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EXISTENCE OF WEAK SOLUTIONS FOR NONLINEAR
SYSTEMS INVOLVING DEGENERATED P-LAPLACIAN

OPERATORS

H. M. SERAG AND S. A. KHAFAGY

Abstract. We study the existence of weak solutions for the nonlinear
system

−∆P,pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f,

−∆Q,qv = −c(x)|u|α|v|βu + d(x)|v|q−2v + g,

}

where, the degenerated p-Laplacian is defined as ∆P,pu = div[P (x)
|∇u|p−2∇u]. We prove the existence of weak solutions for this system
defined on bounded domains using the theory of monotone operators.
We also consider the case of an unbounded domain.

1. Introduction

The concept of weak (generalized) solution for boundary value problems
for the equation A(u) = f, have their background in applications (namely,
in the variational approach connected with the critical level of a certain
energy functional as well as in numerical methods). This type of approach
is closely related to the concept of Sobolev spaces and is well elaborated for
both linear and nonlinear equations.

In various applications, we can meet boundary value problems for elliptic
equations whose ellipticity is “disturbed” in the sense that some degener-
ation or singularity appears. This “bad” behavior can be caused by the
coefficients of the corresponding differential operators as well as by the so-
lution itself. The so-called p-Laplacian is a prototype of such an operator
and its character can be interpreted as a degeneration or as a singularity of
the classical (linear) Laplace operator (with p = 2). There are several very
concrete problems from practice which lead to such differential equations,
e.g. from glaciology, non-Newtonian fluid mechanics, flows through porous
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media, differential geometry, celestial mechanics, climatology, petroleum ex-
traction, reaction-diffusion problems, etc. [2, 3, 6, 13].

In our work, we consider a nonlinear system involving degenerated p-
Laplacian operators with model A of the form

A{u, v} = {−∆p,P u− a(x)|u|p−2u + b(x)|u|α|v|βv

−∆Q,qv + c(x)|u|α|v|βu− d(x)|v|q−2v}.
Here, we use the theory of monotone operators to prove the existence of

weak solutions for the following nonlinear system involving different degen-
erated p-Laplacian operators with variable coefficients defined on a bounded
domain Ω of <N with boundary ∂ Ω,

−∆P,pu = −div[P (x)|∇u|p−2∇u] = a(x)|u|p−2u

− b(x)|u|α|v|βv + f inΩ,

−∆Q,qv = −div[Q(x)|∇v|q−2∇v] = −c(x)|u|α|v|βu

+ d(x)|v|q−2v + g in Ω,

u = v = 0 on ∂Ω,





(S)

Then, we generalize the discussion to system defined on the whole space
<N .

The existence of solutions for such system (when P (x) = Q(x) = 1) have
been proved, using the method of sub and super solutions in [4, 5, 14] and
using the method of the theory of monotone operators in [15].

In [12], Khafagy and Serag have been proved the existence of positive
solutions for system likes (S) using the method of sub and super solutions.

In [13], a Degenerate Quasilinear Elliptic System (in a bounded domain)
is studied by means of Bifurcation Theory. The system is of a form similar
to (S) with more general driven terms f, g and different hypotheses on the
coefficients and the exponents.

Our paper is organized as follow: In Section 2 we introduce some tech-
nical results and definitions concerning the theory of nonlinear monotone
operators, also, the scalar case is discussed. We study the existence of weak
solutions for nonlinear systems defined on a bounded domain in Section 3
and on unbounded domain in Section 4.

2. Technical results and scalar case

First, we introduce some technical results concerning the theory of non-
linear monotone operators [1, 9, 11, 16]

Definition 1. Let A : V → V ′ be an operator on a Banach space V . We
say that the operator A is:
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Coercive iff lim‖u‖→∞
〈A(u),u〉
‖u‖ = ∞;

Monotone iff 〈A(u1)−A(u2), u1 − u2〉 ≥ 0 for all u1, u2 ∈ V ;
Strictly monotone iff 〈A(u1)−A(u2), u1−u2〉 > 0 for all u1, u2 ∈ V, u1 6= u2;
Strongly continuous if un

w−→ u implies A(un) −→ A(u), for all un, u ∈ V ;
Weakly continuous if un

w−→ u implies A(un) w−→ A(u), for all un, u ∈ V ;
Demicontinuous if un −→ u implies A(un) w−→ A(u), for all un, u ∈ V ;

The operator A is said to be satisfy the M0-condition if un
w−→ u, A(un)

w−→ f, and [〈A(un), un〉 −→ 〈f, u〉] imply A(u) = f.

