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RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL
APPROXIMATION OF CSISZAR’S f–DIVERGENCE

GEORGE A. ANASTASSIOU

Abstract. Here are established various tight probabilistic inequalities
that give nearly best estimates for the Csiszar’s f -divergence. These
involve Riemann-Liouville and Caputo fractional derivatives of the di-
recting function f. Also a lower bound is given for the Csiszar’s distance.
The Csiszar’s discrimination is the most essential and general measure
for the comparison between two probability measures. This is continu-
ation of [4].

1. Preliminaries

Throughout this paper we use the following.
I) Let f be a convex function from (0,+∞) into R which is strictly convex

at 1 with f (1) = 0. Let (X,A, λ) be a measure space, where λ is a finite or
a σ-finite measure on (X,A) . And let µ1, µ2 be two probability measures on
(X,A) such that µ1 ¿ λ, µ2 ¿ λ (absolutely continuous), e.g. λ = µ1 + µ2.

Denote by p = dµ1

dλ , q = dµ2

dλ the (densities) Radon-Nikodym derivatives of
µ1, µ2 with respect to λ. Here we assume that

0 < a ≤ p

q
≤ b, a.e. on X and a ≤ 1 ≤ b.

The quantity

Γf (µ1, µ2) =
∫

X
q (x) f

(
p (x)
q (x)

)
dλ (x) , (1)

was introduced by I. Csiszar in 1967, see [7], and is called f -divergence of
the probability measures µ1 and µ2. By Lemma 1.1 of [7], the integral (1)
is well-defined and Γf (µ1, µ2) ≥ 0 with equality only when µ1 = µ2. In [7]
the author without proof mentions that Γf (µ1, µ2) does not depend on the
choice of λ.
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For a proof of the last see [4], Lemma 1.1.
The concept of f -divergence was introduced first in [6] as a generalization

of Kullback’s “information for discrimination” or I-divergence (generalized
entropy) [11], [12] and of Rényi’s “information gain” (I-divergence of order
α) [13]. In fact the I-divergence of order 1 equals

Γu log2 u (µ1, µ2) .

The choice f (u) = (u− 1)2 produces again a known measure of difference
of distributions that is called κ2−divergence, of course the total variation
distance |µ1 − µ2| =

∫
X |p (x)− q (x)| dλ (x) equals Γ|u−1| (µ1, µ2) .

Here by assuming f (1) = 0 we can consider Γf (µ1, µ2) as a measure of
the difference between the probability measures µ1, µ2. The f -divergence is
in general asymmetric in µ1 and µ2. But since f is convex and strictly convex
at 1 (see Lemma 2, [4]) so is

f∗ (u) = uf

(
1
u

)
(2)

and as in [7] we get
Γf (µ2, µ1) = Γf∗ (µ1, µ2) . (3)

In Information Theory and Statistics many other concrete divergences are
used which are special cases of the above general Csiszar f -divergence, e.g.
Hellinger distance DH , α-divergence Dα, Bhattacharyya distance DB, Har-
monic distance DHα , Jeffrey’s distance DJ , triangular discrimination D∆, for
all these see, e.g. [5], [9]. The problem of finding and estimating the proper
distance (or difference or discrimination) of two probability distributions is
one of the major ones in Probability Theory.

The above f -divergence measures in their various forms have been also
applied to Anthropology, Genetics, Finance, Economics, Political Science,
Biology, Approximation of Probability distributions, Signal Processing and
Pattern Recognition. A great inspiration for this article has been the very
important monograph on the topic by S. Dragomir [9].

II) Here we follow [8].
We start with

Definition 1. Let ν ≥ 0, the operator Jν
a , defined on L1 (a, b) by

Jν
a f (x) :=

1
Γ (ν)

∫ x

a
(x− t)ν−1 f (t) dt (4)

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of
order ν.

For ν = 0, we set J0
a := I, the identity operator. Here Γ stands for the

gamma function.
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Let α > 0, f ∈ L1 (a, b) , a, b ∈ R, see [8]. Here [·] stands for the integral
part of the number.

