THE G-TRANSLATIVITY OF ABEL-TYPE TRANSFORMATIONS

MULATU LEMMA

ABSTRACT. Suppose $0 < t_n < 1$ and $\lim_{n\to\infty} t_n = 1$, then the Abeltype matrix, denoted by $A_{\alpha,t}$, is the matrix defined by

$$a_{nk} = \binom{k+\alpha}{k} t_n^k \left(1 - t_n\right)^{\alpha+1}, \quad \alpha > -1.$$

Recently the author proved that the Abel-type matrix $A_{\alpha,t}$ is ℓ -translative [2]. In this paper, we investigate the *G*-translativity of these transformations.

1. BASIC NOTATIONS AND DEFINITIONS

Let $A = (\alpha_{nk})$ be an infinite matrix defining a sequence to a sequence summability transformation given by

$$(Ax)_n = \sum_{k=0}^{\infty} \alpha_{nk} x_k$$

where $(Ax)_n$ denotes the *nth* term of the image sequence Ax. Let y be a complex number sequence. Throughout this paper, we shall use the following basic notations and definitions.

$$G = \left\{ y : y_k = 0\left(r^k\right), \quad 0 < r < 1 \right\}$$

$$G(A) = \left\{ y : Ay \in G \right\}$$

$$c(A) = \left\{ y : y \text{ is summable by } A \right\}.$$

Definition 1.1. If X and Y are sets of complex number sequences, then the matrix A is called an X - Y matrix if the image Au of u under the transformation A is in Y whenever u is in X.

Definition 1.2. The summability matrix A is said to be G-translative for the sequence $u = \{u_0, u_1, u_2, \ldots\}$ in G(A) provided that each of the sequences T_u and S_u is in G(A), where $T_u = \{u_1, u_2, \ldots\}$ and $S_u = \{0, u_0, u_1, \ldots\}$.

²⁰⁰⁰ Mathematics Subject Classification. 40A05, 40D99, 40C05.

Key words and phrases. G - G method, G-translative, Abel-type transformations.

Definition 1.3. The sequence x is said to be A_{α} -summable to L if

(1)
$$\sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} u_k x^k$$
 is convergent, for $0 < x < 1$,
(2) $\lim_{x \to 1} (1-x)^{\alpha+1} \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} u_k x^k = L.$

Here A_{α} is the Abel-type power series method discussed by David Borwin in [1].

2. MAIN RESULTS

Proposition 2.1. If $A_{\alpha,t}$ is a G - G matrix, then $(1-t)^{\alpha+1} \in G$.

Proof. Suppose $(1-t)^{\alpha+1}$ is not in G. This implies that the first column of the matrix $A_{\alpha,t}$ is not in G because a_n , $0 = (1-t_n)^{\alpha+1}$. Hence $A_{\alpha,t}$ is not a G-G matrix.

Theorem 2.2. Every $G - G A_{\alpha,t}$ matrix is *G*-translative for each sequences $x \in G(A_{\alpha,t})$ for which $\left\{\frac{x_k}{k+\alpha}\right\} \in G(A_{\alpha,t}), k = 1, 2, 3, \ldots$

Proof. Suppose x is a sequence in $G(A_{\alpha,t})$ for which $\left\{\frac{x_k}{k+\alpha}\right\} \in G(A_{\alpha,t})$. We will show that

- (1) $T_x \in G(A_{\alpha,t})$, and
- (2) $S_x \in G(A_{\alpha,t}),$

where T_x and S_x are as defined above. Let us first show that (1) holds. Note that

$$\begin{aligned} \left| (A_{\alpha,t})_n \right| &= (1-t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^k \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^{k+1} \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k-1+\alpha}{k-1} x_k t_n^k \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \frac{k}{k+\alpha} \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \left(1 - \frac{\alpha}{k+\alpha} \right) \right| \\ &\leq A_n + B_n, \end{aligned}$$

where

$$A_n = \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \right|$$

and

$$B_n = \frac{|\alpha| (1 - t_n)^{\alpha + 1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} \frac{x_k}{k+\alpha} t_n^k \right|.$$