Theorem 1. Let V be a separable reflexive Banach space and A : V →
V ′ an operator which is: coercive, bounded, demicontinuous and satisfying
M0−condition. Then the equation A(u) = f admits a solution for each f ∈
V ′.

Second, we also introduce some technical results concerning the degener-
ated homogeneous eigenvalue problem

−∆H,pu = −div[H(x)|∇u|p−2∇u] = λG(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

}
(2.1)

where H(x) and G(x) are measurable functions satisfying
ν(x)
c1

≤ H(x) ≤ c1ν(x), (2.2)

for a.e. x ∈ Ω with some constant c1 ≥ 1, where ν(x) is a weight function
in Ω satisfying the conditions

ν ∈ L1
Loc(Ω), ν

− 1
p−1 ∈ L1

Loc(Ω), ν−s ∈ L1(Ω), (2.3)

with
s ∈ (

N

p
,∞) ∩ [

1
p− 1

,∞), (2.4)

and
G(x) ∈ L

k
k−p (Ω), (2.5)

with some k satisfies p < k < p∗s where p∗s = NPs
N−Ps

with ps = sp
s+1 < p < p∗s.

Lemma 2. There exists the least (i.e. the first or principal) eigenvalue
λ = λG(p, Ω) > 0 and at least one corresponding eigenfunction u = uG ≥
0 a.e. inΩ of the eigenvalue problem (2.1).

Theorem 3. Let H(x) satisfies (2.2) and G(x) satisfies (2.5), then (2.1)
admits a positive principal eigenvalue λG(p). Moreover, it is characterized
by

λG(p)
∫

Ω
G(x)|u|p ≤

∫

Ω
H(x)|∇u|p. (2.6)
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Now, let us introduce the weighted Sobolve space W 1,p(ν, Ω) which is the
set of all real valued functions u defined in Ω for which (see [9])

‖u‖W 1,p(ν,Ω) =
[ ∫

Ω
|u|p +

∫

Ω
ν(x)|∇u|p

] 1
p

< ∞. (2.7)

Since we are dealing with the Dirichlet problem, we define also the space
W 1,p

0 (ν, Ω) as the closure of C∞
0 (Ω) in W 1,p(ν,Ω) with respect to the norm

‖u‖
W 1,p

0 (ν,Ω)
=

[ ∫

Ω
ν(x)|∇u|p

] 1
p

< ∞, (2.8)

which is equivalent to the norm given by (2.7). Both spaces W 1,p(ν, Ω) and
W 1,p

0 (ν, Ω) are well defined reflexive Banach Spaces. The space W 1,p
0 (ν, Ω)

is compactly imbedded in the space Lp(Ω), under the conditions given by
(2.3) and (2.4), i.e.

W 1,p
0 (ν, Ω) ↪→↪→ Lp(Ω), (2.9)

which means that∫

Ω
|u|p ≤ c2

∫

Ω
ν(x)|∇u|p, i.e., ‖u‖Lp(Ω) ≤ c ‖u‖

W 1,p
0 (ν,Ω)

. (2.10)

for every u ∈ W 1,p
0 (ν, Ω) with a constant c2 > 0 independent of u.

