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ON THE DISCRETE NONLINEAR HAMMERSTEIN
SYSTEMS WITH NON-SYMMETRIC KERNELS

FEHIM DEDAGIĆ

Dedicated to Professor Harry I. Miller on the occasion of his 70th birthday

Abstract. We study the nonlinear Hammerstein system

x(t) =

∞∑
s=1

k(s, t)f(s, x(s)) + g(t) (t ∈ N)

with non-symmetric kernel k(s, t).

1. Introduction

The discrete nonlinear Hammerstein system of equations, which we study
in this article, occurs in certain stochastic problems. We establish some re-
sults about unique solvability of the nonlinear discrete Hammerstein system
with non-symmetric kernel k(s, t) (s, t ∈ N)

x(t) =
∞∑

s=1

k(s, t)f(s, x(s)) + g(t) (t ∈ N). (1)

Here k : N× N→ R defines a linear bounded operator

Kx(t) =
∞∑

s=1

k(s, t)x(s), (K)

and f : N × R → R is a real function which generates a nonlinear operator
superposition F ; x belongs to lp. The problem of solvability of the system
(1) is equivalent to the problem of solvability of the operator equation

x = KFx + g (x, g ∈ lp) (2)
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The function g is a given real function of a natural argument; the function
x is an unknown real sequence.

The first results about unique solvability of the system (1) have been
obtained in [8], see also [6]. In the studies of unique solvability of the Ham-
merstein equations, generally speaking, there exist two kinds of assumptions.
The first one is about linear part K of this equation, and the second are as-
sumptions on the nonlinearity F of the equation (2). As for the operator K
the standard assumption on the matrix-kernel is symmetry k(s, t) = k(t, s),
and some of the results in that constellation were given in [5]. The case of
non-symmetric kernels in the system (1) has not been studied so far. Also,
the case of Hammerstein integral equations were studied, for example, in
[11-12], see also [3] and [4]. In this article applying Minty’s fix-point theo-
rem for monotone operators [13], see also [7], we get some new facts about
the solvability of the system (1).

2. Linear and non-linear part of the equation

Since the formulation of our results will be in lp(1 ≤ p ≤ +∞) spaces,
we need to recall some facts from the operator theory in classical spaces of
sequences, and make several easy assumptions.

The linear operator K, which acts from lp′ into lp, (p′ = p(p−1)−1;∞′ = 1)
defined by the non-symmetric matrix-kernel k : N × N → R is a bounded
operator in l2 (lp′) space, and at the same time is a compact operator in
those spaces if the following holds [9-10]

∞∑

s=1

∞∑

t=1

| k(s, t) |max{2,p′} < ∞. (3)

Below we denote, as usual, the scalar product in l2 by

〈x, y〉 =
∞∑

s=1

x(s)y(s). (4)

Suppose that operator (K) acts not only in l2, but also from lp′ into lp, where
2 ≤ p ≤ ∞. Let

A =
1
2
(K + K∗) (5)

denote the self-adjoint part of K, where K∗ is the adjoint operator defined
by K∗x(t) =

∑∞
s=1 k(t, s)x(s). For our further use we should introduce

B =
1
2
(K −K∗). (6)

One can see that both operators A and B act from the space lp′ into the
space lp. Let A = UL be a polar decomposition of the operator A into a
superposition of a unitary operator U , acting in l2 and the positive operator
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defined by L, C = L
1
2 . We assume here that A is a positive operator. It

is known that a linear bounded operator A is called positive defined in l2 if
〈Ax, x〉 ≥ 0 holds for all x ∈ l2. Moreover, the operator A can be represented
as A = CC∗ (U=I, L=A) where C = A

1
2 is the square root of A acting from

l2 into lp. The adjoint operator C∗ acts from lp′ into l2, because in this
situation, we have lp′ ⊂ l2 ⊂ lp (2 ≤ p ≤ ∞), i.e. lp′ , l2 and lp make a regular
triple-spaces, see [11].

Definition. We say the operator K is P-positive if it satisfies the angle-
bounded inequality

|〈Kx, y〉 − 〈x,Ky〉| ≤ β
√
〈Kx, x〉

√
〈Ky, y〉 (x, y ∈ l2) (7)

where β ∈ R+, and operator (5) is a positive operator.

Let us examine now the operators M = C−1K(C∗)−1 and N = K(C∗)−1,
and note that, under our assumptions, both M and N act in the space l2.

Lemma 1. If the operator K is P-positive then the operators M and N are
bounded.

