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EXISTENCE RESULTS FOR NONOSCILLATORY
SOLUTIONS OF THIRD ORDER NONLINEAR NEUTRAL

DIFFERENCE EQUATIONS

E. THANDAPANI, R. KARUNAKARAN AND I. M. AROCKIASAMY

Abstract. In this paper the authors consider the third order neutral
difference equation

∆3 (xn + pnxn−k) + qnf (xn−`) = hn

where {pn} , {qn} , {hn} are real sequences. They use Krasnoselskii’s
fixed point theorem to establish the existence of nonoscillatory solutions.
The results are illustrated with examples.

1. Introduction

In this paper, we consider the third order neutral difference equation

∆3 (xn + pnxn−k) + qnf (xn−`) = hn (1.1)

where ∆ is the forward difference operator defined by ∆xn = xn+1 − xn, k
and ` are positive integers, {pn} , {qn} and{hn} are real sequences defined
for all n ∈ N (n0) = {n0, n0 + 1, n0 + 2, . . . } , and n0 a nonnegative integer,
and f is a continuous real valued function. Here we allow {qn} and {hn} to
be oscillatory.

Let θ = max{k, `} . By a solution of equation (1.1), we mean a real se-
quence {xn} defined for all n ≥ N (n0 − θ) and that satisfies equation ( 1.1).
A solution {xn} of equation (1.1) is nonoscillatory if it is either eventually
positive or eventually negative and oscillatory otherwise.

The oscillatory and nonoscillatory behavior of solutions of difference equa-
tions has been considered in [1-8] and conditions for the existence of nonoscil-
latory solutions using either Schauder fixed point theorem or Banach con-
traction principle are obtained. The aim of this paper is to obtain a sufficient
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condition for the existence of nonoscillatory solutions of equation (1.1) with-
out using nondecreasing conditions and any sign conditions on the sequences
{qn} and {hn} via Krasnoselskii’s fixed point theorem.

In Section 2, we establish condition for the existence of nonoscillatory
solutions of equation (1.1).

2. Existence results for nonoscillatory solutions

In this section we establish sufficient condition for the existence of boun-
ded nonoscillatory solution of equation (1.1).

Lemma 2.1. [7], [Krasnoselskii’s Fixed Point Theorem]
Let X be a Banach space let Ω be a bounded closed convex subset of X

and let S1, S2 be maps of Ω into X such that S1x + S2y ∈ Ω for every pair
x, y ∈ Ω. If S1 is a contraction and S2 is completely continuous, then the
equation S1x + S2y = x has a solution in Ω.

Lemma 2.2. [7], [ Schauder’s Fixed Point Theorem]
Let Ω be a closed, convex and nonempty subset of a Banach space X.

Let S : Ω → Ω be a continuous mapping such that SΩ is relatively compact
subset of X. Then S has at least one fixed point in Ω. That is, there exists
an x ∈ Ω such that Sx = x.

We need the following factorial function in our main results.

Definition 2.3. The factorial function t(r) is defined as follows according
to the value of r :

(a) if r = 1, 2, 3, . . . , then t(r) = t (t− 1) (t− 2) · · · (t− r + 1) ,

(b) if r = 0, then t(r) = 1.

Whenever t(r) is defined we have ∆t(r) = rt(r−1), and
∑

t(r) = t(r+1)

r+1 + c.

Theorem 2.4. Assume that −1 < c1 ≤ pn ≤ 0 and that
∞∑

n=n0

n(2) |qn| < ∞, (2.1)

and ∞∑
n=n0

n(2) |hn| < ∞. (2.2)

Then equation (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2), we choose a N ∈ N (n0) sufficiently large such
that ∞∑

n=N

n(2) (|qn|M1 + |hn|) ≤ 2
3

(1 + c1) ,
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where M1 = max 2(1+c1)
3

≤x≤ 4
3

{|f(x)|} . Let Bn0 be the set of all real sequences

with the norm ‖x‖ = supn>n0
|xn| < ∞. Then Bn0 is a Banach space. We

define a closed, bounded and convex subset Ω of Bn0 as follows.