In this paper, we shall take c1 = 1 in (2.2) i. e. ν(x) = H(x).
Now, we prove the existence of a weak solution u ∈ W 1,p

0 (P, Ω) for the
following scalar case:

−∆P,pu = −div[P (x)|∇u|p−2∇u] = a(x)|u|p−2u + f in Ω,
u = 0 on ∂Ω,

}
(2.11)

where P (x) and a(x) are satisfying the conditions (2.2) and (2.5) respec-
tively. The scalar case (2.11) can be written in the form:

Au = −∆P,P u− a(x)|u|p−2u = f. (2.12)

Now we are in a position which enables us to prove that, according to
Theorem 1, the scalar case given by (2.11) admits a weak solution u ∈
W 1,p

0 (P, Ω) if λa(p) > 1.
First, we prove that A is a coercive operator.
We have from (2.6),

(Au, u) =
∫

Ω
P (x)|∇u|p −

∫

Ω
a(x)|u|p

≥
∫

Ω
P (x)|∇u|p − 1

λa(p)

∫

Ω
P (x)|∇u|p = (1− 1

λa(p)
) ‖u‖p

W 1,p
0 (P,Ω)

,
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and hence,

(Au, u)
‖u‖

W 1,p
0 (P,Ω)

= ‖u‖p−1

W 1,p
0 (P,Ω)

−→∞ as ‖u‖
W 1,p

0 (P,Ω)
−→∞.

To prove that A is a bounded operator, we have

(Au, v) =
∫

Ω
P (x)|∇u|p−2∇u∇v −

∫

Ω
a(x)|u|p−2u v,

using Hölder’s inequality, we obtain

|A(u, v)| ≤
[ ∫

Ω
P (x)|∇u|p

] p−1
p

[ ∫

Ω
P (x)|∇v|p

] 1
p

−
[ ∫

Ω
a(x)|u|p

] p−1
p

[ ∫

Ω
a(x)|v|p

] 1
p

≤ ‖u‖p−1

W 1,p
0 (P,Ω)

‖v‖
W 1,p

0 (P,Ω)
.

To prove that A is continuous, let us assume that un −→ u in W 1,p
0 (P, Ω).

Then ‖un − u‖
W 1,p

0 (P,Ω)
−→ 0, so that

‖∇un −∇u‖Lp(Ω) −→ 0.

Applying the Dominated Convergence Theorem, we obtain
∥∥P (x)(|∇un|p−2∇un − |∇u|p−2∇u)

∥∥
Lp(Ω)

−→ 0,

and hence

‖Aun −Au‖
Lp(Ω)

≤ ∥∥P (x)(|∇un|p−2∇un − |∇u|p−2∇u)
∥∥

Lp(Ω)

+
∥∥|un|p−2un − |u|p−2u

∥∥
Lp(Ω)

−→ 0.

Finally, A is strictly monotone:

(Au1 −Au2, u1 − u2) =
∫

Ω
P (x)|∇u1|p−2∇u1∇u1

+
∫

Ω
P (x)|∇u2|p−2∇u2∇u2 −

∫

Ω
P (x)|∇u1|p−2∇u1∇u2

−
∫

Ω
P (x)|∇u2|p−2∇u2∇u1,

using Hölder’s inequality, we obtain

(Au1−Au2, u1−u2)≥
∫

Ω
P (x)|∇u1|p+

∫

Ω
P (x)|∇u2|p−

[ ∫

Ω
P (x)|∇u1|p

] p−1
p
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[ ∫

Ω
P (x)|∇u2|p

] 1
p

−
[ ∫

Ω
P (x)|∇u2|p

] p−1
p

[ ∫

Ω
P (x)|∇u1|p

] 1
p

= ‖u1‖p

W 1,p
0 (P,Ω)

+ ‖u2‖p

W 1,p
0 (P,Ω)

− ‖u1‖p−1

W 1,p
0 (P,Ω)

‖u2‖p

W 1,p
0 (P,Ω)

− ‖u2‖p−1

W 1,p
0 (P,Ω)

‖u1‖p

W 1,p
0 (P,Ω)

,

and hence,

(Au1 −Au2, u1 − u2)

≥ (‖u1‖p−1

W 1,p
0 (P,Ω)

− ‖u2‖p−1

W 1,p
0 (P,Ω)

)(‖u1‖p

W 1,p
0 (P,Ω)

− ‖u2‖p

W 1,p
0 (P,Ω)

) > 0.

This proves the strictly monotone condition and so, the existence of a
weak solution for (2.11)

3. Nonlinear system defined on bounded domain

Let us consider the nonlinear system

−∆P,pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f in Ω,

−∆Q,qv = −c(x)|u|α|v|βu + d(x)|v|q−2v + g in Ω,

u = v = 0 on ∂Ω.





