THE G–TRANSLATIVITY OF ABEL-TYPE TRANSFORMATIONS

MULATU LEMMA

Abstract. Suppose $0 < t_n < 1$ and $\lim_{n \to \infty} t_n = 1$, then the Abel-type matrix, denoted by $A_{\alpha, t}$, is the matrix defined by

$$a_{nk} = \left(\frac{k + \alpha}{k}\right) t_n^k (1 - t_n)^{\alpha + 1}, \quad \alpha > -1.$$

Recently the author proved that the Abel-type matrix $A_{\alpha, t}$ is ℓ-translative [2]. In this paper, we investigate the G-translativity of these transformations.

1. Basic notations and definitions

Let $A = (\alpha_{nk})$ be an infinite matrix defining a sequence to a sequence summability transformation given by

$$(Ax)_n = \sum_{k=0}^{\infty} \alpha_{nk}x_k$$

where $(Ax)_n$ denotes the nth term of the image sequence Ax. Let y be a complex number sequence. Throughout this paper, we shall use the following basic notations and definitions.

$$G = \left\{ y : y_k = 0 \left(r^k \right), \quad 0 < r < 1 \right\}$$

$$G(A) = \left\{ y : Ay \in G \right\}$$

$$c(A) = \left\{ y : y \text{ is summable by } A \right\}.$$

Definition 1.1. If X and Y are sets of complex number sequences, then the matrix A is called an $X–Y$ matrix if the image Au of u under the transformation A is in Y whenever u is in X.

Definition 1.2. The summability matrix A is said to be G-translative for the sequence $u = \{u_0, u_1, u_2, \ldots\}$ in $G(A)$ provided that each of the sequences T_u and S_u is in $G(A)$, where $T_u = \{u_1, u_2, \ldots\}$ and $S_u = \{0, u_0, u_1, \ldots\}$.

2000 Mathematics Subject Classification. 40A05, 40D99, 40C05.

Key words and phrases. $G–G$ method, G-translative, Abel-type transformations.
Definition 1.3. The sequence \(x \) is said to be \(A_\alpha \)-summable to \(L \) if

1. \(\sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k x^k \) is convergent, for \(0 < x < 1 \),
2. \(\lim_{x \to 1} (1 - x)^{\alpha + 1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k x^k = L \).

Here \(A_\alpha \) is the Abel-type power series method discussed by David Borwin in [1].

2. Main results

Proposition 2.1. If \(A_{\alpha,t} \) is a \(G - G \) matrix, then \((1 - t)^{\alpha + 1} \in G \).

Proof. Suppose \((1 - t)^{\alpha + 1} \) is not in \(G \). This implies that the first column of the matrix \(A_{\alpha,t} \) is not in \(G \) because \(a_n, 0 = (1 - t_n)^{\alpha + 1} \). Hence \(A_{\alpha,t} \) is not a \(G - G \) matrix. \(\square \)

Theorem 2.2. Every \(G - G \) \(A_{\alpha,t} \) matrix is \(G \)-translative for each sequences \(x \in G (A_{\alpha,t}) \) for which \(\left\{ \frac{x_k}{k+\alpha} \right\} \in G (A_{\alpha,t}) \), \(k = 1, 2, 3, \ldots \).

Proof. Suppose \(x \) is a sequence in \(G (A_{\alpha,t}) \) for which \(\left\{ \frac{x_k}{k+\alpha} \right\} \in G (A_{\alpha,t}) \). We will show that

1. \(T_x \in G (A_{\alpha,t}) \), and
2. \(S_x \in G (A_{\alpha,t}) \),

where \(T_x \) and \(S_x \) are as defined above. Let us first show that (1) holds. Note that

\[
|\langle A_{\alpha,t} \rangle_n| = \left| (1 - t_n)^{\alpha + 1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^k \right| \\
= \frac{(1 - t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^{k+1} \right| \\
= \frac{(1 - t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k-1+\alpha}{k-1} x_k t_n^k \right| \\
= \frac{(1 - t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \left(1 - \frac{\alpha}{k+\alpha} \right) \right| \\
\leq A_n + B_n,
\]
where
\[A_n = \frac{(1 - t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \right| \]
and
\[B_n = \frac{|\alpha| (1 - t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \right|. \]

