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ON THE CAUCHY PROBLEM FOR THE
FOKKER-PLANCK-BOLTZMANN EQUATION WITH

INFINITE INITIAL ENERGY

MINLING ZHENG AND YUMING CHU

Abstract. We prove a new existence result for the Fokker-Planck-
Boltzmann equation with an initial data with infinite energy in the
framework of renormalization. We extend the result of DiPerna-Lions
by assuming f0(|x|α + |x− v|2) ∈ L1 instead of f0(|x|2 + |v|2) ∈ L1.

1. Introduction

This paper is devoted to study the existence of solution to the Fokker-
Planck-Boltzmann equation in the case of initial data with infinite energy.
We prove the global existence of renormalized solution for a general class of
initial data with finite mass, entropy.

The Fokker-Planck-Boltzmann (FPB) equation, as an approximation to
the Boltzmann equation, has been studied by DiPerna & Lions [1]. More
precisely, the authors investigated the Cauchy problem

{
∂tf + v · ∇xf = ∆vf + Q(f, f) in [0, +∞)×RN ×RN ,

f(t, x, v)|t=0 = f0(x, v) on RN ×RN ,
(1.1)

where Q is a quadratic collision operator defined by

Q(f, f) =
∫∫

RN×SN−1

(f ′f ′∗ − ff∗)B(v − v∗, w) dw dv∗ (1.2)

and
f0(1 + |x|2 + |v|2 + | log f0) ∈ L1(RN ×RN ). (1.3)
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As usual, we denote f = f(t, x, v), f ′ = f(t, x, v′), f∗ = f(t, x, v∗), f ′∗ =
f(t, x, v′∗). The post-collisional velocities v′ and v′∗ are obtained from the
pre-collisional velocities v and v∗ by{

v′ = v − (v − v∗, w)w,

v′∗ = v∗ + (v − v∗, w)w.
(1.4)

Here w ∈ SN−1 indicates the unit angular vector and (·, ·) the usual scalar
product. For the detailed representation the reader can refer to [2]. The
collision kernel B is a given nonnegative function on RN × SN−1 which is
symmetric with respect to v and v∗, that is

B ≥ 0, B(v − v∗, w) depends only on |v − v∗| and (v − v∗, w).

The main problem in dealing with the Boltzmann equation originates in
the lack of estimates of the collision term Q. The renormalized solution was
introduced in [1, 3] in order to resolve the difficulty of defining Q. They
have proved the stability result and the existence of global solution in time.

It must be mentioned that renormalization has been an effective tool in
analysis of large data Cauchy problem for Boltzmann equation and other
problems [4–9].

The Fokker-Planck-Boltzmann equation is concerned with the particles
system where the diffusive effect can not be neglected. Actually, in many
real situations the diffusion exists. So, one should approximate these kinetic
problems of the FPB equations with small parameter, but not the Boltz-
mann equation. Even if the study for FPB equation is easy to handle, their
mathematical analysis is not trivial. In paper [10] the first author and Yang
study the FPB equation without angular cutoff and extend the result of [1].
The corresponding result about the asymptotics of FPB equation with small
parameter to the Boltzmann equation can be found in paper [11]. Here, we
will extend the result of [1, 10] to the case of initial data with infinite energy
but with angular cutoff assumption.

In order to explain our result, we first recall the definition of renormalized
solution of FPB equation (1.1) and the known result.

Definition 1. We say nonnegative function f ∈ C(0, T ; L1(RN × RN )) is
the renormalized solution of (1.1) provided that it is initially equal to f0,
and that for all nonlinear function β ∈ C2[0, +∞) satisfying

β(0) = 0, |β′(t)| ≤ C

1 + t
, |β′′(t)| ≤ C

1 + t2
, (1.5)

and β(f) solves

(∂t + v · ∇x −∆v)β(f) = β′(f)Q(f, f)− β′′(f)|∇vf |2 (1.6)

in the sense of distributions.
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Remark. In fact, it can be checked that we just have to choose β as a given
function on [0, +∞), for instance, β(t) = log(1 + t).

Following [1], suppose that B ∈ L1
loc(R

N × SN−1). Let

A(z) =
∫

SN−1

B(z, w)dw for z ∈ RN ,

∫

BR

A(v − z)
(1 + |v|2)dz → 0 as |z| → ∞ for all R < +∞. (1.7)

In 1988, DiPerna and Lions [1] proved the following result.