(3.1)

where Ω is a bounded domain of <N .
Let us assume that

α, β ≥ 0; p, q > 1,
α + 1

p
+

β + 1
q

= 1, α + β + 2 < N

f ∈ Lp∗(Ω), g ∈ Lq∗(Ω),
1
p

+
1
p∗

= 1 and
1
q

+
1
q∗

= 1,





(3.2)

and

P (x) ∈ L1
Loc(Ω), (P (x))−

1
p−1 ∈ L1

Loc(Ω), (P (x))−s ∈ L1(Ω),

with s ∈ (
N

p
,∞) ∩ [

1
p− 1

,∞),

Q(x) ∈ L1
Loc(Ω), (Q(x))−

1
q−1 ∈ L1

Loc(Ω), (Q(x))−t ∈ L1(Ω),

with t ∈ (
N

q
,∞) ∩ [

1
q − 1

,∞).





(3.3)

We also assume that the variable coefficients a(x), b(x), c(x), and d(x) are
bounded smooth positive functions such that

a(x) ∈ L
k

k−p (Ω) ∩ Lp(Ω), with p < k < p∗s,

d(x) ∈ L
l

l−q (Ω) ∩ Lq(Ω), with q < l < q∗t



 (3.4)
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Theorem 4. For (f, g) ∈ Lp∗(Ω) × Lq∗(Ω), there exists a weak solution
(u, v) ∈ W 1,p

0 (P, Ω) ×W 1,q
0 (Q,Ω) for the system (3.1) if the following con-

dition is satisfied:
λa(p) > 1, λd(q) > 1. (3.5)

Proof. We transform the weak formulation of the system (3.1) to the follow-
ing operator form

A(u, v)−B(u, v) = F,

where, A, B and F are operators defined on W 1,p
0 (P,Ω)×W 1,q

0 (Q,Ω) by

(A(u, v), (Φ1, Φ2)) =
∫

Ω
P (x)|∇u|p−2∇u∇Φ1 +

∫

Ω
Q(x)|∇v|q−2∇v∇Φ2,

(3.6)

(B(u, v), (Φ1, Φ2)) =
∫

Ω
a(x)|u|p−2uΦ1 +

∫

Ω

d(x)|v|q−2vΦ2

−
∫

Ω
b(x)|u|α|v|βvΦ1 −

∫

Ω
c(x)|v|β|u|αuΦ2, (3.7)

(F, Φ) = ((f, g), (Φ1, Φ2) =
∫

Ω
fΦ1 +

∫

Ω
gΦ2. (3.8)

The operator A(u, v) can be written as the sum of the two operators
J1(u), J2(v), where

(J1(u), (Φ1)) =
∫

Ω
P (x)|∇u|p−2∇u∇Φ1 and

(J2(v), (Φ2)) =
∫

Ω
Q(x)|∇v|q−2∇v∇Φ2.

As in the scalar case, operators J1(u) and J2(v) are bounded, continuous
and strictly monotone; so their sum, the operator A, will be the same.

For the operator B(u, v),

B(u, v) : W 1,p
0 (P, Ω)×W 1,q

0 (Q,Ω) −→ Lp(Ω)× Lq(Ω),

we can prove that it is a strongly continuous operator. To prove that, let us
assume that un

w−→ u in W 1,p
0 (P, Ω) and vn

w−→ v in W 1,q
0 (Q,Ω). Then, using

(2.9), (un, vn) −→ (u, v) in Lp(Ω)× Lq(Ω). Also, (5un,5vn) −→ (5u,5v)
in Lp(Ω)× Lq(Ω). By the the Dominated Convergence Theorem, we get

a(x) |un|p−2 un −→ a(x) |u|p−2 u, in Lp(Ω),

d(x) |vn|q−2 vn −→ d(x) |v|q−2 v, in Lq(Ω),

− b(x) |un|α |vn|β vn −→ −b(x) |u|α |v|β v, in Lp(Ω),

− c(x) |vn|β |un|α un −→ −c(x) |v|β |u|α u, in Lq(Ω).
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Since