Now if we show that both \(\{A_n\} \) and \(\{B_n\} \) are in \(G \), then (1) holds. But the conditions that \(\{A_n\} \in G \) and \(\{B_n\} \in G \) follow easily from the assumptions that \(x \in G(A_{\alpha,t}) \) and \(\left\{ \frac{x_k}{k+\alpha} \right\} \in G(A_{\alpha,t}) \) respectively. Next, we will show that (2) holds as follows. We have
\[
\left| (A_{\alpha,t}Sx)_n \right| = (1 - t_n)^{\alpha+1} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \right|
\]
\[
= (1 - t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha+1}{k+1} x_k t_n^{k+1} \right|
\]
\[
= (1 - t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_k t_n^{k+1} \left(1 + \frac{\alpha}{k+1} \right) \right|
\]
\[
\leq C_n + D_n,
\]
where
\[C_n = (1 - t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \right| \]
and
\[D_n = (1 - t_n)^{\alpha+1} |\alpha| \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_k t_n^{k+1} \right|. \]

If we show that \(\{C_n\} \) and \(\{D_n\} \) are in \(G \), then (2) holds. But the assumptions that \(x \in G(A_{\alpha,t}) \) and \(\left\{ \frac{x_k}{k+\alpha} \right\} \in G(A_{\alpha,t}) \) imply that both \(\{C_n\} \) and \(\{D_n\} \) are in \(G \) respectively hence the theorem holds. \(\square \)

Corollary 2.3. Every \(G - G \) \(A_{\alpha,t} \) matrix is \(G \)-translative for each sequence \(x \in G(A_{\alpha,t}) \) for which \(\left\{ \frac{x_k}{k+\alpha} \right\} \in G, \ k = 1, 2, 3, \ldots \).
Theorem 2.4. Suppose \(-1 < \alpha \leq 0\), then every \(G - G A_{\alpha,t}\) matrix is \(G\)-translative for each \(A_{\alpha}\)-summable \([1]\) sequence \(x\) in \(G (A_{\alpha,t})\).

Proof. Since the assumption holds for \(\alpha = 0\), we will only consider the case \(-1 < \alpha < 0\).

Let \(x \in (c(A_{\alpha}) \cap G (A_{\alpha,t}))\). We will show that:

1. \(T_x \in G (A_{\alpha,t})\) and \(S_x \in G (A_{\alpha,t})\)

Let us first show that (1) holds.

\[
|(A_{\alpha,t}T_x)_n| = (1 - t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^k \right|
\]

\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^{k+1}
\]

\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \sum_{k=1}^{\infty} \binom{k+\alpha}{k-1} x_k t_n^k
\]

\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \frac{k}{k+\alpha}
\]

\[
= \frac{(1 - t_n)^{\alpha+1}}{t_n} \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \left(1 - \frac{\alpha}{k+\alpha}\right)
\]

\[
\leq E_n + F_n,
\]

where

\[
E_n = (1 - t_n)^{\alpha+1} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \right|
\]

and

\[
F_n = -\alpha (1 - t_n)^{\alpha+1} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} t_n^k \frac{x_k}{k+\alpha} \right|.
\]

