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POWER INEQUALITIES FOR THE NUMERICAL RADIUS
OF A PRODUCT OF TWO OPERATORS IN HILBERT

SPACES

S.S. DRAGOMIR

Abstract. Some power inequalities for the numerical radius of a prod-
uct of two operators in Hilbert spaces with applications for commutators
and self-commutators are given.

1. Introduction

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an
operator T is the subset of the complex numbers C given by [11, p. 1]:

W (T ) = {〈Tx, x〉 , x ∈ H, ‖x‖ = 1} .

The numerical radius w (T ) of an operator T on H is given by [11, p. 8]:

w (T ) = sup {|λ| , λ ∈ W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} . (1.1)

It is well known that w (·) is a norm on the Banach algebra B (H) of
all bounded linear operators T : H → H. This norm is equivalent to the
operator norm. In fact, the following more precise result holds [11, p. 9]:

w (T ) ≤ ‖T‖ ≤ 2w (T ) , (1.2)

for any T ∈ B (H)
For other results on numerical radii, see [12], Chapter 11.
If A,B are two bounded linear operators on the Hilbert space (H, 〈·, ·〉) ,

then
w (AB) ≤ 4w (A) w (B) . (1.3)

In the case that AB = BA, then

w (AB) ≤ 2w (A) w (B) . (1.4)

The following results are also well known [11, p. 38]:
If A is a unitary operator that commutes with another operator B, then

w (AB) ≤ w (B) . (1.5)
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If A is an isometry and AB = BA, then (1.5) also holds true.
We say that A and B double commute if AB = BA and AB∗ = B∗A. If

the operators A and B double commute, then [11, p. 38]

w (AB) ≤ w (B) ‖A‖ . (1.6)

As a consequence of the above, we have [11, p. 39]:
Let A be a normal operator commuting with B, then

w (AB) ≤ w (A) w (B) . (1.7)

For other results and historical comments on the above see [11, p. 39–
41]. For recent inequalities involving the numerical radius, see [1] -[9], [13],
[14]-[16] and [17].

2. Inequalities for a product of two operators

Theorem 1. For any A,B ∈ B (H) and r ≥ 1, we have the inequality

wr (B∗A) ≤ 1
2
‖(A∗A)r + (B∗B)r‖ . (2.1)

The constant 1
2 is best possible.

Proof. By the Schwarz inequality in the Hilbert space (H; 〈., .〉) we have

|〈B∗Ax, x〉| = |〈Ax,Bx〉| ≤ ‖Ax‖ · ‖Bx‖ (2.2)

= 〈A∗Ax, x〉1/2 · 〈B∗Bx, x〉1/2 , x ∈ H.

Utilizing the arithmetic mean - geometric mean inequality and then the
convexity of the function f (t) = tr, r ≥ 1, we have successively,

〈A∗Ax, x〉1/2 · 〈B∗Bx, x〉1/2 ≤ 〈A∗Ax, x〉+ 〈B∗Bx, x〉
2

(2.3)

≤
(〈A∗Ax, x〉r + 〈B∗Bx, x〉r

2

) 1
r

for any x ∈ H.
It is known that if P is a positive operator then for any r ≥ 1 and x ∈ H

with ‖x‖ = 1 we have the inequality (see for instance [15])

〈Px, x〉r ≤ 〈P rx, x〉 . (2.4)

Applying this property to the positive operator A∗A and B∗B, we deduce
that

(〈A∗Ax, x〉r + 〈B∗Bx, x〉r
2

) 1
r

≤
(〈(A∗A)r x, x〉+ 〈(B∗B)r x, x〉

2

) 1
r

(2.5)

=
(〈[(A∗A)r + (B∗B)r] x, x〉

2

) 1
r
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for any x ∈ H, ‖x‖ = 1.
Now, on making use of the inequalities (2.2), (2.3) and (2.5), we get the

inequality

|〈(B∗A)r x, x〉|r ≤ 1
2
〈[(A∗A)r + (B∗B)r]x, x〉 (2.6)

for any x ∈ H, ‖x‖ = 1.
Taking the supremum over x ∈ H, ‖x‖ = 1 in (2.6 ) and since the operator