(B(un, vn)−B(u, v), (w1, w2)) =
∫

Ω
a(x)(|un|p−2un − |u|p−2u)w1

+
∫

Ω
d(x)(|vn|q−2vn − |v|q−2v)w2 −

∫

Ω
b(x)(|un|α|vn|βvn − |u|α|v|βv)w1

−
∫

Ω
c(x)(|vn|β|un|αun − |v|β|u|αu)w2,

it follows that

‖B(un, vn)−B(u, v))‖ ≤ ∥∥a(x)(|un|p−2un − |u|p−2u)
∥∥

Lp(Ω)

+
∥∥d(x)(|vn|q−2vn − |v|q−2v)

∥∥
Lq(Ω)

+
∥∥∥b(x)(|un|α|vn|β+1 − |u|α|v|β+1)

∥∥∥
Lp(Ω)

+
∥∥∥c(x)(|vn|β|un|α+1 − |v|β|u|α+1)

∥∥∥
Lq(Ω)

−→ 0.

This proves that −B(u, v) is a strongly continuous operators. Similarly,
as above, we can prove that A(u, v) − B(u, v) satisfies the M0−condition.
Now, to apply Theorem 1, it remains to prove that A(u, v) − B(u, v) is a
coercive operator

(A(u, v)−B(u, v), (u, v)) =
∫

Ω
P (x)|∇u|p +

∫

Ω
Q(x)|∇v|q −

∫

Ω
a(x)|u|p

−
∫

Ω
d(x)|v|q +

∫

Ω
b(x)|u|α+1|v|β+1 +

∫

Ω
c(x)|u|α+1|v|β+1

≥
∫

Ω
P (x)|∇u|p +

∫

Ω
Q(x)|∇v|q −

∫

Ω
a(x)|u|p −

∫

Ω
d(x)|v|q.

Using (2.6), we get

(A(u, v)−B(u, v), (u, v)) ≥
∫

Ω
P (x)|∇u|p +

∫

Ω
Q(x)|∇v|q

− 1
λa(p)

∫

Ω
| 5 u|p − 1

λd(q)

∫

Ω
| 5 v|q

= (1− 1
λa(p)

)
∫

Ω
P (x)|∇u|p + (1− 1

λd(q)
)
∫

Ω
Q(x)|∇v|q.

From (3.5), we deduce

(A(u, v)−B(u, v), (u, v)) ≥ k(‖u‖p

W 1,p
0 (P,Ω)

+ ‖v‖q

W 1,q
0 (Q,Ω)

)

= k ‖(u, v)‖
W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω)

.
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So that

(A(u, v)−B(u, v), (u, v)) −→∞ as ‖(u, v)‖
W 1,p

0 (P,Ω)×W 1,p
0 (Q,Ω)

−→∞.

This proves the coercivity condition and so, the existence of a weak solu-
tion for system (3.1). ¤

4. Nonlinear system defined on <N

We consider the nonlinear system,

−∆P,pu = a(x)|u|p−2u− b(x)|u|α|v|βv + f, x ∈ <N ,

−∆Q,qv = −c(x)|u|α|v|βu + d(x)|v|q−2v + g, x ∈ <N ,

lim
pxp→∞u(x) = lim

pxp→∞ v(x) = 0, u, v > 0 in <N .





(4.1)

We assume that 1 < p, q < N and the coefficients a(x), b(x), c(x) and
d(x) are bounded smooth positive functions.

To discuss our problem, we need the following lemma [7, 8, 9, 10].

Lemma 5. The degenerated homogeneous eigenvalue problem

−∆H,pu = −div[H(x)|∇u|p−2∇u] = λG(x)|u|p−2u in <N ,∫

<N

G(x)|u|p > 0, (4.2)

has a pair (λG(p), u1) of a principal eigenvalue λG(p) and an eigenfunction
u1with λG(p) > 0 and u1 > 0. Moreover, the principal eigenvalue λG(p) is
characterized by

λG(p)
∫

<N

G+(x)|u|p ≤
∫

<N

H(x)|∇u|p, (4.3)

with G(x) = G+(x)−G−(x), G+(x) > 0, G−(x) > 0, where the positive part
of G(x) = G+(x) = max(G, 0) and the negative part of G(x) = G−(x) =
max(−G, 0)are satisfying

