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TRIGONOMETRIC APPROXIMATION OF FUNCTIONS IN
WEIGHTED Lp SPACES

ALI GUVEN

Abstract. The approximation properties of means of trigonometric
Fourier series in weighted Lp spaces (1 < p < ∞) with Muckenhoupt
weights are investigated.

1. Introduction and results

A measurable 2π-periodic function w : [0, 2π] → [0,∞] is said to be a
weight function if the set w−1 ({0,∞}) has the Lebesque measure zero. We
denote by Lp

w = Lp
w [0, 2π], where 1 ≤ p < ∞ and w a weight function, the

weighted Lebesque space of all measurable 2π- periodic functions f , that is,
the space of all such functions for which

‖f‖p,w =
( ∫ 2π

0
|f (x)|p w (x) dx

)1/p

< ∞.

Let 1 < p < ∞. A weight function w belongs to the Muckenhoupt class Ap

if

sup
I

(
1
|I|

∫

I
w (x) dx

)(
1
|I|

∫

I
[w (x)]−1/p−1 dx

)p−1

< ∞,

where the supremum is taken over all intervals I with length |I| ≤ 2π.
The weight functions belong to the Ap class, introduced by Muckenhoupt

([13]), play a very important role in different fields of mathematical analysis.
Let 1 < p < ∞, w ∈ Ap and let f ∈ Lp

w. The modulus of continuity of the
function f is defined by

Ω (f, δ)p,w = sup
|h|≤δ

‖∆h (f)‖p,w , δ > 0,
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where

∆h (f) (x) =
1
h

∫ h

0
|f (x + t)− f (x)| dt.

The existence of the modulus Ω (f, δ)p,w follows from the boundedness of
the Hardy-Littlewood maximal function in the space Lp

w (see [13]). The
modulus of continuity Ω (f, ·)p,ω , defined by N. X. Ky [10], is nondecreasing,
nonnegative, continuous function such that

lim
δ→0

Ω(f, δ)p,ω = 0, Ω(f1 + f2, ·)p,ω ≤ Ω (f1, ·)p,ω + Ω (f2, ·)p,ω .

The modulus of continuity Ω (f, ·)p,w is defined in this way, since the space
Lp

w is noninvariant, in general, under the usual shift f (x) → f (x + h). Note
that, in the case w ≡ 1 the modulus Ω (f, ·)p,ω and the classical integral
modulus of continuity ωp (f, ·) are equivalent (see [10]).

We define the Lipschitz class Lip (α, p, w) for 0 < α ≤ 1 by

Lip (α, p, w) =
{

f ∈ Lp
w : Ω (f, δ)p,w = O (δα) , δ > 0

}
.

Let f ∈ L1 has the Fourier series

f (x) ∼ a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) . (1)

Let Sn (f) (x) , (n = 0, 1, . . . ) be the nth partial sums of the series (1) at the
point x, that is,

Sn (f) (x) =
n∑

k=0

Ak (f) (x) ,

where

A0 (f) (x) =
a0

2
, Ak (f) (x) = ak cos kx + bk sin kx, k = 1, 2, . . . .

Let (pn)∞0 be a sequence of positive numbers. We consider two means of the
series (1) defined by

Nn (f) (x) =
1
Pn

n∑

m=0

pn−mSm (f) (x)

and

Rn (f) (x) =
1
Pn

n∑

m=0

pmSm (f) (x) ,
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where Pn =
∑n

m=0 pm, p−1 = P−1 := 0. In the case pn = 1, n ≥ 0, both of
Nn (f) (x) and Rn (f) (x) are equal to the Cesàro mean

σn (f) (x) =
1

n + 1

n∑

m=0

Sm (f) (x) .

The approximation properties of the means σn in Lipschitz classes Lip (α, p),
1 ≤ p < ∞, 0 < α ≤ 1 were investigated by Quade in [14]. The general-
izations of Quade’s results were studied by Mohapatra and Russell [12],
Chandra ([1], [2], [3], [4]) and Leindler [11]. In [1], Chandra obtained esti-
mates for ‖f −Nn (f)‖p, where 1 < p < ∞. Chandra also gave estimates for
the difference ‖f −Rn (f)‖p, where f ∈ Lip (α, p) , 1 < p < ∞, 0 < α ≤ 1
(see [2]). In the paper [4], Chandra gave some conditions on the sequence
(pn)∞0 and obtained very satisfactory results about approximation by the
means Nn (f) and Rn (f) in Lip (α, p), 1 ≤ p < ∞, 0 < α ≤ 1.

In the present paper, we give the weighted versions of the results obtained
by Chandra in [4] in the case 1 < p < ∞. Our main results are the following.

Theorem 1. Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1, and let (pn)∞0 be a
monotonic sequence of positive real numbers such that

(n + 1) pn = O (Pn) . (2)

Then, for every f ∈ Lip (α, p, w) the estimate

‖f −Nn (f)‖p,w = O
(
n−α

)
, n = 1, 2, . . .

holds.