Ω =
{

x = {xn} ∈ Bn0 :
2
3

(1 + c1) ≤ xn ≤ 4
3
, n ∈ N (n0)

}
.

Define two maps S1 and S2 : Ω → Bn0 as follows.

(S1x)n =

{
1 + c1 − pnxn−k, n > N,

(S1x)N , n0 ≤ n ≤ N

(S2x)n =





1
2

∞∑
s=n

(s− n + 2)(2) (qsf (xs−`)− hs) , n > N,

(S2x)N , n0 ≤ n ≤ N.

(i) We shall show that for any x, y ∈ Ω, (S1x)n + (S2y)n ∈ Ω. In fact for
every x, y ∈ Ω and n > N, we get

(S1x)n + (S2y)n

≤ 1 + c1 − pnxn−k +
1
2

∞∑
s=n

(s− n + 2)(2) (|qs| |f (ys−`)|+ |hs|)

≤ 1 + c1 − 4
3
c1 +

1
2

∞∑
s=n

s(2) (|qs|M1 + |hs|)

≤ 1 + c1 − 4
3
c1 +

1 + c1

3
=

4
3
.

Furthermore we have,

(S1x)n + (S2y)n

> 1 + c1 − pnxn−k − 1
2

∞∑
s=n

(s− n + 2)(2) (|qs| |f (ys−`)|+ |hs|)

> 1 + c1 − 1
2

∞∑
s=n

s(2) (|qs|M1 + |hs|)

> 1 + c1 − 1 + c1

3
=

2(1 + c1)
3

.

Hence
2(1 + c1)

3
≤ (S1x)n + (S2y)n ≤

4
3

for n > N0.

Thus we have proved that (S1x)n + (S2y)n ∈ Ω for any x, y ∈ Ω.
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(ii) We shall show that S1 is a contraction mapping on Ω. In fact for
x, y ∈ Ω and n > N we have

|(S1x)n − (S1y)n| ≤ −pn |xn−k − yn−k| ≤ −c1 ‖x− y‖ .

Since 0 < −c1 < 1, we conclude that S1 is a contraction mapping on Ω.
(iii) Next we show that S2 is uniformly Cauchy. First we shall show that

S2 is continous. Let
{
x(i)

}
be a sequence in Ω such that x(i) −→ x = {xn}

as i −→∞. Since, Ω is closed x ∈ Ω. Furthermore, for n > N we have,

∣∣∣
(
S2x

(i)
)

n
− (S2x)n

∣∣∣ ≤ 1
2

∞∑
s=n

s(2) |qs|
∣∣∣f

(
x

(i)
s−`

)
− f (xs−`)

∣∣∣

≤ 1
2

∞∑

s=N

s(2) |qs|
∣∣∣f

(
x

(i)
s−`

)
− f (xs−`)

∣∣∣ .

Since
∣∣f(

x
(i)
s−`

) − f (xs−`)
∣∣ −→ 0 as i −→ ∞ by applying the Lebesque

dominated convergence theorem, we conclude that

lim
i−→∞

∥∥∥
(
S2x

(i)
)

n
− (S2x)n

∥∥∥ = 0.

This means that S2 is continuous. Finally we prove that S2 is uniformly
Cauchy. By (2.1), for any ε > 0, choose N1 > N large enough so that

1
2

∞∑

n=N1

n(2) (M1 |qn|+ |hn|) <
ε

2

Then for x ∈ Ω, n2 > n1 > N1.
∣∣(S2x)n2

− (S2x)n1

∣∣

≤ 1
2

∞∑
s=n2

s(2) (|qs| |f (xs−`)|+ |hs|) +
1
2

∞∑
s=n1

s(2) (|qs| |f (xs−`)|+ |hs|)

≤ 1
2

∞∑
s=n2

s(2) (|qs|M1 + |hs|) +
1
2

∞∑
s=n2

s(2) (|qs| |f (xs−`)|+ |hs|)

≤ ε

2
+

ε

2
= ε.

