RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR'S *f*-DIVERGENCE

GEORGE A. ANASTASSIOU

ABSTRACT. Here are established various tight probabilistic inequalities that give nearly best estimates for the Csiszar's f-divergence. These involve Riemann-Liouville and Caputo fractional derivatives of the directing function f. Also a lower bound is given for the Csiszar's distance. The Csiszar's discrimination is the most essential and general measure for the comparison between two probability measures. This is continuation of [4].

1. Preliminaries

Throughout this paper we use the following.

I) Let f be a convex function from $(0, +\infty)$ into \mathbb{R} which is strictly convex at 1 with f(1) = 0. Let $(X, \mathcal{A}, \lambda)$ be a measure space, where λ is a finite or a σ -finite measure on (X, \mathcal{A}) . And let μ_1, μ_2 be two probability measures on (X, \mathcal{A}) such that $\mu_1 \ll \lambda, \mu_2 \ll \lambda$ (absolutely continuous), e.g. $\lambda = \mu_1 + \mu_2$. Denote by $p = \frac{d\mu_1}{d\lambda}, q = \frac{d\mu_2}{d\lambda}$ the (densities) Radon-Nikodym derivatives of μ_1, μ_2 with respect to λ . Here we assume that

$$0 < a \le \frac{p}{q} \le b$$
, a.e. on X and $a \le 1 \le b$.

The quantity

$$\Gamma_f(\mu_1, \mu_2) = \int_X q(x) f\left(\frac{p(x)}{q(x)}\right) d\lambda(x), \qquad (1)$$

was introduced by I. Csiszar in 1967, see [7], and is called *f*-divergence of the probability measures μ_1 and μ_2 . By Lemma 1.1 of [7], the integral (1) is well-defined and $\Gamma_f(\mu_1, \mu_2) \geq 0$ with equality only when $\mu_1 = \mu_2$. In [7] the author without proof mentions that $\Gamma_f(\mu_1, \mu_2)$ does not depend on the choice of λ .

²⁰⁰⁰ Mathematics Subject Classification. 26A33, 26D15, 28A25, 60E15.

Key words and phrases. Csiszar's discrimination, Csiszar's distance, fractional calculus, Riemann-Liouville and Caputo fractional derivatives.

For a proof of the last see [4], Lemma 1.1.

The concept of f-divergence was introduced first in [6] as a generalization of Kullback's "information for discrimination" or I-divergence (generalized entropy) [11], [12] and of Rényi's "information gain" (I-divergence of order α) [13]. In fact the I-divergence of order 1 equals

$$\Gamma_{u\log_2 u}\left(\mu_1,\mu_2\right).$$

The choice $f(u) = (u-1)^2$ produces again a known measure of difference of distributions that is called \varkappa^2 -divergence, of course the total variation distance $|\mu_1 - \mu_2| = \int_X |p(x) - q(x)| d\lambda(x)$ equals $\Gamma_{|u-1|}(\mu_1, \mu_2)$.

Here by assuming f(1) = 0 we can consider $\Gamma_f(\mu_1, \mu_2)$ as a measure of the difference between the probability measures μ_1, μ_2 . The *f*-divergence is in general asymmetric in μ_1 and μ_2 . But since *f* is convex and strictly convex at 1 (see Lemma 2, [4]) so is

$$f^*\left(u\right) = uf\left(\frac{1}{u}\right) \tag{2}$$

and as in [7] we get

$$\Gamma_f(\mu_2, \mu_1) = \Gamma_{f^*}(\mu_1, \mu_2).$$
(3)

In Information Theory and Statistics many other concrete divergences are used which are special cases of the above general Csiszar *f*-divergence, e.g. Hellinger distance D_H , α -divergence D_{α} , Bhattacharyya distance D_B , Harmonic distance $D_{H_{\alpha}}$, Jeffrey's distance D_J , triangular discrimination D_{Δ} , for all these see, e.g. [5], [9]. The problem of finding and estimating the proper distance (or difference or discrimination) of two probability distributions is one of the major ones in Probability Theory.