Now if we show that both $\{A_n\}$ and $\{B_n\}$ are in G, then (1) holds. But the conditions that $\{A_n\} \in G$ and $\{B_n\} \in G$ follow easily from the assumptions that $x \in G(A_{\alpha,t})$ and $\left\{\frac{x_k}{k+\alpha}\right\} \in G(A_{\alpha,t})$ respectively. Next, we will show that (2) holds as follows. We have

$$\begin{aligned} \left(A_{\alpha,t}S_{x}\right)_{n} &|=(1-t_{n})^{\alpha+1} \left|\sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_{k-1}t_{n}^{k}\right| \\ &=(1-t_{n})^{\alpha+1} \left|\sum_{k=0}^{\infty} \binom{k+\alpha+1}{k+1} x_{k}t_{n}^{k+1}\right| \\ &=(1-t_{n})^{\alpha+1} \left|\sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k}t_{n}^{k+1} \left(\frac{k+\alpha+1}{k+1}\right)\right| \\ &=(1-t_{n})^{\alpha+1} \left|\sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k}t_{n}^{k+1} \left(1+\frac{\alpha}{k+1}\right)\right| \\ &\leq C_{n}+D_{n}, \end{aligned}$$

where

$$C_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k} x_k t_n^k} \right|$$

and

$$D_n = (1 - t_n)^{\alpha + 1} |\alpha| \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} \frac{x_k}{k+1} t_n^{k+1} \right|.$$

If we show that $\{C_n\}$ and $\{D_n\}$ are in G, then (2) holds. But the assumptions that $x \in G(A_{\alpha,t})$ and $\left\{\frac{x_k}{k+\alpha}\right\} \in G(A_{\alpha,t})$ imply that both $\{C_n\}$ and $\{D_n\}$ are in G respectively hence the theorem holds.

Corollary 2.3. Every $G - G A_{\alpha,t}$ matrix is *G*-translative for each sequence $x \in G(A_{\alpha,t})$ for which $\left\{\frac{x_k}{k+\alpha}\right\} \in G, \ k = 1, 2, 3, \ldots$

Theorem 2.4. Suppose $-1 < \alpha \leq 0$, then every $G - G A_{\alpha,t}$ matrix is *G*-translative for each A_{α} -summable [1] sequence x in $G(A_{\alpha,t})$.

Proof. Since the assumption holds for $\alpha = 0$, we will only consider the case $-1 < \alpha < 0.$

Let $x \in (c(A_{\alpha}) \cap G(A_{\alpha,t}))$. We will show that:

- (1) $T_x \in G(A_{\alpha,t})$ and (2) $S_x \in G(A_{\alpha,t})$

Let us first show that (1) holds.

$$\begin{aligned} \left| (A_{\alpha,t}T_x)_n \right| &= (1-t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^k \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1} t_n^{k+1} \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k-1+\alpha}{k-1} x_k t_n^k \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \frac{k}{k+\alpha} \right| \\ &= \frac{(1-t_n)^{\alpha+1}}{t_n} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \left(1-\frac{\alpha}{k+\alpha}\right) \right| \\ &\leq E_n + F_n, \end{aligned}$$

where

$$E_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k} x_k t_n^k} \right|$$

and

$$F_n = -\alpha \left(1 - t_n\right)^{\alpha + 1} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} t_n^k \frac{x_k}{k+\alpha} \right|$$

Now if we show that both $\{E_n\}$ and $\{F_n\}$ are in G then (1) holds. From the conditions that $\{E_n\} \in G$ follows the assumption that $x \in G(A_{\alpha,t})$ and $\{F_n\} \in G$ will be shown as follows. We have

$$F_n < (1 - t_n)^{\alpha + 1} |x_1| + (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} \binom{k + \alpha}{k} t_n^k \frac{x_k}{k + \alpha} \right| = P_n + Q_n,$$

where

$$P_n = |x_1| \left(1 - t_n\right)^{\alpha + 1}$$

and

$$Q_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} \binom{k+\alpha}{k} t_n^k \frac{x_k}{k+\alpha} \right|.$$

By Proposition 2.1, and the hypothesis that $A_{\alpha,t} G - G$ we have that $\{P_n\} \in G$, hence there remains only to show that $\{Q_n\} \in G$ as $\{F_n\} \in G$. Observe that

$$Q_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} {\binom{k+\alpha}{k}} x_k \left(\int_0^{t_n} t_n^{k+\alpha - 1} dt \right) \right|$$
$$= \frac{(1 - t_n)^{\alpha + 1}}{t_n^{\alpha + 1}} \left| \int_0^{t_n} dt \left(\sum_{k=2}^{\infty} {\binom{k+\alpha}{k}} x_k t^{k+\alpha - 1} \right) \right|$$