Now if we show that both \(\{E_n\}\) and \(\{F_n\}\) are in \(G\) then (1) holds. From the conditions that \(\{E_n\} \in G\) follows the assumption that \(x \in G (A_{\alpha,t})\) and \(\{F_n\} \in G\) will be shown as follows. We have

\[
F_n < (1 - t_n)^{\alpha+1} |x_1| + (1 - t_n)^{\alpha+1} \left| \sum_{k=2}^{\infty} \binom{k+\alpha}{k} t_n^k \frac{x_k}{k+\alpha} \right| = P_n + Q_n,
\]

where

\[
P_n = (1 - t_n)^{\alpha+1} |x_1|\] and \(Q_n = (1 - t_n)^{\alpha+1} \left| \sum_{k=2}^{\infty} \binom{k+\alpha}{k} t_n^k \frac{x_k}{k+\alpha} \right|.
\]
where
\[P_n = |x_1| (1 - t_n)^{\alpha + 1} \]
and
\[Q_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} \left(\frac{k+\alpha}{k} \right) t_n^k \frac{x_k}{k + \alpha} \right|. \]

By Proposition 2.1, and the hypothesis that \(A_{\alpha,t} \in G \) we have that \(\{P_n\} \in G \), hence there remains only to show that \(\{Q_n\} \in G \) as \(\{F_n\} \in G \).

Observe that
\[Q_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} \left(\frac{k+\alpha}{k} \right) t_n^k \int_0^{t_n} x_k t^{k+\alpha-1} dt \right|. \]

The interchanging of the integral and the summation is legitimate as the radius of convergence of the power series
\[\sum_{k=2}^{\infty} \left(\frac{k+\alpha}{k} \right) x_k t^{k+\alpha-1} \]
is at least 1 and hence the power series converges absolutely and uniformly for \(0 \leq t \leq t_n \). Now we let
\[G(t) = \sum_{k=2}^{\infty} \left(\frac{k+\alpha}{k} \right) x_k t^{k+\alpha-1}. \]
Then, we have
\[G(t) (1 - t)^{\alpha + 1} = (1 - t)^{\alpha + 1} \sum_{k=0}^{\infty} \left(\frac{k+\alpha}{k} \right) x_k t^{k+\alpha-1} \]
and the hypothesis that \(x \in c (A_{\alpha}) \) implies that
\[\lim_{t \to t} G(t) (1 - t)^{\alpha + 1} = A \text{ (finite), for } 0 < t < 1. \] (i)

We also have
\[\lim_{t \to 0} G(t) (1 - t)^{\alpha + 1} = 0. \] (ii)

Now (i) and (ii) yield that
\[\left| G(t) (1 - t)^{\alpha + 1} \right| \leq M_1, \text{ for some } M_1 > 0, \]
and hence
\[|G(t)| \leq M_1 (1 - t)^{-(\alpha + 1)}. \]
So, we have

\[Q_n = \frac{(1 - t_n)^{\alpha + 1}}{t^{\alpha}} \left| \int_0^{t_n} G(t) \, dt \right| \]

\[\Rightarrow Q_n \leq M_2 (1 - t_n)^{\alpha + 1} \int_0^{t_n} |G(t)| \, dt \] for some \(M_2 > 0 \)

\[\leq M_1 M_2 (1 - t_n)^{\alpha + 1} \int_0^{t_n} (1 - t_n)^{-(\alpha + 1)} \, dt \]

\[= \frac{M_1 M_2}{\alpha} (1 - t_n) \frac{1}{\alpha} (1 - t_n)^{\alpha + 1} \]

\[\leq -2M_1 M_2 (1 - t_n)^{\alpha + 1}. \]

By Proposition 2.1 and the assumption that \(A_{\alpha, t} G - G \) we have that \((1 - t)^{\alpha + 1} \in G\), and hence \(\{Q_n\} \in G\). Next we show that (2) holds. We have

\[\left| (A_{\alpha, t} S X)_n \right| = (1 - t_n)^{\alpha + 1} \sum_{k=1}^{\infty} \binom{k + \alpha}{k} x_{k-1} t_n^k \]

\[= (1 - t_n)^{\alpha + 1} \sum_{k=0}^{\infty} \binom{k + \alpha + 1}{k + 1} x_k t_n^{k+1} \]

\[= (1 - t_n)^{\alpha + 1} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^{k+1} \left(\frac{k + \alpha + 1}{k + 1} \right) \]

\[= (1 - t_n)^{\alpha + 1} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^{k+1} \left(1 + \frac{\alpha}{k + 1} \right) \]

\[= R_n + S_n, \]

where

\[R_n = (1 - t_n)^{\alpha + 1} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} x_k t_n^k \]

and

\[S_n = - (1 - t_n)^{\alpha + 1} \frac{\alpha}{\alpha} \sum_{k=0}^{\infty} \binom{k + \alpha}{k} \frac{x_k}{k + 1} t_n^{k+1}. \]