[(A∗A)r + (B∗B)r] is self-adjoint, we deduce the desired inequality (2.1).
For r = 1 and B = A, we get in both sides of (2.1) the same quantity ‖A‖2

which shows that the constant 1
2 is best possible in general in the inequality

(2.1). ¤
Corollary 1. For any A ∈ B (H) and r ≥ 1 we have the inequalities

wr (A) ≤ 1
2
‖(A∗A)r + I‖ (2.7)

and

wr
(
A2

) ≤ 1
2
‖(A∗A)r + (AA∗)r‖ , (2.8)

respectively.

A different approach is considered in the following result:

Theorem 2. For any A,B ∈ B (H) and any α ∈ (0, 1) and r ≥ 1, we have
the inequality

w2r (B∗A) ≤
∥∥∥α (A∗A)

r
α + (1− α) (B∗B)

r
1−α

∥∥∥ . (2.9)

Proof. By Schwarz’s inequality, we have

|〈(B∗A) x, x〉|2 ≤ 〈(A∗A) x, x〉 · 〈(B∗B) x, x〉

=
〈[

(A∗A)
1
α

]α
x, x

〉
·
〈[

(B∗B)
1

1−α

]1−α
x, x

〉
, (2.10)

for any x ∈ H.
It is well known that (see for instance [15]) if P is a positive operator and

q ∈ (0, 1] then for any u ∈ H, ‖u‖ = 1, we have

〈P qu, u〉 ≤ 〈Pu, u〉q . (2.11)

Applying this property to the positive operators (A∗A)
1
α and (B∗B)

1
1−α

(α ∈ (0, 1)) , we have
〈[

(A∗A)
1
α

]α
x, x

〉
·
〈[

(B∗B)
1

1−α

]1−α
x, x

〉

≤
〈
(A∗A)

1
α x, x

〉α
·
〈
(B∗B)

1
1−α x, x

〉1−α
, (2.12)
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for any x ∈ H, ‖x‖ = 1.
Now, utilizing the weighted arithmetic mean - geometric mean inequality,

i.e., aαb1−α ≤ αa + (1− α) b, α ∈ (0, 1) , a, b ≥ 0, we get
〈
(A∗A)

1
α x, x

〉α
·
〈
(B∗B)

1
1−α x, x

〉1−α

≤ α
〈
(A∗A)

1
α x, x

〉
+ (1− α)

〈
(B∗B)

1
1−α x, x

〉
(2.13)

for any x ∈ H, ‖x‖ = 1.
Moreover, by the elementary inequality following from the convexity of

the function f (t) = tr, r ≥ 1, namely

αa + (1− α) b ≤ (αar + (1− α) br)
1
r , α ∈ (0, 1) , a, b ≥ 0,

we deduce that

α
〈
(A∗A)

1
α x, x

〉
+ (1− α)

〈
(B∗B)

1
1−α x, x

〉

≤
[
α

〈
(A∗A)

1
α x, x

〉r
+ (1− α)

〈
(B∗B)

1
1−α x, x

〉r] 1
r

≤
[
α

〈
(A∗A)

r
α x, x

〉
+ (1− α)

〈
(B∗B)

r
1−α x, x

〉] 1
r
, (2.14)

for any x ∈ H, ‖x‖ = 1, where, for the last inequality we used the inequality
(2.4) for the positive operators (A∗A)

1
α and (B∗B)

1
1−α .

Now, on making use of the inequalities (2.10), (2.12), (2.13) and (2.14),
we get

|〈(B∗A) x, x〉|2r ≤
〈[

α (A∗A)
r
α + (1− α) (B∗B)

r
1−α

]
x, x

〉
(2.15)

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1 in
(2.15) produces the desired inequality (2.9). ¤
Remark 1. The particular case α = 1

2 produces the inequality

w2r (B∗A) ≤ 1
2

∥∥∥(A∗A)2r + (B∗B)2r
∥∥∥ , (2.16)

for r ≥ 1. Notice that 1
2 is best possible in (2.16) since for r = 1 and B = A

we get in both sides of (2.16) the same quantity ‖A‖4 .