The above *f*-divergence measures in their various forms have been also applied to Anthropology, Genetics, Finance, Economics, Political Science, Biology, Approximation of Probability distributions, Signal Processing and Pattern Recognition. A great inspiration for this article has been the very important monograph on the topic by S. Dragomir [9].

II) Here we follow [8].

We start with

Definition 1. Let $\nu \geq 0$, the operator J_a^{ν} , defined on $L_1(a, b)$ by

$$J_{a}^{\nu}f(x) := \frac{1}{\Gamma(\nu)} \int_{a}^{x} (x-t)^{\nu-1} f(t) dt$$
(4)

for $a \le x \le b$, is called the Riemann-Liouville fractional integral operator of order ν .

For $\nu = 0$, we set $J_a^0 := I$, the identity operator. Here Γ stands for the gamma function.

Let $\alpha > 0$, $f \in L_1(a, b)$, $a, b \in \mathbb{R}$, see [8]. Here [·] stands for the integral part of the number.

We define the generalized Riemann-Liouville fractional derivative of f of order α by

$$D_a^{\alpha}f(s) := \frac{1}{\Gamma(m-\alpha)} \left(\frac{d}{ds}\right)^m \int_a^s (s-t)^{m-\alpha-1} f(t) dt,$$

where $m := [\alpha] + 1$, $s \in [a, b]$, see also [1], Remark 46 there.

In addition, we set

$$D_a^0 f := f,$$

$$J_a^{-\alpha} f := D_a^{\alpha} f, \quad \text{if } \alpha > 0,$$

$$D_a^{-\alpha} f := J_a^{\alpha} f, \quad \text{if } 0 < \alpha \le 1,$$

$$D_a^n f = f^{(n)}, \quad \text{for } n \in \mathbb{N}.$$
(5)

We need

Definition 2. ([3]) We say that $f \in L_1(a, b)$ has an L_{∞} fractional derivative $D_a^{\alpha}f(\alpha > 0)$ in [a, b], $a, b \in \mathbb{R}$, iff $D_a^{\alpha-k}f \in C([a, b])$, $k = 1, \ldots, m := [\alpha] + 1$, and $D_a^{\alpha-1}f \in AC([a, b])$ (absolutely continuous functions) and $D_a^{\alpha}f \in L_{\infty}(a, b)$.

Lemma 3. ([3]) Let $\beta > \alpha \ge 0$, $f \in L_1(a, b)$, $a, b \in \mathbb{R}$, have L_{∞} fractional derivative $D_a^{\beta}f$ in [a, b], let $D_a^{\beta-k}f(a) = 0$ for $k = 1, \ldots, [\beta] + 1$. Then

$$D_a^{\alpha}f(s) = \frac{1}{\Gamma(\beta - \alpha)} \int_a^s (s - t)^{\beta - \alpha - 1} D_a^{\beta}f(t) dt, \ \forall s \in [a, b].$$
(6)

Here $D_a^{\alpha} f \in AC([a,b])$ for $\beta - \alpha \geq 1$, and $D_a^{\alpha} f \in C([a,b])$ for $\beta - \alpha \in (0,1)$.

Here $AC^n([a,b])$ is the space of functions with absolutely continuous (n-1)-st derivative.

We need to mention

Definition 4. ([8]) Let $\nu \ge 0$, $n := \lceil \nu \rceil$, $\lceil \cdot \rceil$ is ceiling of the number, $f \in AC^n([a, b])$. We call Caputo fractional derivative

$$D_{*a}^{\nu}f(x) := \frac{1}{\Gamma(n-\nu)} \int_{a}^{x} (x-t)^{n-\nu-1} f^{(n)}(t) dt, \ \forall x \in [a,b].$$
(7)

The above function $D_{*a}^{\nu}f(x)$ exists almost everywhere for $x \in [a, b]$. We need

Proposition 5. ([8]) Let $\nu \ge 0$, $n := \lceil \nu \rceil$, $f \in AC^n([a,b])$. Then $D_{*a}^{\nu}f$ exists iff the generalized Riemann-Liouville fractional derivative $D_a^{\nu}f$ exists.

