 | = 0, (2.5)
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then each of the series in (2.2) converges for all (x1, x2), and we have uni-
formly in (x1, x2) that

lim
h1,h2→0

{∆h1,h2L(x1, x2)− sN1,N2(x1, x2)} = 0, (2.6)

where

N1 :=
[ 1
|h1|

]
N2 :=

[ 1
|h2|

]
.

We note that the following two conditions are sufficient for the fulfillment
of conditions (2.4) and (2.5), respectively:

lim
|n1|→∞

∑

n2∈Z
|n1cn1,n2 | = 0,

lim
|n2|→∞

∑

n1∈Z
|n2cn1,n2 | = 0.

For a reference in Section 5, we present the representation of the differ-
ence between the braces in (2.6) in terms of the double coefficient sequence
{cn1,n2}. By (2.2) and (2.3), we have

∆h1,h2L(x1, x2)− sN1,N2(x1, x2)

=
{ ∑

|n1|≥1

cn1,0 ein1x1
sinn1h1

n1h1
−

∑

1≤|n1|≤N1

cn1,0 ein1x1

}

+
{ ∑

|n2|≥1

c0,n2 ein2x2
sinn2h2

n2h2
−

∑

1≤|n2|≤N2

c0,n2 ein2x2

}

+
{ ∑

|n1|≥1

∑

|n2|≥1

cn1,n2 ei(n1x1+n2x2) sinn1h1

n1h1

sinn2h2

n2h2

−
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

cn1,n2 ei(n1x1+n2x2). (2.7)

3. New results: Multiple trigonometric series

Let d ≥ 1 be an integer and {cn1,n2,...,nd
: (n1, n2, . . . , nd) ∈ Zd} a d-

multiple sequence of complex numbers, in symbols: {cn1,...,nd
} ⊂ C. We

consider the d-multiple trigonometric series

∑

n1∈Z
. . .

∑

nd∈Z
cn1,...,nd

exp
(
i

d∑

k=1

nkxk

)
(3.1)
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with the symmetric rectangular partial sums

sN1,...,Nd
(x1, . . . , xd) :=

∑

|n1|≤N1

. . .
∑

|nd|≤Nd

cn1,...,nd
exp

(
i

d∑

k=1

nkxk

)
,

where N1, . . . , Nd = 0, 1, 2, . . ..
Integrating formally series (3.1) with respect to each of the variables

x1, . . . , xd in turn, in case d = 3 we obtain

c0,0,0x1x2x3 + x2x3

∑

|n1|≥1

cn1,0,0
en1x1

in1

+x1x3

∑

|n2|≥1

c0,n2,0
ein2x2

in2
+ x1x2

∑

|n3|≥1

c0,0,n3

ein3x3

in3

+x3

∑

|n1|≥1

∑

|n2|≥1

cn1,n2,0
ei(n1x1+n2x2)

i2n1n2

+x2

∑

|n1|≥1

∑

|n3|≥1

cn1,0,n3

ei(n1x1+n3x3)

i2n1n3

+x1

∑

|n2|≥1

∑

|n3|≥1

c0,n2,n3

ei(n2x2+n3x3)

i2n2n3

+
∑

|n1|≥1

∑

|n2|≥1

∑

|n3|≥1

cn1,n2,n3

ei(n1x1+n2x2+n3x3)

i3n1n2n3
=: L(x1, x2, x3), (3.2)

provided that each series in (3.2) converges. In Theorem 3 below, we will
give sufficient conditions for the convergence of these series, which takes
place even uniformly in (x1, x2, x3).

Motivated by the definition of Lebesgue summability in the cases d = 1
and 2, we say that the triple series in (3.1) for d = 3 is Lebesgue summable
to s ∈ C at a point (x1, x2, x3) ∈ R3 if L(·, ·, ·) under those conditions. exists
in some neighborhood of (x1, x2, x3) and if

∆h1,h2,h3L(x1, x2, x3)

:=
1

8h1h2h3
{L(x1 + h1, x2 + h2, x3 + h3)− L(x1 − h1, x2 + h2, x3 + h3)

− L(x1 + h1, x2 − h2, x3 + h3)− L(x1 + h1, x2 + h2, x3 − h3)

+ L(x1 − h1, x2 − h2, x3 + h3) + L(x1 − h1, x2 + h2, x3 − h3)

+ L(x1 + h1, x2 − h2, x3 − h3)

− L(x1 − h1, x2 − h2, x3 − h3) → s as h1, h2, h3 → 0. (3.3)
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We note that ∆h1,h2,h3(x1, x2, x3) may be considered as a symmetric differ-
ence quotient and its limit, if it exists as h1, h2, h3 → 0 independently of one
another, may be called the symmetric derivative DL(x1, x2, x3) := s.