We define the generalized Riemann-Liouville fractional derivative of f of
order α by

Dα
a f (s) :=

1
Γ (m− α)

(
d

ds

)m ∫ s

a
(s− t)m−α−1 f (t) dt,

where m := [α] + 1, s ∈ [a, b] , see also [1], Remark 46 there.
In addition, we set

D0
af := f,

J−α
a f := Dα

a f, if α > 0,

D−α
a f := Jα

a f, if 0 < α ≤ 1,

Dn
af = f (n), for n ∈ N. (5)

We need

Definition 2. ([3]) We say that f ∈ L1 (a, b) has an L∞ fractional derivative
Dα

a f (α > 0) in [a, b] , a, b ∈ R, iff Dα−k
a f ∈ C ([a, b]) , k = 1, . . . , m := [α]+

1, and Dα−1
a f ∈ AC ([a, b]) (absolutely continuous functions) and Dα

a f ∈
L∞ (a, b) .

Lemma 3. ([3]) Let β > α ≥ 0, f ∈ L1 (a, b) , a, b ∈ R, have L∞ fractional
derivative Dβ

af in [a, b] , let Dβ−k
a f (a) = 0 for k = 1, . . . , [β] + 1. Then

Dα
a f (s) =

1
Γ (β − α)

∫ s

a
(s− t)β−α−1 Dβ

af (t) dt, ∀s ∈ [a, b] . (6)

Here Dα
a f ∈ AC ([a, b]) for β − α ≥ 1, and Dα

a f ∈ C ([a, b]) for β − α ∈
(0, 1) .

Here ACn ([a, b]) is the space of functions with absolutely continuous
(n− 1)-st derivative.

We need to mention

Definition 4. ([8]) Let ν ≥ 0, n := dνe , d·e is ceiling of the number,
f ∈ ACn ([a, b]) . We call Caputo fractional derivative

Dν
∗af (x) :=

1
Γ (n− ν)

∫ x

a
(x− t)n−ν−1 f (n) (t) dt, ∀x ∈ [a, b] . (7)

The above function Dν∗af (x) exists almost everywhere for x ∈ [a, b] .
We need

Proposition 5. ([8]) Let ν ≥ 0, n := dνe , f ∈ ACn ([a, b]) . Then Dν∗af
exists iff the generalized Riemann-Liouville fractional derivative Dν

af exists.
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Proposition 6. ([8]) Let ν ≥ 0, n := dνe . Assume that f is such that both
Dν∗af and Dν

af exist. Suppose that f (k) (a) = 0 for k = 0, 1, . . . , n− 1. Then

Dν
∗af = Dν

af. (8)

In conclusion

Corollary 7. ([2]) Let ν ≥ 0, n := dνe , f ∈ ACn ([a, b]) , Dν∗af exists or
Dν

af exists, and f (k) (a) = 0, k = 0, 1, . . . , n− 1. Then

Dν
af = Dν

∗af. (9)

We need

Theorem 8. ([2]) Let ν ≥ 0, n := dνe , f ∈ ACn ([a, b]) and f (k) (a) = 0,
k = 0, 1, . . . , n− 1. Then

f (x) =
1

Γ (ν)

∫ x

a
(x− t)ν−1 Dν

∗af (t) dt. (10)

We also need

Theorem 9. ([2]) Let ν ≥ γ + 1, γ ≥ 0. Call n := dνe . Assume f ∈
ACn ([a, b]) such that f (k) (a) = 0, k = 0, 1, . . . , n−1, and Dν∗af ∈ L∞ (a, b) .
Then Dγ

∗af ∈ AC ([a, b]) , and

Dγ
∗af (x) =

1
Γ (ν − γ)

∫ x

a
(x− t)ν−γ−1 Dν

∗af (t) dt, ∀x ∈ [a, b] . (11)