Proposition 6. ([8]) Let $\nu \ge 0$, $n := \lceil \nu \rceil$. Assume that f is such that both $D_{*a}^{\nu}f$ and $D_{a}^{\nu}f$ exist. Suppose that $f^{(k)}(a) = 0$ for k = 0, 1, ..., n-1. Then

$$D_{*a}^{\nu}f = D_a^{\nu}f. \tag{8}$$

In conclusion

Corollary 7. ([2]) Let $\nu \geq 0$, $n := \lceil \nu \rceil$, $f \in AC^n([a,b])$, $D^{\nu}_{*a}f$ exists or $D^{\nu}_a f$ exists, and $f^{(k)}(a) = 0$, $k = 0, 1, \ldots, n-1$. Then

$$D_a^{\nu} f = D_{*a}^{\nu} f.$$
 (9)

We need

Theorem 8. ([2]) Let $\nu \ge 0$, $n := \lceil \nu \rceil$, $f \in AC^n([a, b])$ and $f^{(k)}(a) = 0$, k = 0, 1, ..., n - 1. Then

$$f(x) = \frac{1}{\Gamma(\nu)} \int_{a}^{x} (x-t)^{\nu-1} D_{*a}^{\nu} f(t) dt.$$
(10)

We also need

Theorem 9. ([2]) Let $\nu \geq \gamma + 1$, $\gamma \geq 0$. Call $n := \lceil \nu \rceil$. Assume $f \in AC^n([a,b])$ such that $f^{(k)}(a) = 0$, k = 0, 1, ..., n-1, and $D^{\nu}_{*a}f \in L_{\infty}(a,b)$. Then $D^{\gamma}_{*a}f \in AC([a,b])$, and

$$D_{*a}^{\gamma}f(x) = \frac{1}{\Gamma(\nu - \gamma)} \int_{a}^{x} (x - t)^{\nu - \gamma - 1} D_{*a}^{\nu}f(t) dt, \ \forall x \in [a, b].$$
(11)

Theorem 10. ([2]) Let $\nu \geq \gamma + 1$, $\gamma \geq 0$, $n := \lceil \nu \rceil$. Let $f \in AC^n([a, b])$ such that $f^{(k)}(a) = 0$, $k = 0, 1, \ldots, n-1$. Assume $\exists D_a^{\nu} f(x) \in \mathbb{R}$, $\forall x \in [a, b]$, and $D_a^{\nu} f \in L_{\infty}(a, b)$. Then $D_a^{\gamma} f \in AC([a, b])$, and

$$D_{a}^{\gamma}f(x) = \frac{1}{\Gamma(\nu - \gamma)} \int_{a}^{x} (x - t)^{\nu - \gamma - 1} D_{a}^{\nu}f(t) dt, \ \forall x \in [a, b].$$
(12)

2. Results

Here f and the whole setting is as in 1. Preliminaries (I). We present first results regarding the Riemann-Liouville fractional derivative.

Theorem 11. Let $\beta > 0$, $f \in L_1(a, b)$, have L_{∞} fractional derivative $D_a^{\beta} f$ in [a, b], let $D_a^{\beta-k} f(a) = 0$ for $k = 1, \ldots, [\beta] + 1$. Also assume $0 < a \le \frac{p(x)}{q(x)} \le b$, a.e. on X, a < b. Then

$$\Gamma_f(\mu_1,\mu_2) \le \frac{\left\| D_a^\beta f \right\|_{\infty,[a,b]}}{\Gamma\left(\beta+1\right)} \int_X q\left(x\right)^{1-\beta} \left(p\left(x\right) - aq\left(x\right)\right)^\beta d\lambda\left(x\right).$$
(13)