Therefore (S2x)n is uniformly Cauchy. By Lemma 2.2, there is an x∗ ∈ Ω
such that S1x

∗+S2x
∗ = x∗. It is easy to see that x∗ = {x∗} is a nonoscillatory

solution of the equation (1.1). This completes the proof of Theorem 2.4. ¤
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Example 2.5. Consider the difference equation

∆3

(
xn − 1

2
xn−1

)
+

1
n (n + 1) (n + 2) (n + 3)

xn−1

=
15− 2n

(n− 1) n (n + 1) (n + 2) (n + 3)
, n ≥ 2. (2.3)

Here pn = −1
2 , qn = 1

n(n+1)(n+2)(n+3) and hn = 15−2n
(n−1)n(n+1)(n+2)(n+3) . It is

easy to see that all conditions of Theorem 2.4 are satisfied and hence equa-
tion ( 2.3) has a bounded nonoscillatory solution. In fact {xn} =

{
1 + 1

n

}
is one such solution of equation (2.3).

Theorem 2.6. Assume that −∞ < pn ≡ c2 < −1 and that (2.1) and (2.2)
hold. Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2) we choose N ∈ N (n0) sufficiently large such that

− 1
c2

∑
s = n + k∞s(2) (|qs|M2 + |hs|) ≤ −(c2 + 1)

2
where M2 = max− (c2+1)

2
≤x≤−2c2

{|f(x)|} .

Let Bn0 be the space defined as in the proof of Theorem 2.4. We define a
closed bounded and convex subset Ω of Bn0 as follows:

Ω =
{

x = {xn} ∈ Bn0 : −(c2 + 1)
2

≤ x ≤ −2c2, n > n0

}
.

Define two maps S1 and S2 : Ω −→ Bn0 as follows.

(S1x)n =

{
−c2 − 1− 1

pn
xn+k, n > N

(S1x)N , n0 ≤ n ≤ N,

(S2x)n =





1
2pn

∞∑
s=n+k

(s− n− k)(2) (qsf (xs−`)− hs) , n > N,

(S2x)N , n0 ≤ n ≤ N.

We shall show that for any x, y ∈ Ω.In fact for any x, y ∈ Ω, we get

(S1x)n + (S2y)n

≤ −c2 − 1− 1
pn

xn+k − 1
2pn

∞∑

s=n+k

(s− n− k + 2)(2) (|qs| |f (ys−`)|+ |hs|)

≤ −c2 − 1 + 2− 1
2c2

∞∑

s=N+k

s(2) (|qs|M2 + |hs|)

≤ −c2 + 1− (c2 + 1)
2

≤ −2c2.
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Furthermore we have

(S1x)n + (S2y)n

> −c2 − 1− 1
pn

xn+k +
1

2pn

∞∑

s=n+k

(s− n + 2)(2) (|qs| |f (ys−`)|+ |hs|)

> −c2 − 1 +
1

2c2

∞∑

s=N

s(2) (|qs|M2 + |hs|)

> (−c2 − 1) +
(c2 + 1)

2
=
−(c2 + 1)

2
.

Hence −(c2+1)
2 ≤ (S1x)n + (S2y)n ≤ −2c2, for n > n0.

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω. We shall show
that S1 is a contraction mapping on Ω. In fact for x, y ∈ Ωand n > N we
have

|(S1x)n + (S1y)n| ≤
−1
pn

|xn+k − yn+k| ≤ − 1
c2
‖x− y‖ .

Since 0 < − 1
c2

< 1, we conclude that S1 is a contraction mapping on Ω.
Proceeding similarly as in the proof of Theorem 2.4 we obtain S2 is uniformly
Cauchy. By Lemma 2.1 there is an x∗ ∈ Ω such that S1x

∗ + S2x
∗ = x∗.

