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CALCULATION OF THE MOMENTS OF THE CARDINAL
B-SPLINE

ZLATKO UDOVIČIĆ

Dedicated to Professor Harry Miller on the occasion of his 70th birthday

Abstract. In this paper we describe five methods for the calculation
of the moments

Mn,m =

∫ m

0

ϕm(t)tndt, n ∈ N0,

where weight function ϕm(·) is the cardinal B-spline of order m, m ∈ N.

1. Introduction

Calculating moments of a given weight function has essential significance
in the construction of the orthogonal polynomials and quadrature rules, as
well as in other fields of the approximation theory. On the other hand, a
very frequent weight function is the exactly cardinal B-spline (finite elements
method, multiresolution approximation,. . .). In this paper we describe five
methods for calculation of the moments of the cardinal B-spline. The first
three methods are simple consequences of the basic properties of the cardinal
B-spline. Their basic disadvantage is a recursive calculation. The fourth
method can be used to calculate the first m−1 moments (if m is even) or the
first m moments (if m is odd). This method is not recursive and uses only
values of the cardinal B-spline at integer points. The basic disadvantage
of this method is, of course, the limited number of moments which can
be calculated. The last method is also a simple consequence of the basic
properties of the cardinal B-spline. This method is the most valuable in
practical realizations.

At the end of the introductory part we give the definition of the cardinal
B-spline and a list of its basic properties.
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Definition 1. The cardinal B-spline of the first order, denoted by ϕ1(·), is
the characteristic function of the unit interval, i.e.

ϕ1(x) =

{
1, x ∈ [0, 1)
0, otherwise.

The Cardinal B-spline of order m,m ∈ N, denoted by ϕm(·), is

ϕm(x) = (ϕm−1 ∗ ϕ1) (x) =
∫

R
ϕm−1(x− t)ϕ1(t)dt

=
∫ 1

0
ϕm−1(x− t)dt.

Theorem 1. The cardinal B-spline of order m,m ∈ N, has the following
properties

(1) For every m times differentiable function g(·)
∫

R
ϕm(x)g(m)(x)dx =

m∑

k=0

(−1)m−k

(
m

k

)
g(k); (1)

(2) suppϕm(·) = [0, m];
(3) (∀t ∈ [0,m])ϕm(t) ≥ 0;

(4)
∫

R
ϕm(t)dt = 1;

(5)

(∀t ∈ [0,m])ϕm(t) =
t

m− 1
ϕm−1(t) +

m− t

m− 1
ϕm−1(t− 1),m ≥ 2; (2)

(6)

(∀t ∈ [0, m])ϕ′m(t) = ϕm−1(t)− ϕm−1(t− 1),m ≥ 2; (3)

(7)
(
∀t ∈ [0,

m

2
]
)

ϕm

(m

2
− t

)
= ϕm

(m

2
+ t

)
;

(8)

(∀a ∈ R)
∑

i∈Z
ϕm(i− a) = 1; (4)

(9) The cardinal B-spline satisfies the so called refinable equation

(∀t ∈ R)ϕm(t) =
1

2m−1

m∑

k=0

(
m

k

)
ϕm(2t− k). (5)

The proof of this theorem and many more details on the cardinal B-splines
one can find in [1] or [2].
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2. Calculation of the moments

The first method:
Using the refinable equation (5) we obtain

Mn,m =
1

2m−1

m∑

k=0

(
m

k

) ∫ m

0
ϕm(2t− k)tndt

=
1

2m+n

m∑

k=0

(
m

k

)∫ m

0
ϕm(x)(x + k)ndx

=
1

2m+n

m∑

k=0

(
m

k

)[ n−1∑

l=0

(
n

l

)
kn−lMl,m +Mn,m

]

=
1

2m+n

m∑

k=1

n−1∑

l=0

(
m

k

)(
n

l

)
kn−lMl,m +

1
2n
Mn,m.

Hence,

Mn,m =
1

2m(2n − 1)

m∑

k=1

n−1∑

l=0

(
m

k

)(
n

l

)
kn−lMl,m

The second method:
Using equality (2) we obtain

Mn,m =
1

m− 1

∫ m

0
[ϕm−1(t)t + ϕm−1(t− 1)(m− t)] tndt

=
1

m− 1

∫ m−1

0
ϕm−1(x)xn+1dx

+
1

m− 1

∫ m−1

0
ϕm−1(x)(m− 1− x)(x + 1)ndx

=
1

m− 1
Mn+1,m−1 +

n∑

k=0

(
n

k

)
Mk,m−1 − 1

m− 1

n∑

k=0

(
n

k

)
Mk+1,m−1

=
n∑

k=0

(
n

k

)
Mk,m−1 − 1

m− 1

n−1∑

k=0

(
n

k

)
Mk+1,m−1

= 1 +
n∑

k=1

[(
n

k

)
− 1

m− 1

(
n

k − 1

)]
Mk,m−1.
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So, we have that

Mn,m =
n∑

k=0

(
n

k

)
Mk,m−1 − 1

m− 1

n−1∑

k=0

(
n

k

)
Mk+1,m−1 (6)

= 1 +
n∑

k=1

[(
n

k

)
− 1

m− 1

(
n

k − 1

)]
Mk,m−1.