Proof. By (6), $\alpha = 0$, we get

$$f(s) = \frac{1}{\Gamma(\beta)} \int_{a}^{s} (s-t)^{\beta-1} D_{a}^{\beta} f(t) dt, \text{ all } a \le s \le b.$$

$$(14)$$

Then

$$|f(s)| \leq \frac{1}{\Gamma(\beta)} \int_{a}^{s} (s-t)^{\beta-1} \left| D_{a}^{\beta} f(t) \right| dt$$

$$\leq \frac{\left\| D_{a}^{\beta} f \right\|_{\infty,[a,b]}}{\Gamma(\beta)} \int_{a}^{s} (s-t)^{\beta-1} dt$$

$$= \frac{\left\| D_{a}^{\beta} f \right\|_{\infty,[a,b]}}{\Gamma(\beta)} \frac{(s-a)^{\beta}}{\beta}$$

$$= \frac{\left\| D_{a}^{\beta} f \right\|_{\infty,[a,b]}}{\Gamma(\beta+1)} (s-a)^{\beta}, \quad \text{all } a \leq s \leq b.$$
(15)

I.e. we have that

$$|f(s)| \le \frac{\left\| D_a^{\beta} f \right\|_{\infty, [a, b]}}{\Gamma\left(\beta + 1\right)} \left(s - a\right)^{\beta}, \quad \text{all } a \le s \le b.$$

$$(16)$$

Consequently we obtain

$$\Gamma_{f}(\mu_{1},\mu_{2}) = \int_{X} q(x) f\left(\frac{p(x)}{q(x)}\right) d\lambda(x)$$

$$\leq \frac{\left\|D_{a}^{\beta}f\right\|_{\infty,[a,b]}}{\Gamma(\beta+1)} \int_{X} q(x) \left(\frac{p(x)}{q(x)} - a\right)^{\beta} d\lambda(x)$$

$$= \frac{\left\|D_{a}^{\beta}f\right\|_{\infty,[a,b]}}{\Gamma(\beta+1)} \int_{X} q(x)^{1-\beta} (p(x) - aq(x))^{\beta} d\lambda(x), \quad (17)$$
wing the claim.

proving the claim.

Next we give an L_{δ} result.

Theorem 12. Same assumptions as in Theorem 11. Let $\gamma, \delta > 1: \frac{1}{\gamma} + \frac{1}{\delta} = 1$ and $\gamma \left(\beta -1\right) +1 > 0$. Then

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \frac{\left\|D_{a}^{\beta}f\right\|_{\delta,[a,b]}}{\Gamma\left(\beta\right)\left(\gamma\left(\beta-1\right)+1\right)^{1/\gamma}} \int_{X}q\left(x\right)^{2-\beta-\frac{1}{\gamma}}\left(p\left(x\right)-aq\left(x\right)\right)^{\beta-1+\frac{1}{\gamma}}d\lambda\left(x\right).$$
 (18)

Proof. By (6), $\alpha = 0$, we get again

$$f(s) = \frac{1}{\Gamma(\beta)} \int_{a}^{s} (s-t)^{\beta-1} D_{a}^{\beta} f(t) dt, \text{ all } a \le s \le b.$$

$$(19)$$

Hence

$$\begin{split} |f(s)| &\leq \frac{1}{\Gamma(\beta)} \int_{a}^{s} (s-t)^{\beta-1} \left| D_{a}^{\beta} f(t) \right| dt \\ &\leq \frac{1}{\Gamma(\beta)} \left(\int_{a}^{s} (s-t)^{\gamma(\beta-1)} dt \right)^{1/\gamma} \left(\int_{a}^{s} \left| D_{a}^{\beta} f(t) \right|^{\delta} dt \right)^{1/\delta} \\ &\leq \frac{\left\| D_{a}^{\beta} f \right\|_{\delta,[a,b]}}{\Gamma(\beta)} \frac{(s-a)^{\beta-1+\frac{1}{\gamma}}}{(\gamma(\beta-1)+1)^{1/\gamma}}, \text{ all } a \leq s \leq b. \end{split}$$
(20)