Clearly x∗ = {x∗n} is a bounded nonoscillatory solution of equation (1.1).
This completes the proof of Theorem 2.6. ¤
Example 2.7. Consider the difference equation

∆3 (xn − 2xn−1) +
1
2n

xn−1 =
11 (2n) + 16

8(22n)
, n ≥ 2. (2.4)

Here pn = −2, qn = 1
2n and hn = 11(2n)+16

8(22n)
. It is easy to see that all condi-

tions of Theorem 2.6 are satisfied and hence equation (2.4) has a bounded
nonoscillatory solution. In fact {xn} =

{
1 + 1

2n

}
is one such solution of

equation (2.4).

Theorem 2.8. Assume that 0 ≤ pn ≤ c3 < 1 and that (2.1) and (2.2) hold.
Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2) we choose N ∈ N (n0) sufficiently large such that

1
2

∞∑

s=N

s(2) (|qs|M3 + |hs|) ≤ 1− c3,

where M3 = max2(1−c3)≤x≤4 {f(x)} .
Let Bn0 be the space as defined in the proof of Theorem 2.4. We define a

closed, bounded and convex subset Ω of Bn0as follows:

Ω = {x = {xn} ∈ Bn0 : 2(1− c3) ≤ xn ≤ 4} .
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We define two maps S1 and S2 : Ω −→ Bn0 as follows.

S1x =

{
3 + c3 − pnxn−k, n ≥ N ;
(S1x)N , n0 ≤ n ≤ N.

S2x =





1
2

∞∑
s=n

(s− n + 2)(2) (qsf (xs−`)− hs) , n ≥ N ;

(S2x)N , n0 ≤ n ≤ N.

We shall show that for any x, y ∈ Ω, S1x + S2y ∈ Ω. In fact for any
x, y ∈ Ω and n ≥ N, we obtain

(S1x)n + (S2y)n

≤ 3 + c3 − pnxn−k +
1
2

∞∑
s=n

(s− n + 2)(2) (|qs| |f (ys−`)|+ |hs|)

≤ 3 + c3 +
1
2

∞∑

s=N

s(2) (|qs|M3 + |hs|)

≤ 3 + c3 + 1− c3 = 4.

Furthermore we have

(S1x)n + (S2y)n

≥ 3 + c3 − pnxn−k − 1
2

∞∑

s=N

(s− n + 2)(2) (|qs| |f (xs−`)|+ |hs|)

≥ 3 + c3 − 4c3 − 1
2

∞∑

s=N

s(2) (|qs|M3 + |hs|)

≥ 3 + c3 − 4c3 − (1− c3) = 2(1− c3).

Hence,

2(1− c3) ≤ (S1x)n + (S2y)n ≤ 4, for n ≥ n0.

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω. Proceeding
similarly as in the proof of Theorem 2.4 we obtain the mapping S1 is a
contraction mapping on Ω and the mapping S2 is uniformly Cauchy. By
Lemma 2.1, there is an x∗ ∈ Ω such that S1x

∗+S2x
∗ = x∗. Clearly x∗ = x∗n

is a bounded nonoscillatory solution of the equation (1.1). This completes
the proof of Theorem 2.8. ¤
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Example 2.9. Consider the difference equation

∆3

(
xn +

1
n + 1

xn−1

)
+

24(n + 2)3

(n + 1)3 (n + 3) (n + 4) (n + 5) (n + 6)
x3

n−1

=
24(n + 1)

(n + 2) (n + 3) (n + 4) (n + 5) (n + 6)
, n ≥ 2. (2.5)

Here

pn =
1

n + 1
, qn =

24(n + 2)3

(n + 1)3 (n + 3) (n + 4) (n + 5) (n + 6)

and

hn =
24(n + 1)

(n + 2) (n + 3) (n + 4) (n + 5) (n + 6)
.

It is easy to see that all conditions of Theorem 2.8 are satisfied and hence
equation (2.5) has a bounded nonoscillatory solution. In fact {xn} =

{
n+2
n+3

}

is one such solution of equation (2.5).