Proof. The operator M = C−1K(C∗)−1 is bounded in l2 if and only if
C−1B(C∗)−1 is bounded in l2. Moreover, the same statement is valid for
the operators N = K(C∗)−1 and the B(C∗)−1. Firstly, since for any h ∈ l2,
we have

〈Mh, h〉+ 〈h, Mh〉 − 2〈h, h〉
= 〈K(C∗)−1h, (C∗)−1h〉+〈K∗(C∗)−1h, (C∗)−1h〉−2〈C∗(C∗)−1h,C∗(C∗)−1h〉
=〈K(C∗)−1h, (C∗)−1h〉+〈K∗(C∗)−1h, (C∗)−1h〉−2〈A(C∗)−1h, (C∗)−1h〉= 0

one can conclude that holds

〈Mh, h〉 = ‖h‖2 (h ∈ l2). (8)

The relation (8), in particular, means that both operators M and M∗ have
a trivial null-space.

On the other hand, for arbitrary h1, h2 ∈ l2, is

|〈C−1B(C∗)−1h1, h2〉| = |〈B(C∗)−1h1, (C∗)−1h2〉| = |〈Bφ, θ〉|
= |1

2
〈(K −K∗)φ, θ〉| = |1

2
〈Kφ, θ〉 − 1

2
〈K∗φ, θ〉| = |1

2
〈Kφ, θ〉 − 1

2
〈φ, Kθ〉|

≤ 1
2
β
√
〈Kφ, φ〉

√
〈Kθ, θ〉

=
1
2
β
√
〈K(C∗)−1h1, (C∗)−1h1〉

√
〈K(C∗)−1h2, (C∗)−1h2〉
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=
1
2
β
√
〈C−1K(C∗)−1h1, h1〉

√
〈C−1K(C∗)−1h2, h2〉

=
1
2
β
√
〈Mh1, h1〉

√
〈Mh2, h2〉 =

1
2
β‖h1‖‖h2‖

therefore the operator M = C−1K(C∗)−1 is bounded. As for boundedness
of the operator B(C∗)−1 we have

|〈B(C∗)−1h, g〉| =
∣∣∣1
2
〈(K −K∗)(C∗)−1h, g〉

∣∣∣

=
∣∣∣1
2
〈K(C∗)−1h, g〉 − 1

2
〈K∗(C∗)−1h, g〉

∣∣∣ =
∣∣∣1
2
〈K(C∗)−1h, g〉

− 1
2
〈(C∗)−1h,Kg〉

∣∣∣ ≤ 1
2
β
√
〈K(C∗)−1h, (C∗)−1h〉

√
〈Kg, g〉

=
1
2
β
√
〈C−1K(C∗)−1h, h〉

√
〈Kg, g〉 =

1
2
β
√
〈Mh, h〉

√
〈Kg, g〉

≤ 1
2
β̃‖h‖‖g‖,

i.e., the operator N is bounded. ¤

The operator N has also a trivial null-space, since N = CM ( relation
(10)) and the operator C each have a trivial null-space as well. Now we can
keep the same notation M for the continuous extension (closure) in l2 of
the operator C−1K(C∗)−1. The closure in l2 of the operator K(C∗)−1 we
denote by N . The operators M and N , in fact, are defined on the closure in
l2 of the range of C = A

1
2 , but it is clear that this closure, in our situation

coincides with l2. In this situation K has two essential decompositions

K = CMC∗, K = NC∗. (9)

On the other hand, we see that operators M,N , and K are related by

N = CM, N∗ = M∗C∗. (10)

In what follows the positive numbers µ for which we have the inequality

‖Kh‖2 ≤ µ〈Kh, h〉, (h ∈ l2) (µ)

plays an important role. Let us note, that the smallest such a µ is µK =
‖N‖2 . Indeed,

〈Kh, Kh〉 = 〈NC∗h,NC∗h〉 = ‖NC∗h‖2 ≤ ‖N‖2〈C∗h,C∗h〉
= ‖N‖2〈CC∗h, h〉 = ‖N‖2〈Ah, h〉 =

1
2
‖N‖2〈(K + K∗)h, h〉 = ‖N‖2〈Kh, h〉

The nonlinear part of the equation (2) is the operator superposition

Fx(s) = f(s, x(s)) (s ∈ N) (11)
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which acts from lp into lp′ , generated by a function f : N × R → R. We
suppose in addition that f(s, 0) = 0 holds, though this condition could
be easy omitted. Indeed, in (11) we can replace by the operator F̃ x =
F (x + x̃) − Fx̃, which is also a superposition operator, generated by the
function f̃(s, u) = f(s, u + x̃(s)) − f(s, x̃(s)), where x̃ ∈ lp is arbitrary and
f̃ satisfies condition f̃(s, 0) = 0.