The form of the result of formal differentiation of series (3.1) with respect
to each of the variables x1, . . . , xd in turn, as well as the form of the cor-
responding function ∆h1,...,hd

(x1, . . . , xd) in the case of general d ≥ 4 are
obvious.

Our main new result is formulated in Theorem 3. It extends Theorems 1
and 2 for d-dimensional trigonometric series as follows.

Theorem 3. If {cn1,...,nd
: (n1, . . . , nd) ∈ Zd} is such that

lim
N1→∞

1
N1

∑

1≤|n1|≤N1

∑

n2∈Z
. . .

∑

nd∈Z
|n1cn1,n2,...,nd

| = 0, (3.4)

lim
N2→∞

1
N2

∑

1≤|n2|≤N2

∑

n1∈Z

∑

n3∈Z
. . .

∑

nd∈Z
|n2cn1,n2,n3,...,nd

| = 0, . . . , (3.5)

lim
Nd→∞

1
Nd

∑

1≤|nd|≤Nd

∑

n1∈Z
. . .

∑

nd−1∈Z
|ndcn1,...,nd−1,nd

| = 0, (3.6)

then each of the series occurring in the definition of L(x1, . . . , xd) (cf. (3.2))
converges for all (x1, . . . , xd) and we have uniformly in (x1, . . . , xd) that

lim
h1,...,hd→0

{∆h1,...,hd
(x1, . . . , xd)− sN1,...,Nd

(x1, . . . , xd)} = 0, (3.7)

where

Nk :=
[ 1
|hk|

]
, k = 1, 2, . . . , d.

In other words, under conditions (3.4), (3.5), . . ., (3.6), a necessary and
sufficient condition for the d-multiple series (3.1) to have a (finite or infinite)
limit s at some point (x1, . . . , xd) ∈ Rd is that it is Lebesgue summable to
the same limit at (x1, . . . , xd).

We note that the following conditions are sufficient for the fulfillment of
conditions (3.4), (3.5), . . ., (3.6), respectively:

lim
|n1|→∞

∑

n2∈Z
. . .

∑

nd∈Z
|n1cn1,n2,...,nd

| = 0,

lim
|n2|→∞

∑

n1∈Z

∑

n3∈Z
. . .

∑

nd∈Z
|n2cn1,n2,n3,...,nd

| = 0, . . . ,

∑

|nd|→∞

∑

n1∈Z
. . .

∑

nd−1∈Z
|ndcn1,...,nd−1,nd

| = 0.
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4. Auxiliary results

Lemma 1. (see [2, Lemma 1]). For any sequence {cn} ⊂ C, the following
two conditions are equivalent:

lim
N→∞

1
N

∑

|n|≤N

|ncn| = 0

and
lim

N→∞
N

∑

|n|≥N

∣∣∣cn

n

∣∣∣ = 0.

The next Lemma 2 is folklore.

Lemma 2. The following estimate holds for all 0 < t ≤ 1:

0 < 1− sin t

t
≤ t2

3!
.

5. Proof of Theorem 3

In the case d = 1, Theorem 3 was proved by Zygmund [3, p. 322], and
his proof was somewhat simplified by us in [2, p. 559]. In the case d = 2,
Theorem 3 was proved also in [2, pp. 559-561], and our proof was based
on a natural decomposition of the lattice points of the first quadrant of the
real plane into four disjoint regions (see the representation of the difference
in question in [2, p. 560, formula (4.9)]). In the case d = 3, Theorem 3
could be proved in an analogous way; that is, by decomposing the lattice
points of the first octant of the 3-dimensional real space into eight disjoint
regions, and then by estimating the corresponding differences over various
appropriate unions of these regions. The problem with this method of proof
is that these estimations get more and more complicated.