Theorem 2.10. Assume that 1 < c4 ≡ pn < ∞ and that (2.1) and (2.2)
hold. Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2) we choose N ∈ N (n0) sufficiently large so that

1
2c4

∞∑

s=n+k

s(2) (|qs|M4 + |hs|) < c4 − 1,

where M4 = max2(c4−1)≤x≤4c4 {f(x)} . Let Bn0 be the space as in the proof
of Theorem 2.4. We define a closed bounded and convex subset Ω of Bn0 as
follows:

Ω = {x = {xn} ∈ Bn0 : 2(c4 − 1) ≤ xn ≤ 4c4, n ≥ n0} .

Define two maps S1 and S2 : Ω −→ Bn0 as follows:

(S1x)n =

{
3c4 + 1− 1

pn
xn+k, n ≥ N ;

(S1x)N , n0 ≤ n ≤ N.

(S2x)n =





1
2pn

∞∑
s=n+k

(s− n− k + 2)(2) (qsf (xs−`)− hs) , n ≥ N ;

(S2x)N , n0 ≤ n ≤ N.
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We shall show that for any x, y ∈ Ω, S1x+S2y ∈ Ω. In fact for every x, y ∈ Ω
and n ≥ N, we get

(S1x)n + (S2y)n

≤ 3c4 + 1− 1
pn

xn+k +
1

2pn

∞∑

s=n+k

(s− n− k + 2)(2) (|qs| |f (ys−`)|+ |hs|)

≤ 3c4 + 1 +
1

2c4

∞∑

s=N+k

s(2) (|qs|M4 + |hs|)

≤ 3c4 + 1 + (c4 − 1) = 4c4.

Furthermore, we have

(S1x)n + (S2y)n

≥ 3c4 + 1− 1
pn

xn+k − 1
2pn

∞∑

s=n+k

(s− n + 2)(2) (|qs| |f (ys−`)|+ |hs|)

≥ 3c4 + 1− 4− 1
2c4

∞∑

s=N

s(2) (|qs|M4 + |hs|)

≥ 3c4 − 3− (c4 − 1) = 2 (c4 − 1) .

Hence,
2 (c4 − 1) ≤ (S1x)n + (S2y)n ≤ 4c4 for n ≥ n0.

Thus we have proved that S1x + S2y ∈ Ω for every x, y ∈ Ω. Proceeding
similarly as in the proof of Theorem 2.4 we obtain that the mapping S1 is
a contraction mapping on Ω and the mapping S2 is uniformly Cauchy. By
Lemma 2.1, there is an x∗ ∈ Ω such that S1x

∗+S2x
∗ = x∗. Clearly x∗ = x∗n

is a bounded nonoscillatory solution of the equation (1.1). This completes
the proof of Theorem 2.10. ¤

Example 2.11. Consider the difference equation

∆3 (xn + 2xn−1) +
1
3n

xn−1 =
81− 29 (3n)

27(32n)
, n ≥ 2. (2.6)

Here pn = 2, qn = 1
3n and hn = 81−29(3n)

27(32n)
. It is easy to see that all condi-

tions of Theorem 2.10 are satisfied and hence equation (2.6) has a bounded
nonoscillatory solution. In fact {xn} =

{
1 + 1

3n

}
is one such solution of

equation (2.6).

Theorem 2.12. Assume that pn ≡ 1 and that (2.1) and (2.2) hold. Then
(1.1) has a bounded nonoscillatory solution.



82 E. THANDAPANI, R. KARUNAKARAN AND I. M. AROCKIASAMY

Proof. By (2.1) and (2.2) we choose N > n0 sufficiently large so that

1
2

∞∑

s=N+k

s(2) (|qs|M5 + |hs|) ≤ 1,

where M5 = max2≤x≤4 {f(x)} . We define a closed bounded and convex
subset Ω of Bn0 as follows.

Ω = {x = {xn} ∈ Bn0 : 2 ≤ xn ≤ 4, n ≥ n0} .

Define a map S : Ω −→ Bn0 as follows.

(Sx)n =





3 + 1
2

∞∑
j=1

n+2jk∑
s=n+(2j−1)k

(s− n + 2)(2) (qsf (xs−`)− hs) , n ≥ N ;

(S1x)N , n0 ≤ n ≤ N.