That is

$$|f(s)| \leq \frac{\left\| D_a^{\beta} f \right\|_{\delta,[a,b]}}{\Gamma\left(\beta\right)} \frac{(s-a)^{\beta-1+\frac{1}{\gamma}}}{\left(\gamma\left(\beta-1\right)+1\right)^{1/\gamma}}, \text{ all} a \leq s \leq b.$$

$$(21)$$

Consequently we obtain

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \int_{X} q \left| f\left(\frac{p}{q}\right) \right| d\lambda$$

$$\leq \frac{\left\| D_{a}^{\beta} f \right\|_{\delta,[a,b]}}{\Gamma\left(\beta\right)\left(\gamma\left(\beta-1\right)+1\right)^{1/\gamma}} \int_{X} q \left(\frac{p}{q}-a\right)^{\beta-1+\frac{1}{\gamma}} d\lambda$$

$$= \frac{\left\| D_{a}^{\beta} f \right\|_{\delta,[a,b]}}{\Gamma\left(\beta\right)\left(\gamma\left(\beta-1\right)+1\right)^{1/\gamma}} \int_{X} q^{2-\beta-\frac{1}{\gamma}} \left(p-aq\right)^{\beta-1+\frac{1}{\gamma}} d\lambda, \quad (22)$$

proving the claim.

An L_1 estimate follows.

Theorem 13. Same assumptions as in Theorem 11. Let $\beta \geq 1$. Then

$$\Gamma_{f}\left(\mu_{1},\mu_{2}\right) \leq \frac{\left\|D_{a}^{\beta}f\right\|_{1,\left[a,b\right]}}{\Gamma\left(\beta\right)} \left(\int_{X} \left(q\left(x\right)\right)^{2-\beta} \left(p\left(x\right) - aq\left(x\right)\right)^{\beta-1} d\lambda\left(x\right)\right)$$
(23)

Proof. By (19) we have

$$|f(s)| \leq \frac{1}{\Gamma(\beta)} \int_{a}^{s} (s-t)^{\beta-1} \left| D_{a}^{\beta} f(t) \right| dt$$
$$\leq \frac{(s-a)^{\beta-1}}{\Gamma(\beta)} \int_{a}^{b} \left| D_{a}^{\beta} f(t) \right| dt = \frac{(s-a)^{\beta-1}}{\Gamma(\beta)} \left\| D_{a}^{\beta} f \right\|_{1,[a,b]}.$$
(24)

I.e.

$$\left|f\left(s\right)\right| \leq \frac{\left(s-a\right)^{\beta-1}}{\Gamma\left(\beta\right)} \left\|D_{a}^{\beta}f\right\|_{1,\left[a,b\right]},\tag{25}$$

for all s in [a, b]. Therefore

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \int_{X} q \left| f\left(\frac{p}{q}\right) \right| d\lambda \leq \frac{\left\| D_{a}^{\beta} f \right\|_{1,[a,b]}}{\Gamma\left(\beta\right)} \int_{X} q \left(\frac{p}{q} - a\right)^{\beta-1} d\lambda$$
$$= \frac{\left\| D_{a}^{\beta} f \right\|_{1,[a,b]}}{\Gamma\left(\beta\right)} \left(\int_{X} q^{2-\beta} \left(p - aq\right)^{\beta-1} d\lambda \right), \tag{26}$$
ing the claim.

proving the claim.

We continue with results regarding the Caputo fractional derivative.

Theorem 14. Let $\nu > 0$, $n := [\nu]$, $f \in AC^n([a,b])$ and $f^{(k)}(a) = 0$, $k = 0, 1, \ldots, n-1$. Assume $D_{*a}^{\nu} f \in L_{\infty}(a,b)$, $0 < a \leq \frac{p(x)}{q(x)} \leq b$, a.e. on X, a < b. Then

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \frac{\|D_{*a}^{\nu}f\|_{\infty,[a,b]}}{\Gamma(\nu+1)} \int_{X} q(x)^{1-\nu} (p(x) - aq(x))^{\nu} d\lambda(x).$$
(27)

Proof. Similar to Theorem 11, using Theorem 8.

$$\square$$

Next we give an L_{δ} result.