Due to [5] (see also [2]), the operator F , in the case 1 ≤ p < ∞, acts from lp
into lp′ if and only if there exist a(s) ∈ lp′ , and constants b ≥ 0, δ > 0, n0 ∈ N
for which

|f(s, u)| ≤ a(s) + b |u|p−1 (|u| < δ, s ≥ n0). (12)

In the case p = ∞ the last estimate must be replaced by

|f(s, u)| ≤ ar(s) (|u| ≤ r, 0 < r < ∞)

where ar(s) ∈ l1.
Now we suppose that there exists a number c such that holds

(u− v)(f(s, u)− f(s, v)) ≤ c(u− v)2 (s ∈ N, u ∈ R). (c)

If cf is the smallest c for which (c) holds, we have

〈Fh∗ − Fh∗∗, h∗ − h∗∗〉 =
∑

s∈N
[f(s, h∗(s))− f(s, h∗∗(s))][h∗(s)− h∗∗(s)]

≤ cf

∑

s∈N
[h∗(s)− h∗∗(s)][h∗(s)− h∗∗(s)] = cf‖h∗ − h∗∗‖2.

3. Solution of the system with positive defined kernels

Theorem 1. Let the operator K defined by (K) be a P-positive. Suppose
that the generator f : N × R → R of the superposition operator F given by
(11), satisfies condition (c) for some cf > 0 and f(s, 0) = 0 for all s ∈ N.
If

cfµK < 1 (13)

where µK is defined by (µ), then, for arbitrary g ∈ N(l2) the equation (2):

x = KFx + g

has, a solution x̂ ∈ N(l2). If g = Nl for some l ∈ l2 then there exists ĥ ∈ l2
such that x̂ = Nĥ, and

‖ĥ‖ ≤ ‖l‖
1− cfµK

; (14)

moreover, the solution x̂ is unique in the space lp.
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Proof. Let us put Πh = M∗h −N∗FNh −M∗l, and consider the operator
equation

Πh = 0 (15)
i.e. M∗h = N∗FNh + M∗l. If ĥ is a solution of the equation Πh = 0,
i.e. if M∗ĥ = N∗FNĥ + M∗l, holds, then, by the relation (10), we get
M∗(ĥ− C∗FNĥ− l) = 0, hence ĥ = C∗FNĥ + l because the operator M∗
has trivial null-space (see relation (8)).

On the other hand, applying the operator N to the last equation we get

Nĥ = NC∗FNĥ + Nl = KFNĥ + g (16)

by the relation (9). From the equation (16) and (2) we conclude that x̂ = Nĥ
is a solution of the system (1). Thus, in order to prove the existence of a
solution of the equation (2) we are going to study the equation Πh = 0,
where Π is defined above, under the assumptions of the Theorem 1.

One can examine that operator

Πh = M∗h−N∗FNh−M∗l (17)

which is monotone in the Minty-Browder sense (see, [13] or [7]), in fact, for
any h1, h2 ∈ l2 we have

〈Πh1 −Πh2, h1 − h2〉 = 〈M∗h1 −N∗FNh1 −M∗h2 + N∗FNh2, h1 − h2〉
= 〈M∗(h1 − h2), h1 − h2〉 − 〈N∗FNh1 −N∗FNh2, h1 − h2〉
= 〈M∗(h1 − h2), h1 − h2〉 − 〈FNh1 − FNh2, Nh1 −Nh2〉
= ‖h1 − h2‖2 − 〈FNh1 − FNh2, Nh1 −Nh2〉 ≥ ‖h1 − h2‖2

− cf 〈Nh1 −Nh2, Nh1 −Nh2〉 ≥ ‖h1 − h2‖2 − cf‖N‖2‖h1 − h2‖2

= (1− cf‖N‖2)‖h1 − h2‖2 ≥ (1− cfµK)‖h1 − h2‖2,

i.e.
〈Πh1 −Πh2, h1 − h2〉 ≥ (1− cfµK)‖h1 − h2‖2.