G+(x), G−(x) ∈ L
N
p (<N ) ∩ L∞(<N ). (4.4)

For this section, the basic function space will be the separable uniformly
convex Banach space [9]

D1,p
H (<N ) = {u ∈ L

Np
N−p (<N ) : |∇u| ∈ Lp(<N )},

which is defined as the completion of C∞
0 (<N ) with respect to the norm

‖u‖
D1,p

H (<N )
=

[ ∫

Ω
H(x)|∇u|p

] 1
p

< ∞.
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Moreover D1,p
H (<N ) is embedded continuously in the space L

Np
N−p (<N ),

which means that
‖u‖

L
Np

N−p (<N )
≤ k ‖u‖

D1,p
H (<N )

. (4.5)

We will write the function a = a(x) in the form a(x) = a+(x) − a−(x)
and the function d = d(x) in the form d(x) = d+(x)− d−(x) such that

a+(x), a−(x) ∈ L
N
p (<N ) ∩ L∞(<N ) and

d+(x), d−(x) ∈ L
N
q (<N ) ∩ L∞(<N ). (4.6)

Theorem 6. For (f, g) ∈ L
Np

N(p−1)+p (<N ) × L
Nq

N(q−1)+q (<N ), there exists a
weak solution (u, v) ∈ D1,p

P (<N )×D1,q
Q (<N ) for system (4.1) if the following

condition is satisfied:
λa(p) > 1, λd(q) > 1 (4.7)

Proof. As in Section 3, we transform the weak formulation of the system
(4.1) to the operator form

A(u, v)−B(u, v) = F,

where, A, B and F are operators defined on D1,p
P (<N )×D1,q

Q (<N ) by

(A(u, v), (Φ1,Φ2)) =
∫

<N

P (x)|∇u|p−2∇u∇Φ1 +
∫

<N

Q(x)|∇v|q−2∇v∇Φ2,

(4.8)

(B(u, v), (Φ1,Φ2)) =
∫

<N

a(x)|u|p−2uΦ1 +
∫

<N

d(x)|v|q−2vΦ2

−
∫

<N

b(x)|u|α|v|βvΦ1 −
∫

<N

c(x)|v|β|u|αuΦ2, (4.9)

(F, Φ) = ((f, g), (Φ1, Φ2) =
∫

<N

fΦ1 +
∫

<N

gΦ2. (4.10)

First, we prove that A,B and F are bounded operators on D1,p
P (<N ) ×

D1,q
Q (<N ).
For the operator A, by using (4.8) and applying Holder inequality, we

have

|(A(u, v), (Φ1, Φ2))| ≤
∫

<N

P (x)|∇u|p−1|∇Φ1|+
∫

<N

Q(x)|∇v|q−1|∇Φ2|

≤
[ ∫

<N

P (x)|u|p
] p−1

p
[ ∫

<N

P (x)|Φ1|p
] 1

p

+
[ ∫

<N

Q(x)|v|q
] q−1

q
[ ∫

<N

Q(x)|Φ2|q
] 1

q
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= ‖u‖p−1

D1,p
P (<N )

‖Φ1‖D1,p
P (<N )

+ ‖v‖q−1

D1,q
Q (<N )

‖Φ2‖D1,q
Q (<N )

≤ (‖u‖p−1

D1,p
P (<N )

+ ‖v‖q−1

D1,q
Q (<N )

)(‖Φ1‖D1,p
P (<N )

+ ‖Φ2‖D1,q
Q (<N )

)

= (‖u‖p−1

D1,p
P (<N )

+ ‖v‖q−1

D1,q
Q (<N )

) ‖(Φ1,Φ2)‖D1,p
P (<N )×D1,q

Q (<N )
.