Theorem 10. ([2])Let ν ≥ γ +1, γ ≥ 0, n := dνe . Let f ∈ ACn ([a, b]) such
that f (k) (a) = 0, k = 0, 1, . . . , n− 1. Assume ∃Dν

af (x) ∈ R, ∀x ∈ [a, b] , and
Dν

af ∈ L∞ (a, b) . Then Dγ
af ∈ AC ([a, b]) , and

Dγ
af (x) =

1
Γ (ν − γ)

∫ x

a
(x− t)ν−γ−1 Dν

af (t) dt, ∀x ∈ [a, b] . (12)

2. Results

Here f and the whole setting is as in 1. Preliminaries (I). We present first
results regarding the Riemann-Liouville fractional derivative.

Theorem 11. Let β > 0, f ∈ L1 (a, b) , have L∞ fractional derivative Dβ
af

in [a, b] , let Dβ−k
a f (a) = 0 for k = 1, . . . , [β] + 1. Also assume 0 < a ≤

p(x)
q(x) ≤ b, a.e. on X, a < b. Then

Γf (µ1, µ2) ≤

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β + 1)

∫

X
q (x)1−β (p (x)− aq (x))β dλ (x) . (13)
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Proof. By (6) , α = 0, we get

f (s) =
1

Γ (β)

∫ s

a
(s− t)β−1 Dβ

af (t) dt, all a ≤ s ≤ b. (14)

Then

|f (s)| ≤ 1
Γ (β)

∫ s

a
(s− t)β−1

∣∣∣Dβ
af (t)

∣∣∣ dt

≤

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β)

∫ s

a
(s− t)β−1 dt

=

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β)
(s− a)β

β

=

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β + 1)
(s− a)β , all a ≤ s ≤ b. (15)

I.e. we have that

|f (s)| ≤

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β + 1)
(s− a)β , all a ≤ s ≤ b. (16)

Consequently we obtain

Γf (µ1, µ2) =
∫

X
q (x) f

(
p (x)
q (x)

)
dλ (x)

≤

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β + 1)

∫

X
q (x)

(
p (x)
q (x)

− a

)β

dλ (x)

=

∥∥∥Dβ
af

∥∥∥
∞,[a,b]

Γ (β + 1)

∫

X
q (x)1−β (p (x)− aq (x))β dλ (x) , (17)

proving the claim. ¤
Next we give an Lδ result.

Theorem 12. Same assumptions as in Theorem 11. Let γ, δ > 1 : 1
γ + 1

δ = 1
and γ (β − 1) + 1 > 0. Then

Γf (µ1, µ2) ≤

∥∥∥Dβ
af

∥∥∥
δ,[a,b]

Γ (β) (γ (β − 1) + 1)1/γ

∫

X
q (x)2−β− 1

γ (p (x)− aq (x))β−1+ 1
γ dλ (x) . (18)
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Proof. By (6) , α = 0, we get again

f (s) =
1

Γ (β)

∫ s

a
(s− t)β−1 Dβ

af (t) dt, all a ≤ s ≤ b. (19)

Hence

|f (s)| ≤ 1
Γ (β)

∫ s

a
(s− t)β−1

∣∣∣Dβ
af (t)

∣∣∣ dt

≤ 1
Γ (β)

(∫ s

a
(s− t)γ(β−1) dt

)1/γ (∫ s

a

∣∣∣Dβ
af (t)

∣∣∣
δ
dt

)1/δ

≤

∥∥∥Dβ
af

∥∥∥
δ,[a,b]

Γ (β)
(s− a)β−1+ 1

γ

(γ (β − 1) + 1)1/γ
, all a ≤ s ≤ b. (20)

That is

|f (s)| ≤

∥∥∥Dβ
af

∥∥∥
δ,[a,b]

Γ (β)
(s− a)β−1+ 1

γ

(γ (β − 1) + 1)1/γ
, alla ≤ s ≤ b. (21)