Theorem 15. Assume all as in Theorem 14. Let γ , $\delta > 1 : \frac{1}{\gamma} + \frac{1}{\delta} = 1$ and $\gamma (\nu - 1) + 1 > 0$. Then

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \frac{\|D_{*a}^{\nu}f\|_{\delta,[a,b]}}{\Gamma(\nu)\left(\gamma(\nu-1)+1\right)^{1/\gamma}} \int_{X} q(x)^{2-\nu-\frac{1}{\gamma}}(p(x) - aq(x))^{\nu-1+\frac{1}{\gamma}} d\lambda(x).$$
(28)

Proof. Similar to Theorem 12, using Theorem 8.

It follows an L_1 estimate.

Theorem 16. Assume all as in Theorem 14. Let $\nu \geq 1$. Then

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \frac{\|D_{*a}^{\nu}f\|_{1,[a,b]}}{\Gamma(\nu)} \left(\int_{X} (q(x))^{2-\nu} (p(x) - aq(x))^{\nu-1} d\lambda(x)\right).$$
(29)

Proof. Similar to Theorem 13, using Theorem 8.

Regarding again the Riemann-Liouville fractional derivative we need:

Corollary 17. Let $\nu \geq 0$, $n := [\nu]$, $f \in AC^n([a,b])$, $\exists D_a^{\nu}f(x) \in \mathbb{R}$, $\forall x \in [a, b], f^{(k)}(a) = 0, k = 0, 1, \dots, n-1.$ Then

$$f(x) = \frac{1}{\Gamma(\nu)} \int_{a}^{x} (x-t)^{\nu-1} D_{a}^{\nu} f(t) dt.$$
 (30)

Proof. By Corollary 7 and Theorem 8.

We continue with results again regarding the Riemann-Liouville fractional derivative.

Theorem 18. Let $\nu > 0$, $n := [\nu]$, $f \in AC^{n}([a, b])$, $\exists D_{a}^{\nu}f(x) \in \mathbb{R}$, $\forall x \in$ $[a, b], f^{(k)}(a) = 0, k = 0, 1, \dots, n-1.$ Assume $D_a^{\nu} f \in L_{\infty}(a, b), 0 < a \leq 1, \dots, n-1$ $\frac{p(x)}{q(x)} \leq b$, a.e. on X, a < b. Then

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \frac{\|D_{a}^{\nu}f\|_{\infty,[a,b]}}{\Gamma(\nu+1)} \int_{X} q(x)^{1-\nu} (p(x) - aq(x))^{\nu} d\lambda(x).$$
(31)

Proof. Similar to Theorem 11, using Corollary 17.

Next we give the corresponding L_{δ} result.

Theorem 19. Assume all as in Theorem 18. Let γ , $\delta > 1 : \frac{1}{\gamma} + \frac{1}{\delta} = 1$ and $\gamma (\nu - 1) + 1 > 0$. Then

$$\Gamma_{f}(\mu_{1},\mu_{2}) \leq \frac{\|D_{a}^{\nu}f\|_{\delta,[a,b]}}{\Gamma(\nu)\left(\gamma(\nu-1)+1\right)^{1/\gamma}} \int_{X} q(x)^{2-\nu-\frac{1}{\gamma}}(p(x) - aq(x))^{\nu-1+\frac{1}{\gamma}} d\lambda(x).$$
(32)

Proof. Similar to Theorem 12, using Corollary 17.

It follows the L_1 estimate.

Theorem 20. Assume all as in Theorem 18. Let $\nu \geq 1$. Then

$$\Gamma_f(\mu_1,\mu_2) \leq \frac{\|D_a^{\nu}f\|_{1,[a,b]}}{\Gamma(\nu)} \left(\int_X (q(x))^{2-\nu} (p(x) - aq(x))^{\nu-1} d\lambda(x) \right).$$
(33)
Proof. Similar to Theorem 13, using Corollary 17.