Now if we show that both \(\{R_n\}\) and \(\{S_n\}\) are in \(G\), then (2) follows. But the assumption that \(x \in G (A_{\alpha, t})\) implies that \(\{R_n\} \in G\), and \(\{S_n\} \in G\) follows using the same argument that we used in showing \(\{Q_n\} \in G\) before.

\[\square \]
Theorem 2.5. Suppose $0 < \alpha$ and $1 - t \in G$, then every $G - G$ $A_{\alpha,t}$ matrix is G-translative for each A_{α}-summable sequence x in $G(A_{\alpha,t})$.

Proof. Let $x \in (c(A_{\alpha}) \cap G(A_{\alpha,t}))$. We will show that:

1. $T_x \in G(A_{\alpha,t})$ and
2. $S_x \in G(A_{\alpha,t})$.

Let us first show that (1) holds.

\[
\left| (A_{\alpha,t} T_x)_n \right| = (1 - t_n)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_k t_n^k
\]

\[
= (1 - t_n)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k+\alpha+1}{k+1} x_{k+1} t_n^{k+1}
\]

\[
= (1 - t_n)^{\alpha+1} \sum_{k=1}^{\infty} \binom{k-1+\alpha}{k-1} x_k t_n^k
\]

\[
= (1 - t_n)^{\alpha+1} \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \left(1 - \frac{\alpha}{k+\alpha} \right)
\]

\[
\leq H_n + L_n
\]

where

\[
H_n = (1 - t_n)^{\alpha+1} t_n \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k
\]

and

\[
L_n = -\alpha (1 - t_n)^{\alpha+1} t_n \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k x_k \frac{1}{k+\alpha}.
\]

Now if we show that both $\{H_n\}$ and $\{L_n\}$ are in G hence (1) holds. But the conditions that $\{H_n\} \in G$ follows from the assumption that $x \in G(A_{\alpha,t})$ and $\{L_n\} \in G$ will be shown as follows. Note that

\[
L_n < (1 - t_n)^{\alpha+1} |x_1| + (1 - t_n)^{\alpha+1} \sum_{k=2}^{\infty} \binom{k+\alpha}{k} t_n^k x_k \frac{1}{k+\alpha} = Y_n + Z_n,
\]

where

\[
Y_n = |x_1| (1 - t_n)^{\alpha+1}
\]
and

\[Z_n = (1 - t_n)^{\alpha+1} \left| \sum_{k=2}^{\infty} \binom{k+\alpha}{k} t_n^k x_k \right|. \]

By Proposition 2.1, the assumption that \(A_{\alpha,t} \) \(G \)-translative for the sequence \(x \) such that \(\sum_{k=1}^{\infty} x_k \) has bounded partial sum.

Proposition 2.6. Suppose \(-1 < \alpha \leq 0\), then every \(G \)-translative for the sequence \(x \) such that \(\sum_{k=1}^{\infty} x_k \) has bounded partial sum.

Proposition 2.7. Every \(G \)-translative for the unbounded sequence \(x \) given by

\[x_k = (-1)^k (k + 1). \]

Proposition 2.8. Every \(G \)-translative for each sequence \(x \) \in \(G \).

Proposition 2.9. Suppose \(-1 < \alpha \leq 0\), then every \(G \)-translative for the sequence \(x \) such that \(\sum_{k=1}^{\infty} x_k \) is conditionally convergent.
References

(Received: May 18, 2008)

Savannah State University
Savannah, GA 31404
USA
E-mail: lemmam@savstate.edu