This proves the boundedness of the operator A(u, v).
For the operator B, we have

|(B(u, v), (Φ1, Φ2))| ≤
[(∫

<N

(a+(x))
N
p

) p
N

−
( ∫

<N

(a−(x))
N
p

) p
N

]

×
[ ∫

<N

|u(x)| Np
N−p

] (p−1)(N−p)
Np

[ ∫

<N

|Φ1|
Np

N−p

]N−p
Np

+
[(∫

<N

(d+(x))
N
q

) q
N

−
( ∫

<N

(d−(x))
N
q

) q
N

] [ ∫

<N

|v(x)| Nq
N−q

] (q−1)(N−q)
Nq

[ ∫

<N

|Φ2|
Nq

N−q

]N−q
Nq

+
[ ∫

<N

(b(x))
N

α+β+2

]α+β+2
N

[ ∫

<N

|u| Np
N−p

]α(N−p)
Np

[ ∫

<N

|v| Nq
N−q

] (β+1)(N−q)
Nq

×
[ ∫

<N

|Φ1|
Np

N−p

]N−p
Np

+
[ ∫

<N

(c(x))
N

α+β+2

]α+β+2
N

[ ∫

<N

|u| Np
N−p

] (α+1)(N−p)
Np

×
[ ∫

<N

|v| Nq
N−q

]β(N−q)
Nq

[ ∫

<N

|Φ2|
Nq

N−q

]N−q
Nq

Therefore,

|(B(u, v), (Φ1,Φ2))|
≤ k1 ‖u‖p−1

D1,p
P (<N )

‖Φ1‖D1,p
P (<N )

+ k2 ‖v‖q−1

D1,q
Q (<N )

‖Φ2‖D1,q
Q (<N )

+ k3 ‖u‖α
D1,p

P (<N )
‖v‖β+1

D1,q
Q (<N )

‖Φ1‖D1,p
P (<N )

+ k4 ‖u‖α+1

D1,p
P (<N )

‖v‖β

D1,q
Q (<N )

‖Φ2‖D1,q
Q (<N )

≤ [k1 ‖u‖p−1

D1,p
P (<N )

+ k2 ‖v‖q−1

D1,q
Q (<N )

+ k3 ‖u‖α
D1,p

P (<N )
‖v‖β+1

D1,q
Q (<N )

+ k4 ‖u‖α+1

D1,p
P (<N )

‖v‖β

D1,q
Q (<N )

]× ‖(Φ1, Φ2)‖D1,p
P (<N )×D1,q

Q (<N )
,

For the operator F , we have

|(F, Φ)| = |((f, g), (Φ1, Φ2))|

≤
[ ∫

<N

|f |
Np

N(p−1)+p

]N(p−1)+p
Np

[ ∫

<N

|Φ1|
Np

N−p

]N−p
Np
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+
[ ∫

<N

|g|
Nq

N(q−1)+q

]N(q−1)+q
Nq

[ ∫

<N

|Φ2|
Nq

N−q

]N−q
Nq

≤ ( ‖f1‖
L

Np
N(p−1)+p (<N )

+ ‖f2‖
L

Nq
N(q−1)+q (<N )

)

× ‖(Φ1,Φ2)‖D1,p
P (<N )×D1,q

Q (<N )
.

The operator A(u, v) = J1(u) + J2(v) is continuous and strictly monotone
on D1,p

P (<N )×D1,q
Q (<N ), since

(J1(u1)− J1(u2), u1 − u2) ≥
( ‖u1‖p−1

D1,p
P (<N )

− ‖u2‖p−1

D1,p
P (<N )

)
( ‖u1‖D1,p

P (<N )
− ‖u2‖D1,p

P (<N )

)
> 0,

(J2(v1)− J2(v2), v1 − v2) ≥
( ‖v1‖q−1

D1,q
Q (<N )

− ‖v2‖q−1

D1,q
Q (<N )

)
( ‖v1‖D1,q

Q (<N )
− ‖v2‖D1,q

Q (<N )

)
> 0.

For the operator B(u, v), we can prove that it is a strongly continuous
operator by using the Dominated Convergence Theorem and continuous
imbedding property for the space D1,p

P (<N ) × D1,q
Q (<N ) into L

Np
N−p (<N ) ×

L
Nq

N−q (<N ). To prove that, let us assume that un
w−→ u in D1,p

P (<N ) and

vn
w−→ v in D1,q

Q (<N ).Then (un, vn) → (u, v) in L
Np

N−p (<N ) × L
Nq

N−q (<N )
and (5un,5vn) → (5u,5v) in Lp(<N )×Lq(<N ). Now, the sequence (un)
is bounded in D1,p

P (<N ), and hence contains a subsequence again denoted

by (un) converging strongly to u in L
Np

N−p (Br0) for any bounded ball Br0 =

{x ∈ <N : ‖x‖ ≤ r0}. Similarly (vn) converges strongly to v in L
Nq

N−q (Br0).