Therefore, we will prove Theorem 3 by induction with respect to the
dimension d. In order to avoid cumbersome notations, we present the in-
duction step from (d− 1) to d in the case d = 3. By conditions (3.4), (3.5),
(3.6) in the case d = 3, it is easy to check that each series in (3.1) converges
uniformly in (x1, x2, x3).

Now, we proceed to prove (3.7) in the case d = 3, while relying on the
validity of (3.7) in the cases d = 1 and d = 2. By (3.2) and (3.3), we may
write that

∆h1,h2,h3L(x1, x2, x3)− sN1,N2,N3(x1, x2, x3)

=
{ ∑

|n1|≥1

cn1,0,0, ein1x1
sinn1h1

n1h1
−

∑

1≤|n1|≤N1

cn1,0,0 ein1x1

}
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+
{ ∑

|n2|≥1

c0,n2,0 ein2x2
sinn2h2

n2h2
−

∑

1≤|n2|≤N2

c0,n2,0 ein2x2

}

+
{ ∑

|n3|≥1

c0,0,n3 ein3x3
sinn3h3

n3h3
−

∑

1≤|n3|≤N3

c0,0,n3 ein3x3

}

+
{ ∑

|n1|≥1

∑

|n2|≥1

cn1,n2,0 ei(n1x1+n2x2) sinn1h1

n1h1

sinn2h2

n2h2

−
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

cn1,n2,0 ei(n1x1+n2x2)
}

+
{ ∑

|n1|≥1

∑

|n3|≥1

cn1,0,n3 ei(n1x1+n3x3) sinn1h1

n1h1

sinn3h3

n3h3

−
∑

1≤|n1|≤N1

∑

1≤|n3|≤N3

cn1,0,n3 ei(n1x1+n3x3)
}

+
{ ∑

|n2|≥1

∑

|n3|≥1

c0,n2,n3 ei(n2x2+n3x3) sinn2h2

n2h2

sinn3h3

n3h3

−
∑

1≤|n2|≤N2

∑

1≤|n3|≤N3

c0,n2,n3 ei(n2x2+n3x3)
}

+
{ ∑

|n1|≥1

∑

|n2|≥1

∑

|n3|≥1

cn1,n2,n3 ei(n1x1+n2x2+n3x3) sinn1h1

n1h1

sinn2h2

n2h2

sinn3h3

n3h3

−
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

∑

1≤|n3|≤N3

cn1,n2,n3 ei(n1x1+n2x2+n3x3)
}

=:
{

∆(1)
h1

(x1)− s
(1)
N1

(x1)
}

+
{

∆(2)
h2

(x2)− s
(2)
N2

(x2)
}

+
{

∆(3)
h3

(x3)− s
(3)
N3

(x3)
}

+
{

∆(4)
h1,h2

(x1, x2)− s
(4)
N1,N2

(x1, x2)}+ {∆(5)
h1,h3

(x1, x3)− s
(5)
N1,N3

(x1, x3)
}

+
{

∆(6)
h2,h3

(x2, x3)− s
(6)
N2,N3

(x2, x3)
}

+
{

∆(7)
h1,h2,h3

(x1, x2, x3)− s
(7)
N1,N2,N3

(x1, x2, x3)
}

, say. (5.1)

Due to (3.4) - (3.6) for d = 3, we may apply Theorem 1 to get that the
first three differences in braces on the right-hand side of (5.1) converge to 0
as h1, h2, h3 → 0, respectively:

lim
hk→0

{
∆(k)

hk
(xk)− s

(k)
Nk

(xk)
}

= 0, k = 1, 2, 3 (5.2)
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(cf. (1.6)). Similarly, for the next three differences in braces on the right-
hand side of (5.1) way may apply Theorem 2 to conclude that these differ-
ences also converge to 0 as h1, h2, h3 → 0, respectively:

lim
hk,h`→0

{
∆(k+`+1)

hk,h`
(xk, x`)− s

(k+`+1)
Nk,N`

(xk, x`)
}

= 0, (5.3)

where k = 1, 2 and ` = k + 1, k + 2 ≤ 3 (cf. (2.7)).
Thus, it remains to prove that the last difference in braces on the right-

hand side of (5.1) also converges to 0 as h1, h2, h3 → 0:

lim
h1,h2,h3→0

{
∆(7)

h1,h2,h3
(x1, x2, x3)− s

(7)
N1,N2,N3

}
= 0. (5.4)

To this effect, we define the double sequence {Cn1n2} ⊂ C as follows:

Cn1,n2 :=
∑

|n3|≥1

cn1,n2,n3e
in3x3

sinn3h3

n3h3
, (n1, n2) ∈ Z2.