Corollary 2. For any A ∈ B (H) and α ∈ (0, 1) , r ≥ 1, we have the
inequalities

w2r (A) ≤
∥∥∥α (A∗A)

r
α + (1− α) I

∥∥∥ (2.17)

and
w2r

(
A2

) ≤
∥∥∥α (A∗A)

r
α + (1− α) (AA∗)

r
1−α

∥∥∥ , (2.18)

respectively.
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Moreover, we have

‖A‖4r ≤
∥∥∥α (A∗A)

r
α + (1− α) (A∗A)

r
1−α

∥∥∥ . (2.19)

3. Inequalities for the sum of two products

The following result may be stated:

Theorem 3. For any A,B, C, D ∈ B (H) and r, s ≥ 1 we have
∥∥∥∥
B∗A + D∗C

2

∥∥∥∥
2

≤
∥∥∥∥
(A∗A)r + (C∗C)r

2

∥∥∥∥
1
r

·
∥∥∥∥
(B∗B)s + (D∗D)s

2

∥∥∥∥
1
s

. (3.1)

Proof. By the Schwarz inequality in the Hilbert space (H; 〈., .〉) we have

|〈(B∗A + D∗C) x, y〉|2

= |〈B∗Ax, y〉+ 〈D∗Cx, y〉|2

≤ [|〈B∗Ax, y〉|+ |〈D∗Cx, y〉|]2

≤
[
〈A∗Ax, x〉 1

2 · 〈B∗By, y〉 1
2 + 〈C∗Cx, x〉 1

2 · 〈D∗Dy, y〉 1
2

]2
, (3.2)

for any x, y ∈ H.
Now, on utilizing the elementary inequality

(ab + cd)2 ≤ (
a2 + c2

) (
b2 + d2

)
, a, b, c, d ∈ R,

we then conclude that
[
〈A∗Ax, x〉 1

2 · 〈B∗By, y〉 1
2 + 〈C∗Cx, x〉 1

2 · 〈D∗Dy, y〉 1
2

]2

≤ (〈A∗Ax, x〉+ 〈C∗Cx, x〉) · (〈B∗By, y〉+ 〈D∗Dy, y〉) , (3.3)

for any x, y ∈ H.
Now, on making use of a similar argument to the one in the proof of

Theorem 1, we have for r, s ≥ 1 that

(〈A∗Ax, x〉+ 〈C∗Cx, x〉) · (〈B∗By, y〉+ 〈D∗Dy, y〉)

≤ 4
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉 1
r

·
〈[

(B∗B)s + (D∗D)s

2

]
y, y

〉 1
s

(3.4)

for any x, y ∈ H, ‖x‖ = ‖y‖ = 1.
Consequently, by (3.2) – (3.4) we have
∣∣∣∣
〈[

B∗A + D∗C
2

]
x, y

〉∣∣∣∣
2

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉 1
r

·
〈[

(B∗B)s + (D∗D)s

2

]
y, y

〉 1
s

(3.5)
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for any x, y ∈ H, ‖x‖ = ‖y‖ = 1.
Taking the supremum over x, y ∈ H, ‖x‖ = ‖y‖ = 1 we deduce the desired

inequality (3.1). ¤

Remark 2. If s = r, then the inequality (3.1) is equivalent with
∥∥∥∥
B∗A + D∗C

2

∥∥∥∥
2r

≤
∥∥∥∥
(A∗A)r + (C∗C)r

2

∥∥∥∥ ·
∥∥∥∥
(B∗B)r + (D∗D)r

2

∥∥∥∥ . (3.6)