The interchanging of the integral and the summation is legitimate as the radius of convergence of the power series 1

$$\sum_{k=2}^{\infty} \binom{k+\alpha}{k} x_k t^{k+\alpha-1}$$

is at least 1 and hence the power series converges absolutely and uniformly for $0 \leq t \leq t_n.$ Now we let

$$G(t) = \sum_{k=2}^{\infty} {\binom{k+\alpha}{k}} x_k t^{k+\alpha-1}.$$

Then, we have

$$G(t) (1-t)^{\alpha+1} = (1-t)^{\alpha+1} \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_k t^{k+\alpha-1}$$

and the hypothesis that $x \in c(A_{\alpha})$ implies that

$$\lim_{t \to \bar{t}} G(t) (1-t)^{\alpha+1} = A \text{ (finite), for } 0 < t < 1.$$
 (i)

We also have

$$\lim_{t \to 0} G(t) (1-t)^{\alpha+1} = 0.$$
 (ii)

Now (i) and (ii) yield that

$$|G(t)(1-t)^{\alpha+1}| \le M_1$$
, for some $M_1 > 0$,

and hence

$$|G(t)| \le M_1 (1-t)^{-(a+1)}$$

So, we have

$$Q_{n} = \frac{(1-t_{n})^{\alpha+1}}{t^{\alpha}} \left| \int_{0}^{t_{n}} G(t) dt \right|$$

$$\Rightarrow Q_{n} \leq M_{2} (1-t_{n})^{\alpha+1} \int_{0}^{t_{n}} |G(t)| dt \text{ for some } M_{2} > 0$$

$$\leq M_{1}M_{2} (1-t_{n})^{\alpha+1} \int_{0}^{t_{n}} (1-t_{n})^{-(\alpha+1)} dt$$

$$= \frac{M_{1}M_{2}}{\alpha} (1-t_{n}) - \frac{M_{1}M_{2}}{\alpha} (1-t_{n})^{\alpha+1}$$

$$\leq \frac{-2M_{1}M_{2}}{\alpha} (1-t_{n})^{\alpha+1}.$$

By Proposition 2.1 and the assumption that $A_{\alpha,t} G - G$ we have that $(1-t)^{(\alpha+1)} \in G$, and hence $\{Q_n\} \in G$. Next we show that (2) holds. We have

$$\begin{aligned} \left| (A_{\alpha,t}S_x)_n \right| &= (1-t_n)^{\alpha+1} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_{k-1} t_n^k \right| \\ &= (1-t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha+1}{k+1} x_k t_n^{k+1} \right| \\ &= (1-t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_k t_n^{k+1} \left(\frac{k+\alpha+1}{k+1} \right) \right| \\ &= (1-t_n)^{\alpha+1} \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_k t_n^{k+1} \left(1 + \frac{\alpha}{k+1} \right) \right| \\ &= R_n + S_n, \end{aligned}$$

where

$$R_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k} x_k t_n^k} \right|$$

and

$$S_n = -(1-t_n)^{\alpha+1} \alpha \left| \sum_{k=0}^{\infty} \binom{k+\alpha}{k} \frac{x_k}{k+1} t_n^{k+1} \right|.$$

Now if we show that both $\{R_n\}$ and $\{S_n\}$ are in G, then (2) follows. But the assumption that $x \in G(A_{\alpha,t})$ implies that $\{R_n\} \in G$, and $\{S_n\} \in G$ follows using the same argument that we used in showing $\{Q_n\} \in G$ before. \Box

Theorem 2.5. Suppose $0 < \alpha$ and $1 - t \in G$, then every $G - G A_{\alpha,t}$ matrix is *G*-translative for each A_{α} -summable sequence x in $G(A_{\alpha,t})$.