Since un, u ∈ L
Np

N−p (Br0) and vn, v ∈ L
Nq

N−q (Br0). Then using the Dominated
Convergence Theorem, we have

∥∥∥a(x)(|un|p−2 un −→ |u|p−2 u)
∥∥∥ Np

N(p−1)+p
→ 0,

∥∥∥d(x)(|vn|q−2 vn −→ |v|q−2 v)
∥∥∥ Nq

N(q−1)+q
→ 0,

∥∥∥b(x)(|un|α−1 |vn|β+1 vn − |u|α−1 |v|β+1 v)
∥∥∥ Np

N(p−1)+p
→ 0,

∥∥∥c(x)(|vn|β−1 |un|α+1 un − |v|β−1 |u|α+1 u)
∥∥∥ Nq

N(q−1)+q
→ 0.

Then

‖B(un, vn)−B(u, v)‖
D1,p

P (Br0 )×D1,q
Q (Br0 )
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≤
∥∥∥a(x)(|un|p−2 un −→ |u|p−2 u)

∥∥∥ Np
N(p−1)+p

+
∥∥∥d(x)(|vn|q−2 vn −→ |v|q−2 v)

∥∥∥ Nq
N(q−1)+q

+
∥∥∥b(x)(|un|α−1 |vn|β+1 vn − |u|α−1 |v|β+1 v)

∥∥∥ Np
N(p−1)+p

+
∥∥∥c(x)(|vn|β−1 |un|α+1 un − |v|β−1 |u|α+1 u)

∥∥∥ Nq
N(q−1)+q

In [15], it is proved that, the norm

‖B(un, vn)−B(u, v)‖
D1,p

P (<N )×D1,q
Q (<N )

,

tends strongly to zero and then the operator B(u, v) is strongly continuous.
Finally, it remains to prove that the operator A(u, v)−B(u, v) is a coercive

operator

(A(u, v)−B(u, v), (u, v)) =
∫

<N

P (x)|∇u|p +
∫

<N

Q(x)|∇v|q−
∫

<N

a(x)|u|p

−
∫

<N

d(x)|v|q +
∫

v
b(x)|u|α+1|v|β+1 +

∫

<N

c(x)|u|α+1|v|β+1

=
∫

<N

P (x)|∇u|p +
∫

<N

Q(x)|∇v|q −
∫

<N

a+(x)|u|p

−
∫

<N

d+(x)|v|q +
∫

<N

a−(x)|u|p +
∫

<N

d−(x)|v|q

+
∫

v
b(x)|u|α+1|v|β+1 +

∫

<N

c(x)|u|α+1|v|β+1

≥
∫

<N

P (x)|∇u|p +
∫

<N

Q(x)|∇v|q −
∫

<N

a+(x)|u|p −
∫

<N

d+(x)|v|q.

Using (4.3), and (4.8), we have

(A(u, v)−B(u, v), (u, v)) ≥
∫

Ω
P (x)|∇u|p +

∫

Ω
Q(x)|∇v|q

− 1
λa(p)

∫

Ω
P (x)| 5 u|p − 1

λd(q)

∫

Ω
Q(x)| 5 v|q

= (1− 1
λa(p)

)
∫

Ω
P (x)|∇u|p + (1− 1

λd(q)
)
∫

Ω
Q(x)|∇v|q

≥ k(‖u‖p

W 1,p
0 (P,Ω)

+ ‖v‖q

W 1,q
0 (Q,Ω)

) = k ‖(u, v)‖
W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω)

.

So that:

(A(u, v)−B(u, v), (u, v)) −→∞ as ‖(u, v)‖
W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω)

−→∞.
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This proves the coercivity condition and so, the existence of a weak solu-
tion for system (4.1). ¤
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