Corollary 3. For any A,C ∈ B (H) we have
∥∥∥∥
A + C

2

∥∥∥∥
2r

≤
∥∥∥∥
(A∗A)r + (C∗C)r

2

∥∥∥∥ , (3.7)

where r ≥ 1. Also, we have
∥∥∥∥
A2 + C2

2

∥∥∥∥
2

≤
∥∥∥∥
(A∗A)r + (C∗C)r

2

∥∥∥∥
1
r

·
∥∥∥∥
(AA∗)s + (CC∗)s

2

∥∥∥∥
1
s

(3.8)

for all r, s ≥ 1, and in particular
∥∥∥∥
A2 + C2

2

∥∥∥∥
2r

≤
∥∥∥∥
(A∗A)r + (C∗C)r

2

∥∥∥∥ ·
∥∥∥∥
(AA∗)r + (CC∗)r

2

∥∥∥∥ (3.9)

for r ≥ 1.

The inequality (3.7) follows from (3.1) for B = D = I, while the inequality
(3.8) is obtained from the same inequality (3.1 ) for B = A∗ and D = C∗.

Another particular result of interest is the following one:

Corollary 4. For any A,B ∈ B (H) we have
∥∥∥∥
B∗A + A∗B

2

∥∥∥∥
2

≤
∥∥∥∥
(A∗A)r + (B∗B)r

2

∥∥∥∥
1
r

·
∥∥∥∥
(A∗A)s + (B∗B)s

2

∥∥∥∥
1
s

(3.10)

for r, s ≥ 1 and, in particular,
∥∥∥∥
B∗A + A∗B

2

∥∥∥∥
r

≤
∥∥∥∥
(A∗A)r + (B∗B)r

2

∥∥∥∥ (3.11)

for any r ≥ 1.

The inequality (3.9) follows from (3.1) for D = A and C = B.
Another particular case that might be of interest is the following one.

Corollary 5. For any A,D ∈ B (H) we have
∥∥∥∥
A + D

2

∥∥∥∥
2

≤
∥∥∥∥
(A∗A)r + I

2

∥∥∥∥
1
r

·
∥∥∥∥
(DD∗)s + I

2

∥∥∥∥
1
s

, (3.12)
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where r, s ≥ 1. In particular

‖A‖2 ≤
∥∥∥∥
(A∗A)r + I

2

∥∥∥∥
1
r

·
∥∥∥∥
(AA∗)s + I

2

∥∥∥∥
1
s

. (3.13)

Moreover, for any r ≥ 1 we have

‖A‖2r ≤
∥∥∥∥
(A∗A)r + I

2

∥∥∥∥ ·
∥∥∥∥
(AA∗)r + I

2

∥∥∥∥ .

The proof is obvious by the inequality (3.1) on choosing B = I, C = I
and writing the inequality for D∗ instead of D.

Remark 3. If T ∈ B (H) and T = A + iC, i.e., A and C are its Cartesian
decomposition, then we get from (3.7) that

‖T‖2r ≤ 22r−1
∥∥A2r + C2r

∥∥ ,

for any r ≥ 1.
Also, since A = Re (T ) = T+T ∗

2 and C = Im (T ) = T−T ∗
2i , then from (3.7)

we get the following inequalities as well

‖Re (T )‖2r ≤
∥∥∥∥
(T ∗T )r + (TT ∗)r

2

∥∥∥∥
and

‖Im (T )‖2r ≤
∥∥∥∥
(T ∗T )r + (TT ∗)r

2

∥∥∥∥
for any r ≥ 1.

In terms of the Euclidean radius of two operators we (·, ·) , where, as in
[1],

we (T,U) := sup
‖x‖=1

(
|〈Tx, x〉|2 + |〈Ux, x〉|2

) 1
2
,

we have the following result as well.