Clearly, we may write that

∆(7)
h1,h2,h3

(x1, x2, x3)− s
(7)
N1,N2,N3

(x1, x2, x3)

=
{ ∑

|n1|≥1

∑

n2|≥1

Cn1,n2 ei(n1x1+n2x2) sinn1h1

n1h1

sinn2h2

n2h2

−
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

Cn1,n2e
i(n1x1+n2x2)

}

+
{ ∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

Cn1,n2e
i(n1x1+n2x2)

−
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

∑

1≤|n3|≤N3

cn1,n2,n3 ei(n1x1+n2x2+n3x3

}

=: T
(1)
N1,N2

(x1, x2, x3) + T
(2)
N1,N2,N3

(x1, x2, x3), say. (5.5)
Since

1
N1

∑

1≤|n1|≤N1

∑

n2∈Z
|n1Cn1,n2 | ≤

1
N1

∑

1≤|n1|≤N1

∑

n2∈Z

∑

|n3|≥1

|n1cn1,n2,n3 |,

it follows from (3.4) that condition (2.4) is satisfied with Cn1,n2 in place of
cn1,n2 . In the same way, it follows from (3.5) that condition (2.5) is also
satisfied with Cn1,n2 is place of cn1,n2 . Thus, we may apply Theorem 2 for
the double sequence {Cn1,n2} and to obtain that

lim
h1,h2→0

T
(1)
N1,N2

(x1, x2, x3) = 0, N1 :=
[ 1
|h2|

]
, N2 :=

[ 1
|h2|

]
. (5.6)

Next, we consider the following representation (cf. (1.6)):
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T
(2)
N1,N2,N3

(x1, x2, x3)

=
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

∑

1≤|n3|≤N3

cn1,n2,n3e
i(n1x1+n2x2+n2x3)

(sinn3h3

n3h3
− 1

)

+
∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

∑

|n3|>N3

cn1,n2,n3e
i(n1x1+n2x2+n3x3) sinn3h3

n3h3

=: T
(21)
N1,N2,N3

(x1, x2, x3) + T
(22)
N1,N2,N3

(x1, x2, x3), say. (5.7)

Applying Lemma 2 (with t instead of t2 on the right-hand side, since
0 < t2 ≤ t for 0 < t ≤ 1) gives

|T (21)
N1,N2,N3

(x1, x2, x3)|

≤ h3

6

∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

∑

1≤|n3|≤N3

|n3cn1,n2,n3 |

≤ 1
6N3

∑

1≤|n3|≤N3

∑

n1∈Z

∑

n2∈Z
|n3cn1,n2,n3 | → 0 as N3 :=

[ 1
|h3|

]
→∞, (5.8)

due to (3.6) (in the case d = 3).
On the other hand, by Lemma 1 applied for the sequence {Cn3} defined

by

Cn3 :=
∑

n1∈Z

∑

n2∈Z
|cn1,n2,n3 |, n3 ∈ Z,

we obtain the following limit relation:

|T (22)
N1,N2,N3

(x1, x2, x3)|

≤ 1
|h3|

∑

1≤|n1|≤N1

∑

1≤|n2|≤N2

∑

|n3|≥N3

∣∣∣cn1,n2,n3

n3

∣∣∣

≤ (N3 + 1)
∑

|n3|≥N3

∑

n1∈Z

∑

n2∈Z

∣∣∣cn1,n2,n3

n3

∣∣∣

= (N3 + 1)
∑

|n3|≥N3

∣∣∣Cn3

n3

∣∣∣ → 0 as N3 :=
[ 1
|h3|

]
→∞, (5.9)

again due to (3.6) (in the case d = 3).
Combining (5.5) - (5.9) results in (5.4) as we claimed. Finally, putting

(5.1)-(5.4) together yields (3.7) (in the case d = 3) to be proved.
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