Proof. Similar to Theorem 13, using Corollary 17.

We need

Theorem 21. (Taylor expansion for Caputo derivatives, [8], p. 40) Assume $\nu \geq 0, n = \lceil \nu \rceil, and f \in AC^n([a, b]).$ Then

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{\Gamma(\nu)} \int_a^x (x-t)^{\nu-1} D_{*a}^{\nu} f(t) dt, \ \forall x \in [a,b].$$
(34)

We make

Remark 22. Let $\nu > 0$, $n = \lceil \nu \rceil$, and $f \in AC^n([a, b])$. If $D_{*a}^{\nu} f \geq 0$ over [a, b], then

$$\int_{a}^{x} (x-t)^{\nu-1} D_{*a}^{\nu} f(t) dt \ge 0 \text{ on } [a,b].$$

By (34) then we obtain

$$f(x) \ge (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k,$$
 (35)

 $\forall x \in [a, b]$. Hence

$$qf\left(\frac{p}{q}\right) \ge (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} q\left(\frac{p}{q}-a\right)^k, \text{ a.e. on } X.$$
(36)

Consequently we get

$$\Gamma_f(\mu_1, \mu_2) \ge (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} \int_X q^{1-k} (p - aq)^k d\lambda.$$
(37)

We have established

Theorem 23. Let $\nu > 0$, $n = \lceil \nu \rceil$, and $f \in AC^n([a, b])$. If $D_{*a}^{\nu} f \ge 0$ on [a, b], then

$$\Gamma_f(\mu_1, \mu_2) \ge (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} \left(\int_X (q(x))^{1-k} (p(x) - aq(x))^k d\lambda(x) \right).$$
(38)

We finish with

Remark 24. Using Lemma 3, Theorem 9 and Theorem 10 and in their settings, for g any of $D_a^{\alpha}f$, $D_{*a}^{\gamma}f$, $D_a^{\gamma}f$, which fulfill the conditions and assumptions of 1. Preliminaries (I), we can find as above similar estimates for $\Gamma_g(\mu_1,\mu_2)$.

References

- [1] G. Anastassiou, Fractional Poincaré type inequalities, submitted, 2007.
- [2] G. Anastassiou, Caputo fractional multivariate Opial type inequalities on spherical shells, submitted, 2007.

GEORGE A. ANASTASSIOU

- G. Anastassiou, Riemann-Liouville fractional multivariate Opial type inequalities on spherical shells, Bull. Allahabad Math. Soc., 23 (2008), 65–140.
- [4] G. Anastassiou, Fractional and other approximation of Csiszar's f-divergence, Rend. Circ. Mat. Palermo, Serie II, Suppl. 99 (2005), 5–20.
- [5] N. S. Barnett, P. Cerone, S. S. Dragomir, and A. Sofo, Approximating Csiszar's fdivergence by the use of Taylor's formula with integral remainder, (paper #10, pp. 16), in Inequalities for Csiszar f-Divergence in Information Theory, S. S. Dragomir (ed.), Victoria University, Melbourne, Australia, 2000. On line: http://rgmia.vu.edu.au
- [6] I. Csiszar, Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Magyar Trud. Akad. Mat. Kutato Int. Közl. 8 (1963), 85–108.
- [7] I. Csiszar, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299–318.
- [8] Kai Diethelm, Fractional Differential Equations, on line: http://www.tu-bs.de/~ diethelm/lehre/f-dgl02/fde-skript.ps.gz
- [9] S. S. Dragomir (Ed.), Inequalities for Csiszar f-Divergence in Information Theory, Victoria University, Melbourne, Australia, 2000. On line: http://rgmia.vu.edu.au
- [10] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University, Melbourne, Adelaide, Australia, on line:http://rgmia.vu.edu.au
- [11] S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86.
- [12] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.
- [13] A. Rényi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, I, Berkeley, CA, 1960, 547– 561.

(Received: January 14, 2008)

Department of Mathematical Sciences University of Memphis Memphis, TN 38152, USA E-mail: ganastss@memphis.edu