From here, on the sphere S = {h ∈ l2|‖h‖ = r} it follows that

〈Πh, h〉 = 〈Πh−Π0, h− 0〉+ 〈Π0, h〉 ≥ (1− cfµK)‖h‖2 − ‖l‖‖h‖
= (1− cfµK)r2 − ‖l‖r,

since F0 = 0 and M∗(h−C∗FNh−l) = Πh, taking h = 0 we have Π(0) = −l.
Consequently if we take a sphere S with

r ≥ ‖l‖
1− cfµK

then 〈Πh, h〉 ≥ 0 holds for any h ∈ S.
Now due the Minty-Browder existence principle, the equation (15) has

the unique solution ĥ ∈ S ⊂ l2. On the other hand, as it was shown above,
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x̂ = Nĥ is a solution of the Hammerstein nonlinear system (1). Moreover, if
(c) holds, x̂ ∈ l2 is the unique solution of the system (1). In order to prove
it, let us suppose that x̂ and ˆ̂x are two solutions of the system (1), with
g = Nl for some l ∈ l2. If we put

ĥ = C∗Fx̂ + l,
ˆ̂
h = C∗F ˆ̂x + l

then the elements ĥ and ˆ̂
h belong to l2, and since x̂ = Nĥ, ˆ̂x = N

ˆ̂
h , we

have
ĥ = C∗FNĥ + l,

ˆ̂
h = C∗FN

ˆ̂
h + l.

Let us consider now the operator (17), and the above given relation (8), we
get

Πĥ = M∗ĥ−M∗C∗FNĥ−M∗l = M∗(ĥ− C∗FNĥ− l) = M∗(ĥ− ĥ) = 0,

and

Πˆ̂
h = M∗ˆ̂h−M∗C∗FN

ˆ̂
h−M∗l = M∗(ˆ̂h− C∗FN

ˆ̂
h− l) = M∗(ˆ̂h− ˆ̂

h) = 0.

Since the equation Πh = 0 has only one solution, we conclude ĥ = ˆ̂
h, hence

x̂ = ˆ̂x, because the operator N has trivial null-space. ¤

4. Solution of the system with quasi-positive defined kernels

In above analysis the self-adjoint part (5) of the linear operator (K) was,
by presumption, positive defined. However, we can apply the described
methods to some classes of the operators which are not necessarily positive
defined. Let the linear operator (K) acts in lp but at the same time from
lp′ into lp, where p and p′ are as above. Moreover, let A and B be defined
as in (5) and (6), where K satisfies inequality (7). We suppose now that
A = 1

2(K + K∗) is a quasi-positive defined operator, i.e. operator A has at
most a finite number of the negative eigenvalues of the multiplicity 1. If a
matrix-kernel a(s, t) has at most a finite number (for example the first n) of
the negative eigenvalues each of the multiplicity 1, we can write this kernel
in the form

a(s, t) = −
n∑

i=1

αiei(s)ei(t) +
∞∑

i=n+1

αiei(s)ei(t) (s, t ∈ N) (18)

where all α1, α2, . . . , αn, αn+1, . . . are positive numbers. Moreover, the rela-
tion

l(s, t) = a(s, t) + 2
n∑

i=1

αiei(s)ei(t) (s, t ∈ N) (19)

gives an important connection between the kernel a(s, t) and the kernel l(s, t)
which has all positive eigenvalues α1, α2, . . . , αn, αn+1, . . . .
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In this situation we can consider the finite-dimensional orthogonal projec-
tion P of the l2 into the subspace of the eigenvectors of A which correspond
to the negative eigenvalues of A. The operator P acts at the same time
in lp and lp′ and commutes with A. Moreover, in the polar decomposition
A = UL mentioned in the previous section allows us to take

A = (I − 2P )L (20)

where L = (I − 2P )A is now a positive operator. As the operator A in the
previous analysis, the operator L from (20) can be represented in the form
L = DD∗, where D = L

1
2 acts from l2 into lp and D∗ acts from lp′ into l2.

We will call the operator K - P-quasi-positive if K satisfies condition (7),
and its self-adjoint part is a quasi-positive defined operator. Now we need
the next

Lemma 2. If the operator K is P-quasi-positive then operator M = D−1

K(D∗)−1 satisfies 〈Mh, h〉 = ‖h‖2 − 2‖Ph‖2 for all h ∈ l2.

Proof. For any h ∈ l2, holds

∆ = 〈Mh, h〉+ 〈h, Mh〉 − 2〈(I − 2P )h, h〉 = 〈D−1K(D∗)−1h, h〉
+ 〈D−1K∗(D∗)−1h, h〉 − 2〈(I − 2P )D∗(D∗)−1h,D∗(D∗)−1h〉

= 〈K(D∗)−1h, (D∗)−1h〉+ 〈K∗(D∗)−1h, (D∗)−1h〉
− 2〈D(I − 2P )D∗(D∗)−1h, (D∗)−1h〉

= 〈Kg, g〉+〈K∗g, g〉−2〈(I−2P )Lg, g〉 = 〈Kg, g〉+〈K∗g, g〉−2〈Ag, g〉 = 0.