Theorem A. Given an initial data f0 satisfying (1.3) and B satisfies (1.7).
Then, there exist a renormaliezed solution f to FPB equation (1.1) satisfying
f |t=0 = f0.

In this paper, we do not assume bounded energy anymore. Instead, due
to dispersion effects(see [12]) we assume

∫

RN×RN

f0(x, v)(1 + |x|α + |x− v|2 + | log f0|) dx dv < +∞ (1.8)

for some α > 0. Since the assumption (1.8) on f0 leads to velocity moment
bounds, we can derive the following estimate

f(1 + |x|α + |v|α + | log f |) ∈ L1((0, T )×RN ×RN ) (1.9)

which give us enough a priori estimates to deduce the stability result of
renormalized solutions like [1].

It seems strange to allow infinite energy, while we always think of the
particles system as finite (mass, energy, etc.) from the physical point of
view. It is known that the kinetic energy is not conserved for the FPB
equation. However, one can remark that

∫∫
RN×RN f(t, x, v)|x−(1+t)v|2dxdv

is bounded for any t ∈ [0, T ](see below Prop. 1). It is sufficient for us to
assume that f0|x− v|2 ∈ L1 instead of f0|v|2 ∈ L1, in other word, replacing
the finiteness of kinetic energy by position potential energy. By the way,
Mischler and Perthame studied the Boltzmann equation with the initial
values of infinite energy [13]. Our result can be considered as the extension
of [13], while our proof does not need the assumption that f has compact
support.

Now let us explain our result. Suppose that
∫

BR(v)

A(z)dz

(1 + |v|α)
→ 0 as |v| → ∞ for every R < +∞ (1.10)

here A is defined as the above. Then we have
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Theorem 1. Assume B satisfies (1.10) and f0 satisfies (1.8). Then, there
exists a global renormalized solution f to the FPB equation (1.1) such that
f |t=0 = f0.

Our paper is organized as following: In the second section we shall estab-
lish some new estimates for a classical solution to FPB equation. The idea is
to choose appropriate multiplicators as in [13]. In the third section we prove
the theorem of existence of renormalized solution following the line of [1] in
the case of infinite energy. Like [1] we employ the theory of hypoelloptic
operator [14] and the contraction mapping principle to obtain the existence
and uniqueness.

2. Some elementary estimates

In this section we present some new estimates for the solution to the
Fokker-Planck-Boltzmann equation. Assume that f is the classical solution
of FPB equation which decays to zero at infinite.

For FPB equation (1.1), we can derive easily the conservations of mass
and momentum, i.e.

d

dt

∫

RN×RN

f

(
1
v

)
dx dv = 0 (2.1)

and the entropy equation

d

dt

∫

RN×RN

f log f dx dv = −4
∫

RN×RN

|∇v

√
f |2dx dv − 1

4
D(f) (2.2)

where

D(f) =
∫

RN×RN

dv dv∗
∫

SN−1

dw B(v − v∗, w)(f ′f ′∗ − ff∗) log
f ′f ′∗
ff∗

. (2.3)

Note that D(f) ≥ 0, one deduces that
∫
RN×RN f log f dx dv is a nonincreas-

ing function of time variable t.

Proposition 1. Let f be the classical solution of FPB equation (1.1), then

sup
t∈[0,T ]

∫

RN×RN

f |x− (1 + t)v|2dx dv

≤
∫

RN×RN

f0|x− v|2dx dv +
2N

3
(1 + T )3

∫

RN×RN

f0dx dv (2.4)

Proof. Multiply the FPB equation (1.1) by |x − (1 + t)v|2 and integrate in
the velocity and space variables. Note that |x − (1 + t)v|2 is a collisional
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invariant, one gets

d

dt

∫

RN×RN

f |x− (1 + t)v|2dx dv =
∫

RN×RN

f(∂t + v ·∇x)|x− (1+ t)v|2dx dv +
∫

RN×RN

f∆v|x− (1+ t)v|2dx dv

= 2N(1 + t)2
∫

RN×RN

f dx dv.