Consequently we obtain

Γf (µ1, µ2) ≤
∫

X
q

∣∣∣∣f
(

p

q

)∣∣∣∣ dλ

≤

∥∥∥Dβ
af

∥∥∥
δ,[a,b]

Γ (β) (γ (β − 1) + 1)1/γ

∫

X
q

(
p

q
− a

)β−1+ 1
γ

dλ

=

∥∥∥Dβ
af

∥∥∥
δ,[a,b]

Γ (β) (γ (β − 1) + 1)1/γ

∫

X
q
2−β− 1

γ (p− aq)β−1+ 1
γ dλ, (22)

proving the claim. ¤
An L1 estimate follows.

Theorem 13. Same assumptions as in Theorem 11. Let β ≥ 1. Then

Γf (µ1, µ2) ≤

∥∥∥Dβ
af

∥∥∥
1,[a,b]

Γ (β)

(∫

X
(q (x))2−β (p (x)− aq (x))β−1 dλ (x)

)
(23)

Proof. By (19) we have

|f (s)| ≤ 1
Γ (β)

∫ s

a
(s− t)β−1

∣∣∣Dβ
af (t)

∣∣∣ dt

≤ (s− a)β−1

Γ (β)

∫ b

a

∣∣∣Dβ
af (t)

∣∣∣ dt =
(s− a)β−1

Γ (β)

∥∥∥Dβ
af

∥∥∥
1,[a,b]

. (24)
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I.e.

|f (s)| ≤ (s− a)β−1

Γ (β)

∥∥∥Dβ
af

∥∥∥
1,[a,b]

, (25)

for all s in [a, b] . Therefore

Γf (µ1, µ2) ≤
∫

X
q

∣∣∣∣f
(

p

q

)∣∣∣∣ dλ ≤

∥∥∥Dβ
af

∥∥∥
1,[a,b]

Γ (β)

∫

X
q

(
p

q
− a

)β−1

dλ

=

∥∥∥Dβ
af

∥∥∥
1,[a,b]

Γ (β)

(∫

X
q2−β (p− aq)β−1 dλ

)
, (26)

proving the claim. ¤

We continue with results regarding the Caputo fractional derivative.

Theorem 14. Let ν > 0, n := dνe , f ∈ ACn ([a, b]) and f (k) (a) = 0,
k = 0, 1, . . . , n− 1. Assume Dν∗af ∈ L∞ (a, b) , 0 < a ≤ p(x)

q(x) ≤ b, a.e. on X,

a < b. Then

Γf (µ1, µ2) ≤
‖Dν∗af‖∞,[a,b]

Γ (ν + 1)

∫

X
q (x)1−ν (p (x)− aq (x))ν dλ (x) . (27)

Proof. Similar to Theorem 11, using Theorem 8. ¤

Next we give an Lδ result.

Theorem 15. Assume all as in Theorem 14. Let γ, δ > 1 : 1
γ + 1

δ = 1 and
γ (ν − 1) + 1 > 0 . Then

Γf (µ1, µ2) ≤
‖Dν∗af‖δ,[a,b]

Γ (ν) (γ (ν − 1) + 1)1/γ

∫

X
q (x)2−ν− 1

γ (p (x)

− aq (x))ν−1+ 1
γ dλ (x) . (28)

Proof. Similar to Theorem 12, using Theorem 8. ¤

It follows an L1 estimate.

Theorem 16. Assume all as in Theorem 14. Let ν ≥ 1. Then

Γf (µ1, µ2) ≤
‖Dν∗af‖1,[a,b]

Γ (ν)

(∫

X
(q (x))2−ν (p (x)− aq (x))ν−1 dλ (x)

)
.