Since ∆ = 〈M∗h, h〉 + 〈h,M∗h〉 − 2〈(I − 2P )h, h〉, from ∆ = 0, one can
easy get 〈Mh, h〉 = ‖h‖2 − 2‖Ph‖2. ¤

Now using Lemma 2 we have

|〈D−1B(D∗)−1h1, h2〉| = 〈B(D∗)−1h1, (D∗)−1h2〉| = |〈Bϕ,ψ〉|
=

1
2
|〈Kϕ, ψ〉 − 〈ϕ,Kψ〉| ≤ 1

2
β
√
〈Kϕ,ϕ〉

√
〈Kψ, ψ〉

=
1
2
β
√
〈Mh1, h1〉

√
〈Mh2, h2〉

=
1
2
β
√
‖h1‖2 − 2‖Ph1‖2

√
‖h2‖2 − 2‖Ph2‖2 ≤ 1

2
β‖h1‖‖h2‖

hence the operator M is bounded. Analogously we can prove the bounded-
ness of the operator N = K(D∗)−1; moreover, below we denote by M and
N , as in the previous section, the closure in l2 of the bounded operators
D−1K(D∗)−1 and K(D∗)−1.
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The operators M and N are defined on the whole space l2, and the rela-
tions

K = DMD∗, K = ND∗, N = DM, N∗ = M∗D∗ (21)
connect these operators. Below we use the number

νK = sup{ν|ν > 0, ‖Nh‖ ≥ √
ν‖Ph‖ (h ∈ l2)}, (ν)

which is, in the case K = K∗, in fact, the absolute value of the largest
negative eigenvalues of A = K, ([11] or [5]).

Suppose again that function f generates the superposition operator (11)
between lp and lp′ and satisfies the condition (c) with cf as the smallest real
number for which it holds.

Theorem 2. Let the operator K be defined by (K) be P-quasi-positive in l2.
Suppose that the generator f : N × R → R of the superposition operator F
given by (11), satisfies (c), for some cf > 0 and f(s, 0) = 0 for all s ∈ N. If

cfνK < −1 (22)

where νK is defined above by (ν), then, for arbitrary g ∈ N(l2), equation
(2):

x = KFx + g

has a solution x̂ ∈ N(l2). If g = Nl for some l ∈ l2 then there exists ĥ ∈ l2
such that x̂ = Nĥ, and

‖ĥ‖ ≤ − ‖l‖
1 + cfυK

; (23)

moreover, the solution x̂ is unique in the space lp.

Proof. The essential point of difference from the proof of Theorem 1, here
is how to use the operator Πh = M∗h − N∗FNh − M∗l ((17)), and the
equation (15) in order to provide application of the Minty’s theorem. In
fact, for all h1, h2 ∈ l2, we have now

〈Πh1 −Πh2, h1 − h2〉 = 〈M∗h1 −N∗FNh1 −M∗h2 + N∗FNh2, h1 − h2〉
= 〈M∗(h1 − h2), h1 − h2〉 − 〈N∗FNh1 −N∗FNh2, h1 − h2〉
= 〈M∗(h1 − h2), h1 − h2〉 − 〈FNh1 − FNh2, Nh1 −Nh2〉
≥ ‖h1 − h2‖2 − 2‖P (h1 − h2)‖2 − cf 〈Nh1 −Nh2, Nh1 −Nh2〉
≥ ‖h1 − h2‖2 − 2‖P (h1 − h2)‖2 − cfυK‖P (h1 − h2)‖2

= ‖h1 − h2‖2 − (2 + cfυK)‖P (h1 − h2)‖2 ≥ −(1 + cfυK)‖h1 − h2‖2.

We remark that for all h ∈ S ⊂ l2, since Π0 = −l, we get

〈Πh, h〉 = 〈Πh−Π0, h− 0〉+ 〈Π0, h〉 ≥ −(1 + cfυK)‖h‖2 − ‖l‖‖h‖
= −(1 + cfυK)r2 − ‖l‖r.
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Consequently if we chose a sphere S = {h ∈ l2|‖h‖ = r} with

r ≥ − ‖l‖
1 + cfυK

then we can see that 〈Πh, h〉 ≥ 0 holds for any h ∈ S.
The last part of the proof of Theorem 2 is literally the same as the

corresponding part of the proof in Theorem 1, so that the Theorem 2 is
proved. ¤

5. Conclusion

In conclusion, we note that the results obtained in this article on the
existence of unique solution of the system (1), allows an easy application.
One can carry over our argument to the case when operators (K) and (11)
act in weighted spaces lp,σ, where σ is a weight function.

Acknowledgment. The author would like to thank the referee for useful
suggestions for the improvement of the article.
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