The third method:
Using equality (3) and the fact ϕm(0) = ϕm(m) = 0, after inte-

gration by parts, we obtain

Mn,m =
1

n + 1

∫ m

0
[ϕm−1(t− 1)− ϕm−1(t)] tn+1dt

=
1

n + 1

[∫ m−1

0
ϕm−1(t)(t + 1)n+1dt −

∫ m−1

0
ϕm−1(t)tn+1dt

]

=
1

n + 1

n∑

k=0

(
n + 1

k

)
Mk,m−1.

The fourth method is, of course, the most important result of this paper.
This method generalizes equality (4) and we will formulate it as a theorem.

Theorem 2. For any a ∈ R and every m ∈ N,m ≥ 2, the following equality
holds

Mn,m =
∑

i∈Z
ϕm(i− a)(i− a)n, 0 ≤ n ≤ m− 1. (7)

Proof. We will prove our statement by induction in m ∈ N, m ≥ 2. For
m = 2 it can be checked directly.

Assume that

Mn,m =
∑

i∈Z
ϕm(i− a)(i− a)n,

for any a ∈ R and every n such that 0 ≤ n ≤ m − 1. Our aim is to prove
that

Mn,m+1 =
∑

i∈Z
ϕm+1(i− a)(i− a)n

for any a ∈ R and every n such that 0 ≤ n ≤ m.
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Let 0 ≤ n ≤ m− 1. Using the equality (6) we have

Mn,m+1 =
n∑

k=0

(
n

k

)
Mk,m − 1

m

n−1∑

k=0

(
n

k

)
Mk+1,m

=
n∑

k=0

(
n

k

) ∑

i∈Z
ϕm(i− a)(i− a)k

− 1
m

n−1∑

k=0

(
n

k

) ∑

i∈Z
ϕm(i− a)(i− a)k+1

=
1
m

∑

i∈Z
ϕm(i− a)

{
m(i− a + 1)n

− (i− a)
[
(i− a + 1)n − (i− a)n

]}

=
1
m

∑

i∈Z
ϕm(i− a)(i− a)n+1

+
1
m

∑

i∈Z
ϕm(i− a)(m− i + a)(i− a + 1)n

=
1
m

∑

i∈Z
ϕm(i− a)(i− a)n+1

+
1
m

∑

i∈Z
ϕm(i− a− 1)(m + 1− i + a)(i− a)n

=
1
m

∑

i∈Z

[
ϕm(i− a)(i− a)

+ ϕm(i− a− 1)(m + 1− i + a)
]
(i− a)n

=
∑

i∈Z
ϕm+1(i− a)(i− a)n.

It remains to prove our statement for n = m. Again, using the equality (6)
we have

Mm,m+1 =
m∑

k=0

(
m

k

)
Mk,m − 1

m

m−1∑

k=0

(
m

k

)
Mk+1,m

=
m−1∑

k=0

(
m

k

)
Mk,m − 1

m

m−2∑

k=0

(
m

k

)
Mk+1,m
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=
m−1∑

k=0

(
m

k

)∑

i∈Z
ϕm(i− a)(i− a)k

− 1
m

m−2∑

k=0

(
m

k

)∑

i∈Z
ϕm(i− a)(i− a)k+1

=
1
m

∑

i∈Z
ϕm(i− a)

{
m

[
(i− a + 1)m − (i− a)m

]

− (i− a)
[
(i− a + 1)m − (i− a)m −m(i− a)m−1

]}

=
1
m

∑

i∈Z
ϕm(i− a)(i− a)m+1

+
1
m

∑

i∈Z
ϕm(i− a)(m− i + a)(i− a + 1)m

=
1
m

∑

i∈Z
ϕm(i− a)(i− a)m+1

+
1
m

∑

i∈Z
ϕm(i− a− 1)(m− i + 1 + a)(i− a)m

=
1
m

∑

i∈Z

[
ϕm(i− a)(i− a)

+ ϕm(i− a− 1)(m + 1− i + a)
]
(i− a)m

=
∑

i∈Z
ϕm+1(i− a)(i− a)m,

which completes the proof. ¤

In particular, for a = 0 we have

Mn,m =
∑

i∈Z
ϕm(i)in =

m−1∑

i=1

ϕm(i)in,

for every m ∈ N and every n, 0 ≤ n ≤ m − 1. This formula has also been
obtained in [3], but in a different way.

Furthermore, the quadrature rule

∫ m

0
ϕm(x)f(x)dx ≈

m−1∑

i=1

ϕm(i)f(i).
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can be seen as a rule of Newton-Cotes type with the nodes 1, 2, . . . ,m− 1,
the coefficients ϕm(1), ϕm(2), . . . , ϕm(m− 1) and the weight function ϕm(·)
(system of the nodes and coefficients can be extended by the nodes 0 and m,
i.e. by the coefficients ϕm(0) and ϕm(m)). In accordance with the previous
result, this rule is exact for any polynomial of degree less than m. Since
the weight function is even with respect to the midpoint of the interval of
integration [0, m] and the nodes are symmetric with respect to the midpoint
of the same interval, this rule will be also exact for the polynomials of degree
m, when m is odd. Finally, in the case when a is integer and m is odd, using
the previous results, one can easily check that equality (7) also holds for
n = m.

The fifth method:

Putting g(x) =
xm+n

(m + n)(m + n− 1) . . . (n + 1)
in (1) immediately

gives

Mn,m =
m∑

k=0

(−1)m−k

(
m

k

)
km+n

(m + n)(m + n− 1) . . . (n + 1)
.
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