We shall show that SΩ ⊂ Ω for every x ∈ Ω and n ≥ N, we get

(Sx)n ≤ 3 +
1
2

∞∑

j=1

n+2jk∑

s=n+(2j−1)k

(s− n + 2)(2) (|qs||f (xs−`) |+ |hs|)

≤ 3 +
1
2

∞∑

j=1

n+2jk∑

s=n+(2j−1)k

s(2) (|qs|M5 + |hs|) ≤ 4.

Furthermore, we have

(Sx)n ≥ 3− 1
2

∞∑

j=1

n+2jk∑

s=n+(2j−1)k

(s− n + 2)(2) (|qs||f (xs−`) |+ |hs|)

≥ 3− 1
2

∞∑

j=1

n+2jk∑

s=n+(2j−1)k

s(2) (|qs|M5 + |hs|) ≥ 2.

Hence, SΩ ⊂ Ω.
Proceeding similarly as in the proof of Theorem 2.4 we obtain that the

mapping S is uniformly Cauchy. By Lemma 2.2, there is an x∗ ∈ Ω such
that Sx∗ = x∗, that is

x∗n =





3 + 1
2

∞∑
j=1

n+2jk∑
s=n+(2j−1)k

(s− n + 2)(2) (qsf (xs−`)− hs) , n ≥ N ;

x∗N , n0 ≤ n ≤ N.

It follows that

xn + xn−k = 6 +
1
2

∞∑
s=n

(s− n + 2)(2) (qsf (xs−`)− hs) .
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Clearly x∗ = {x∗n} is a bounded nonoscillatory solution of the equation (1.1).
This completes the proof of Theorem 2.12. ¤
Example 2.13. Consider the difference equation

∆3 (xn + xn−1) +
12

n (n + 1) (n + 2) (n + 3)
xn−1

=
−12

(n− 1)n (n + 1) (n + 2) (n + 3)
, n ≥ 2. (2.7)

Here
pn = 1, qn =

12
n (n + 1) (n + 2) (n + 3)

and
hn =

−12
(n− 1)n (n + 1) (n + 2) (n + 3)

.

It is easy to see that all conditions of Theorem 2.12 are satisfied and hence
equation (2.7) has a bounded nonoscillatory solution. In fact {xn}=

{
1 + 1

n

}
is one such solution of equation (2.7).

Theorem 2.14. Assume that pn ≡ −1 and that
∞∑

s=n0

s(3) |qs| < ∞, (2.8)

and ∞∑
s=n0

s(3) |hs| < ∞. (2.9)

Then (1.1) has a bounded nonoscillatory solution.

Proof. First note that the assumptions (2.8) and (2.9) are equivalent to
∞∑

j=0

∞∑

s=n0+jk

s(2)|qs| < ∞ (2.10)

and ∞∑

j=0

∞∑

s=n0+jk

s(2)|hs| < ∞ (2.11)

respectively. We choose a sufficiently large N ∈ N (n0) such that

1
2

∞∑

j=1

∞∑

s=N+jk

s(2) (|qs|M6 + |hs|) ≤ 1,

where M6 = max0≤x≤1 {f(x)} . We define a closed, bounded, and convex
subset Ω on Bn0 as follows.

Ω = {x = {xn} ∈ Bn0 : 2 ≤ xn ≤ 4, n ≥ n0} .
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Define a map S : Ω −→ Bn0 as follows:

(Sx)n =





3− 1
2

∞∑
j=1

∞∑
s=n+jk

(s− n + 2)(2) (qsf (xs−`)− hs) , n ≥ N ;

(Sx)N , n0 ≤ n ≤ N.

We shall show that SΩ ⊂ Ω .In fact for every x ∈ Ω and n ≥ N, we get

(Sx)n ≤ 3 +
1
2

∞∑

j=1

∞∑

s=n+jk

(s− n + 2)(2) (|qs||f (xs−`) |+ |hs|)

≤ 3 +
1
2

∞∑

j=1

∞∑

s=n+jk

s(2) (|qs|M6 + |hs|) ≤ 4.