By the conservation of mass we obtain the result. ¤

Proposition 2. Let f be the classical solution of (1.1) and α be a given
real number in (0, 2). Then for every t ≥ 0
∫

RN×RN

f(1 + |x|2)α
2 dx dv ≤ eαt

∫

RN×RN

f0

(
(1 + |x|2)α

2 + |x− v|2
)

dx dv.

(2.5)

Proof. We multiply the equation (1.1) by (1 + |x|2)α
2 and integrate over x

and v to obtain
d

dt

∫

RN×RN

f(1 + |x|2)α
2 dx dv = α

∫

RN×RN

f(1 + |x|2)α
2
−1x · v dx dv

since (1 + |x|2)α
2 is a collisional invariant. Note that

2|x · v| ≤ |x|2 + |v|2

≤
(

1 +
1

(1 + t)2

)
|x|2 +

1
(1 + t)2

|x− (1 + t)v|2

and then by the Gronwall type inequality we obtain the result (see the proof
of Lemma 2 of [13] for the details). ¤

Proposition 3. Let f be the solution of (1.1) and α be a given real number
in (0, 2). Then there exists a constant CT dependent on T, α, f0 such that

sup
t∈[0,T ]

∫

RN×RN

f(1 + |x|α + |v|α + | log f |)dx dv ≤ CT , (2.6)

∫ T

0
dt

∫

RN×RN

D(f)dx dv ≤ CT . (2.7)

Furthermore,
∫ T

0
dt

∫

RN×RN

dx dv(|∇v

√
f |2 + D(f)) ≤ CT . (2.8)
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Proof. Firstly, we have
∫

RN×RN

f |x|αdx dv ≤
∫

RN×RN

f(1 + |x|2)α
2 dx dv. (2.9)

Secondly, we consider the velocity moment of α order. Note that |(1 +
t)v| ≤ |x|+ |x− (1 + t)v|, hence

∫

RN×RN

f |v|αdx dv ≤
∫

RN×RN

f
1

(1 + t)α
(|x|+ |x− (1 + t)v|)αdx dv.

(2.10)

By virtue of the binomial formula, the right hand side is bounded by

C

∫

RN×RN

f
(
(1 + |x|2)α

2 + |x− (1 + t)v|2
)

dx dv

C is a nonnegative constant only dependent on α. Apply preceding Prop.1,
2 and together with (2.1) and (1.8) we derive

sup
t∈[0,T ]

∫

RN×RN

f(1 + |x|α + |v|α)dx dv ≤ CT (2.11)

and CT depends on T, α and f0.
Next, let us estimate

∫
RN×RN f | log f |dx dv employing the classical scheme

of [1]:
∫

RN×RN

f | log f |dx dv

≤
∫

RN×RN

f log fdx dv + 2
∫

RN×RN

f log
(

1
f

)
1(f<1)dx dv. (2.12)

The second term of the last equation can be split into two parts
∫

RN×RN

f log
(

1
f

)
1(f<1)dx dv

≤
∫

RN×RN

f log
(

1
f

)
1(f≤e−(|x|α+|v|α))dx dv

+
∫

RN×RN

f log
(

1
f

)
1(e−(|x|α+|v|α)≤f<1)dx dv

≤
∫

RN×RN

f(|x|α + |v|α)dx dv+
∫

RN×RN

f log
(

1
f

)
1(f≤e−(|x|α+|v|α))dx dv.

(2.13)
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Since t log 1
t ≤ C

√
t for t ∈ (0, 1), C ≥ 0 is a constant and we note that the

integral
∫
RN e−

1
2
|x|αdx is convergent. Indeed,
∫

RN

e−
1
2
|x|αdx =

∫

S1(0)

∫ ∞

0
e−

1
2
rα

rN−1dr dσ

= ωN

∫ ∞

0
e−

1
2
rα

rN−1dr

=
ωN2

n
α

α
Γ

(n

α

)

where ωN denotes the surface area of unit sphere. Thus, combining (2.12),
(2.13) with (2.2) and (2.11) we deduce

sup
t∈[0,T ]

∫

RN×RN

f | log f |dx dv ≤ CT . (2.14)

The proof of (2.6) is completed.
The bound 2.8 (and obviously (2.7)) follows from (2.2) and we obtain the

result. ¤

Remark. From (2.8) one can obtain that f ∈ L2((0, T )×RN
x ; H1(RN

v )).