(29)

Proof. Similar to Theorem 13, using Theorem 8. ¤

Regarding again the Riemann-Liouville fractional derivative we need:
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Corollary 17. Let ν ≥ 0, n := dνe , f ∈ ACn ([a, b]) , ∃Dν
af (x) ∈ R,

∀x ∈ [a, b] , f (k) (a) = 0, k = 0, 1, . . . , n− 1. Then

f (x) =
1

Γ (ν)

∫ x

a
(x− t)ν−1 Dν

af (t) dt. (30)

Proof. By Corollary 7 and Theorem 8. ¤
We continue with results again regarding the Riemann-Liouville fractional

derivative.

Theorem 18. Let ν > 0, n := dνe , f ∈ ACn ([a, b]) , ∃Dν
af (x) ∈ R, ∀x ∈

[a, b] , f (k) (a) = 0, k = 0, 1, . . . , n − 1. Assume Dν
af ∈ L∞ (a, b) , 0 < a ≤

p(x)
q(x) ≤ b, a.e. on X, a < b. Then

Γf (µ1, µ2) ≤
‖Dν

af‖∞,[a,b]

Γ (ν + 1)

∫

X
q (x)1−ν (p (x)− aq (x))ν dλ (x) . (31)

Proof. Similar to Theorem 11, using Corollary 17. ¤
Next we give the corresponding Lδ result.

Theorem 19. Assume all as in Theorem 18. Let γ, δ > 1 : 1
γ + 1

δ = 1 and
γ (ν − 1) + 1 > 0 . Then

Γf (µ1, µ2) ≤
‖Dν

af‖δ,[a,b]

Γ (ν) (γ (ν − 1) + 1)1/γ

∫

X
q (x)2−ν− 1

γ (p (x)

− aq (x))ν−1+ 1
γ dλ (x) . (32)

Proof. Similar to Theorem 12, using Corollary 17. ¤
It follows the L1 estimate.

Theorem 20. Assume all as in Theorem 18. Let ν ≥ 1. Then

Γf (µ1, µ2) ≤
‖Dν

af‖1,[a,b]

Γ (ν)

(∫

X
(q (x))2−ν (p (x)− aq (x))ν−1 dλ (x)

)
. (33)

Proof. Similar to Theorem 13, using Corollary 17. ¤
We need

Theorem 21. (Taylor expansion for Caputo derivatives, [8], p. 40) Assume
ν ≥ 0, n = dνe , and f ∈ ACn ([a, b]) . Then

f (x) =
n−1∑

k=0

f (k) (a)
k!

(x− a)k +
1

Γ (ν)

∫ x

a
(x− t)ν−1 Dν

∗af (t) dt, ∀x ∈ [a, b] .

(34)
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We make

Remark 22. Let ν > 0, n = dνe , and f ∈ ACn ([a, b]) .
If Dν∗af ≥ 0

(≤0)
over [a, b] , then

∫ x

a
(x− t)ν−1 Dν

∗af (t) dt ≥ 0
(≤0)

on [a, b] .

By (34) then we obtain

f (x) ≥ (≤)
n−1∑

k=0

f (k) (a)
k!

(x− a)k , (35)

∀x ∈ [a, b] . Hence

qf

(
p

q

)
≥ (≤)

n−1∑

k=0

f (k) (a)
k!

q

(
p

q
− a

)k

, a.e. on X. (36)

Consequently we get

Γf (µ1, µ2) ≥ (≤)
n−1∑

k=0

f (k) (a)
k!

∫

X
q1−k (p− aq)k dλ. (37)

We have established

Theorem 23. Let ν > 0, n = dνe , and f ∈ ACn ([a, b]) . If Dν∗af ≥ 0
(≤0)

on

[a, b] , then

Γf (µ1, µ2) ≥ (≤)
n−1∑

k=0

f (k) (a)
k!

(∫

X
(q (x))1−k (p (x)− aq (x))k dλ (x)

)
.

(38)

We finish with

Remark 24. Using Lemma 3, Theorem 9 and Theorem 10 and in their
settings, for g any of Dα

a f, Dγ
∗af, Dγ

af, which fulfill the conditions and as-
sumptions of 1. Preliminaries (I), we can find as above similar estimates for
Γg (µ1, µ2) .
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