Furthermore we have

(Sx)n ≥ 3− 1
2

∞∑

j=1

∞∑

s=n+jk

(s− n + 2)(2) (|qs| |f (xs−`)|+ hs)

≥ 3− 1
2

∞∑

j=1

∞∑

s=n+jk

s(2) (|qs|M6 + |hs|) ≥ 2.

Hence, SΩ ⊂ Ω. We now show that S is continuous.
Let

{
x(i)

}
be a sequence in Ω such that x(i) → x = {xn} as i →∞. Since,

Ω is closed x ∈ Ω. Furthermore, for n > N we have,

∣∣∣
(
Sx(i)

)
n
− (Sx)n

∣∣∣ ≤ 1
2

∞∑

j=1

∞∑

s=n+jk

s(2)
(
|qs|

∣∣∣f
(
x

(i)
s−`

)
− f (xs−`)

∣∣∣
)

.

Since
∣∣∣f

(
x

(i)
s−`

)
− f (xs−`)

∣∣∣ → 0 as i →∞ by applying the Lebesque domi-
nated convergence theorem, we conclude that

lim
i−→∞

∥∥∥
(
Sx(i)

)
n
− (Sx)n

∥∥∥ = 0.

This means that S is continuous. In the following we show that S is uni-
formly Cauchy. By (2.10) and (2.11), for any ε > 0, choose N1 > N large
enough so that

1
2

∞∑

j=1

∞∑

s=N1+jk

s(2) (M6 |qs|+ |hs|) <
ε

2
.
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Then for x ∈ Ω, n2 > n1 ≥ N,
∣∣(Sx)n2

− (S2x)n1

∣∣

≤ 1
2

∞∑

j=1

∞∑

s=n2+jk

s(2) (|qs| |f (xs−`)|+ |hs|)

+
1
2

∞∑

j=1

∞∑

s=n1+jk

s(2) (|qs| |f (xs−`)|+ |hs|)

≤ 1
2

∞∑

j=1

∞∑

s=n2+jk

s(2) (|qs|M6 + |hs|) +
1
2

∞∑

j=1

∞∑

s=n1+jk

s(2) (|qs|M6 + |hs|)

≤ ε

2
+

ε

2
= ε.

Therefore Sx is uniformly Cauchy. By Lemma 2.2, there is an x∗ ∈ Ω such
that Sx∗ = x∗. That is

x∗n =





3− 1
2

∞∑
j=1

∞∑
s=n+jk

(s− n + 2)(2) (
qsf

(
x∗s−`

)− hs

)
, n ≥ N ;

x∗N , n0 ≤ n ≤ N.

It follows that

xn − xn−k = −1
2

∞∑
s=n

(s− n + 2)(2) (qsf (xs−`)− hs) , n ≥ N.

Clearly x∗ = {x∗n} is a bounded nonoscillatory solution of the equation (1.1).
This completes the proof of Theorem 2.14. ¤

Example 2.15. Consider the difference equation

∆3 (xn − xn−1) +
24

(n− 1)n (n + 1) (n + 2) (n + 3)
xn−1

=
−24

(n− 1)2 n (n + 1) (n + 2) (n + 3)
, n ≥ 2. (2.12)

Here

pn = −1, qn =
24

(n− 1)n (n + 1) (n + 2) (n + 3)
and

hn =
−24

(n− 1)2 n (n + 1) (n + 2) (n + 3)
.

It is easy to see that all conditions of Theorem 2.12 are satisfied and hence
equation (2.12) has a bounded nonoscillatory solution. One can easily check
that {xn} =

{
1 + 1

n

}
is one such solution of equation (2.12).
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Remark 2.16. Simple modifications are necessary in the proofs to dis-
cuss the existence of nonoscillatory solutions of neutral functional difference
equations of the form

∆3 (xn + pnxn−k) + F (n, xn−`) = hn, n ≥ n0

where F (n, xn−`) : N (n0)× R→R is continuous and bounded.
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