Proof. Let $x \in (c(A_{\alpha}) \cap G(A_{\alpha,t}))$. We will show that:

- (1) $T_x \in G(A_{\alpha,t})$ and
- (2) $S_x \in G(A_{\alpha,t}).$

Let us first show that (1) holds.

$$\begin{aligned} \left(A_{\alpha,t}T_{x}\right)_{n}\right| &= (1-t_{n})^{\alpha+1} \left|\sum_{k=0}^{\infty} \binom{k+\alpha}{k} x_{k+1}t_{n}^{k}\right| \\ &= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left|\sum_{k=0}^{\infty} \binom{k+\alpha+1}{k} x_{k+1}t_{n}^{k+1}\right| \\ &= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left|\sum_{k=1}^{\infty} \binom{k-1+\alpha}{k} x_{k}t_{n}^{k}\right| \\ &= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left|\sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_{k}t_{n}^{k}\frac{k}{k+\alpha}\right| \\ &= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left|\sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_{k}t_{n}^{k}\left(1-\frac{\alpha}{k+\alpha}\right)\right| \\ &\leq H_{n} + L_{n} \end{aligned}$$

where

$$H_n = (1 - t_n)^{\alpha + 1} t_n \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k} x_k t_n^k} \right|$$

and

$$L_n = -\alpha \left(1 - t_n\right)^{\alpha + 1} t_n \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_k t_n^k \frac{x_k}{k+\alpha} \right|.$$

Now if we show that both $\{H_n\}$ and $\{L_n\}$ are in G hence (1) holds. But the conditions that $\{H_n\} \in G$ follows from the assumption that $x \in G(A_{\alpha,t})$ and $\{L_n\} \in G$ will be shown as follows. Note that

$$L_n < (1 - t_n)^{\alpha + 1} |x_1| + (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} \binom{k + \alpha}{k} t_n^k \frac{x_k}{k + \alpha} \right| = Y_n + Z_n,$$

where

$$Y_n = |x_1| (1 - t_n)^{\alpha + 1}$$

and

$$Z_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} {\binom{k+\alpha}{k}} t_n^k \frac{x_k}{k+\alpha} \right|.$$

By Proposition 2.1, the assumption that $A_{\alpha,t} G - G$ implies that $\{Y_n\} \in G$, hence remains only to show $\{Z_n\} \in G$ to show that $\{L_n\} \in G$. Observe that

$$Z_n = (1 - t_n)^{\alpha + 1} \left| \sum_{k=2}^{\infty} \binom{k+\alpha}{k} x_k \left(\int_0^{t_n} t_n^{k+\alpha - 1} dt \right) \right|$$
$$= \frac{(1 - t_n)^{\alpha + 1}}{t_n^{\alpha}} \left| \int_0^{t_n} dt \left(\sum_{k=2}^{\infty} \binom{k+\alpha}{k} x_k t^{k+\alpha} \right) \right|.$$

Now following the same argument we used for Q_n above in the proof of Theorem 2.4 it follows that

$$Z_n \le \frac{M_1 M_2}{\alpha} \left(1 - t_n \right) - \frac{M_1 M_2}{\alpha} \left(1 - t_n \right)^{\alpha + 1}$$

By Proposition 2.1, the assumptions that $A_{\alpha,t}$ is G - G implies that $(1-t)^{(\alpha+1)} \in G$. Now $(1-t)^{(\alpha+1)} \in G$ and the assumption that $(1-t) \in G$ imply that $Z \in G$. Next we show that (2) holds by showing $S_x \in G(A_{\alpha,t})$. But this can be easily shown using the same argument used in showing $S_x \in G(A_{\alpha,t})$ in Theorem 2.4. Hence the theorem holds.

The following basic facts can be easily proved. We state them here as propositions with out proofs.

Proposition 2.6. Suppose $-1 < \alpha \leq 0$, then every $G - G A_{\alpha,t}$ matrix is *G*-translative for the sequence x such that $\sum_{k=1}^{\infty} x_k$ has bounded partial sum.

Proposition 2.7. Every $G - G A_{\alpha,t}$ matrix is G-translative for the unbounded sequence x given by

$$x_k = (-1)^k (k+1).$$

Proposition 2.8. Every $G - G A_{\alpha,t}$ matrix is G-translative for each sequence $x \in G$.

Proposition 2.9. Suppose $-1 < \alpha \leq 0$, then every $G - G A_{\alpha,t}$ matrix is *G*-translative for the sequence x such that $\sum_{k=1}^{\infty}$ is conditionally convergent.

References

- D. Borwin, On a scale of Abel-type of summability methods, Proc. Cambridge Math. Soc., 53 (1957), 318–322.
- [2] M. Lemma, The l-l translativity of Abel-type matrix, Int. J. Math. Math. Sci., 23 (3) (2000), 189–195.

(Received: May 18, 2008)

Savannah State University Savannah, GA 31404 USA E-mail: lemmam@savstate.edu