3. Proof of theorem of existence

This section is mainly devoted the proof of Theorem 1. Let L = ∂t + v ·
∇x−∆v. From [1], L is a hypoelliptic operator (see also [14]). Let G(t, x, v)
be a continuous fundamental solution of L.

We establish the stability theorem in the following:

Theorem 2. Assume that fn is a sequence of classical solution of FPB
equation (1.1) such that fn ∈ W 2,∞((0,∞)×RN ×RN ) and

sup
t∈(0,T )

∫

RN×RN

fn(1 + |x|α + |v|α + | log fn|)dx dv ≤ CT , (3.1)

∫ T

0
dt

∫

RN×RN

dx dv{|∇v

√
fn|2 + D(fn)} ≤ CT , (3.2)

CT is a constant independent of n. In addition, assume that B satisfies
(1.10). Then, ∀p, T < ∞ the sequence fn converges in Lp(0, T ;L1(RN ×
RN )) to a renormalized solution f which satisfies (3.1) for a.e. t ∈ (0, T )
and (3.2).

Proof. The proof of this theorem is completely similar to that of Theorem
1 of [1]. ¤



70 MINLING ZHENG AND YUMING CHU

Proof of Theorem 1. Firstly we approximate the FPB equation (1.1) by
truncating the collision section B and regularizing the initial data f0.

Let us define
Bn(z, w) = B(z, w)1(|z|≤n) ∧

n

ωN

where ωN is the surface area of unit sphere. So the approximation collision
operator is written as

Qn(f, f) =
∫∫

RN×SN−1

(f ′f ′∗ − ff∗)Bn(v − v∗, w)dw dv∗.

Let ρ(x, v) be the standard mollifier with respective to x and v, i.e. ρ be a
non-negative enen C∞ function such that

suppρ(x, v) = {x ∈ RN , v ∈ RN ; |x| ≤ 1, |v| ≤ 1} and∫

RN×RN

ρ(x, v)dx dv = 1.

For each n, let

fn
0 (x, v) = f0 ∗ ρ 1

n
(x, v), where ρ 1

n
(x, v) = n2Nρ(nx, nv).

Then, we obtain the approximation equation




Lfn = (1 +
1
n

∫

RN

fndv)−1Qn(fn, fn),

fn|t=0 = fn
0 .

(3.3)

Next we solve the equation (3.3) by contraction mapping principle. Make
use of the fundamental solution of L,

fn(x, v) = Qn(fn, fn) ∗G(t, x, v) + fn
0 ∗G(t, x, v) (3.4)

where

Qn(fn, fn) = (1 +
1
n

∫

RN

fndv)−1Qn(fn, fn).

Let the mapping A : fn → gn defined by

gn(t, x, v) =
∫ t

0

∫

RN

∫

RN

Qn(fn, fn)(s, y, ξ)G(t, x, v; s, y, ξ)ds dy dξ

+
∫

RN

∫

RN

fn
0 (y, ξ)G(t, x, v; y, ξ)dy dξ. (3.5)

Note that

‖Qn(fn, fn)‖L1 ≤ Cn‖fn‖L1 ,

‖Qn(fn, fn)‖L∞ ≤ Cn‖fn‖L∞ .
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Where Cn only depends on n. This implies that A maps L1 ∩ L∞((0, T )×
RN ×RN ) into itself for every T < ∞. Additionally,

‖Qn(φ, φ)−Qn(ψ,ψ)‖L1∩L∞ ≤ Cn‖φ− ψ‖L1∩L∞ .

Thus, Qn is Lipschitz continuous in L1∩L∞((0, T )×RN×RN ). Furthermore,
by choosing T appropriately we deduce that the mapping A is a contraction
mapping on L1∩L∞((0, T )×RN ×RN ). The contractive mapping principle
then implies that there is a unique solution to (3.3).

By the boot-strap technique we have that for any T < ∞ there is a unique
solution to (3.3) in L1 ∩ L∞((0, T )×RN ×RN ).

Finally, we check easily that fn ∈ W 2,∞((0, T ) × RN × RN ) and (3.1),
(3.2) hold uniformly in n. Passing to the limit, and using the stability result
we finish the proof of Theorem 1. ¤
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