Theorem 4. For any A,B, C,D ∈ B (H) and p, q > 1 with 1
p + 1

q = 1, we
have the inequality

w2
e (B∗A,D∗C) ≤ ‖(A∗A)p + (C∗C)p‖1/p · ‖(B∗B)q + (D∗D)q‖1/q . (3.14)

Proof. For any x ∈ H, ‖x‖ = 1 we have the inequalities

|〈B∗Ax, x〉|2 + |〈D∗Cx, x〉|2
≤ 〈A∗Ax, x〉 · 〈B∗Bx, x〉+ 〈C∗Cx, x〉 · 〈D∗Dx, x〉
≤ (〈A∗Ax, x〉p + 〈C∗Cx, x〉p)1/p · (〈B∗Bx, x〉q + 〈D∗Dx, x〉q)1/q

≤ (〈(A∗A)p x, x〉+ 〈(C∗C)p x, x〉)1/p · (〈(B∗B)q x, x〉+ 〈(D∗D)q x, x〉)1/q

≤ 〈[(A∗A)p + (C∗C)p] x, x〉1/p · 〈[(B∗B)q + (D∗D)q] x, x〉1/q .
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Taking the supremum over x ∈ H, ‖x‖ = 1 and noticing that the operators
(A∗A)p + (C∗C)p and (B∗B)q + (D∗D)q are self-adjoint, we deduce the
desired inequality (3.14). ¤

The following particular case is of interest.

Corollary 6. For any A,C ∈ B (H) and p, q > 1 with 1
p + 1

q = 1, we have

w2
e (A,C) ≤ 21/q ‖(A∗A)p + (C∗C)p‖1/p .

The proof follows from (3.14) for B = D = I.

Corollary 7. For any A,D ∈ B (H) and p, q > 1 with 1
p + 1

q = 1, we have

w2
e (A,D) ≤ ‖(A∗A)p + I‖1/p · ‖(D∗D)q + I‖1/q .

4. Norm inequalities for the commutator

The commutator of two bounded linear operators T and U is the operator
TU − UT. For the usual norm ‖·‖ and for any two operators T and U, by
using the triangle inequality and the submultiplicity of the norm, we can
state the following inequality

‖TU − UT‖ ≤ 2 ‖U‖ ‖T‖ . (4.1)

In [10], the following result has been obtained as well

‖TU − UT‖ ≤ 2min {‖T‖ , ‖U‖}min {‖T − U‖ , ‖T + U‖} . (4.2)

By utilizing Theorem 3 we can state the following result for the numerical
radius of the commutator.

Proposition 1. For any T, U ∈ B (H) and r, s ≥ 1 we have

‖TU − UT‖2 ≤ 22− 1
r
− 1

s ‖(T ∗T )r + (U∗U)r‖ 1
r · ‖(TT ∗)s + (UU∗)s‖ 1

s . (4.3)

Proof. Follows by Theorem 3 on choosing B = T ∗, A = U, D = −U∗ and
C = T. ¤
Remark 4. In particular, for r = s we get from (4.3) that

‖TU − UT‖2r ≤ 22r−2 ‖(T ∗T )r + (U∗U)r‖ · ‖(TT ∗)r + (UU∗)r‖ (4.4)

and for r = 1 we get

‖TU − UT‖2 ≤ ‖T ∗T + U∗U‖ · ‖TT ∗ + UU∗‖ . (4.5)

For a bounded linear operator T ∈ B (H) , the self-commutator is the
operator T ∗T − TT ∗. Observe that the operator V := −i (T ∗T − TT ∗) is
self-adjoint and w (V ) = ‖V ‖ , i.e.,

w (T ∗T − TT ∗) = ‖T ∗T − TT ∗‖ .

Now, utilizing (4.3) for U = T ∗ we can state the following corollary.
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Corollary 8. For any T ∈ B (H) we have the inequality

‖T ∗T − TT ∗‖2 ≤ 22− 1
r
− 1

s ‖(T ∗T )r + (TT ∗)r‖ 1
r ·‖(T ∗T )s + (TT ∗)s‖ 1

s . (4.6)

In particular, we have

‖T ∗T − TT ∗‖r ≤ 2r−1 ‖(T ∗T )r + (TT ∗)r‖ , (4.7)

for any r ≥ 1.
Moreover, for r = 1 we have

‖T ∗T − TT ∗‖ ≤ ‖T ∗T + TT ∗‖ . (4.8)
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