Theorem 2. Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1, and let (pn) be a sequence
of positive real numbers satisfying the relation

n−1∑

m=0

∣∣∣∣
Pm

m + 1
− Pm+1

m + 2

∣∣∣∣ = O

(
Pn

n + 1

)
. (3)

Then, for f ∈ Lip (α, p, w) the estimate

‖f −Rn (f)‖p,w = O
(
n−α

)
, n = 1, 2, . . .

satisfied.

If we take pn = Aβ−1
n (β > 0) , where

Aβ
0 = 1, Aβ

k =
β (β + 1) ... (β + k)

k!
, k ≥ 1,

we get

Nn (f) (x) = σβ
n (f) (x) =

1

Aβ
n

n∑

m=0

Aβ−1
n−mSm (f) (x) .
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Hence we can estimate the deviation of f ∈ Lip (α, p, w) from the Cesàro
means σβ

n (f) :

Corollary 3. Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1 and β > 0. Then, for
f ∈ Lip (α, p, w) ,∥∥∥f − σβ

n (f)
∥∥∥

p,w
= O

(
n−α

)
, n = 1, 2, . . . .

The trigonometric approximation problems in weighted Lp spaces with
Muckenhoupt weights where 1 < p < ∞ were studied by several authors.
Gadjieva [5] obtained the direct and inverse theorems of trigonometric ap-
proximation in the spaces Lp

w. Later, Ky investigated the same problems and
obtained similar results by using a different modulus of continuity, which in
special case coincides with the modulus Ω (f, ·)p,ω ([9], [10]). The improve-
ment of the inverse theorem of Gadjieva was obtained in [6]. Later, in the
more general spaces, namely weighted Orlicz spaces, the direct and inverse
theorems of trigonometric approximation and the complete characterization
of the generalized Lipschitz classes were obtained [8].

Remark. Theorem 1, Theorem 2 and Corollary 3 also hold in reflexive
weighted Orlicz spaces LM

w .
The general information on weighted Orlicz spaces and approximation

results in these spaces can be found in [8].

2. Some auxiliary results

Lemma 4. Let 1 < p < ∞, w ∈ Ap and 0 < α ≤ 1. Then, the estimate

‖f − Sn (f)‖p,w = O
(
n−α

)
(4)

holds for every f ∈ Lip (α, p, w) and n = 1, 2, . . . .

Proof. Let t∗n (n = 0, 1, ...) be the trigonometric polynomial of best approx-
imation to f, that is,

‖f − t∗n‖p,w = inf ‖f − tn‖p,w ,

where the infimum is taken over all trigonometric polynomials tn of degree
at most n. From Theorem 2 of [10], we have

‖f − t∗n‖p,w = O
(
Ω (f, 1/n)p,w

)

and hence
‖f − t∗n‖p,w = O

(
n−α

)
.

By the uniform boundedness of the partial sums Sn (f) in the space Lp
w (see

[7]), we get

‖f − Sn (f)‖p,w ≤ ‖f − t∗n‖p,w + ‖t∗n − Sn (f)‖p,w
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= ‖f − t∗n‖p,w + ‖Sn (t∗n − f)‖p,w

= O
(
‖f − t∗n‖p,w

)

= O
(
n−α

)
.

¤

Lemma 5. Let 1 < p < ∞ and w ∈ Ap. Then, for f ∈ Lip (1, p, w) the
estimate

‖Sn (f)− σn (f)‖p,w = O
(
n−1

)
, n = 1, 2, ... (5)

holds.

Proof. If f ∈ Lip (1, p, w) , from Theorem 3 of [10] it can be deduced that f
is absolutely continuous and f ′ ∈ Lp

w. If f has the Fourier series

f (x) ∼
∞∑

k=0

Ak (f) (x) ,

then the Fourier series of the conjugate function f̃ ′ is

f̃ ′ (x) ∼
∞∑

k=1

kAk (f) (x) .

On the other hand,

Sn (f) (x)− σn (f) (x) =
n∑

k=1

k

n + 1
Ak (f) (x)

=
1

n + 1
Sn

(
f̃ ′

)
(x) .

Hence, by considering the uniform boundedness of the partial sums and the
conjugation operator in the space Lp

w (see [7]), we obtain

‖Sn (f)− σn (f)‖p,w = O
(
n−1

)

for n = 1, 2, . . . . ¤

Lemma 6. ([4]). Let (pn) be a non-increasing sequence of positive numbers.
Then,

n∑

m=1

m−αpn−m = O
(
n−αPn

)

for 0 < α < 1.
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3. Proof of the new results

Proof of Theorem 1. Let 0 < α < 1. Since

f (x) =
1
Pn

n∑

m=0

pn−mf (x) ,

we have

f (x)−Nn (f) (x) =
1
Pn

n∑

m=0

pn−m {f (x)− Sm (f) (x)} .

By Lemma 4, Lemma 6 and condition (2) we obtain

‖f −Nn (f)‖p,w ≤
1
Pn

n∑

m=0

pn−m ‖f − Sm (f)‖p,w

=
1
Pn

n∑

m=1

pn−mO
(
m−α

)
+

pn

Pn
‖f − S0 (f)‖p,w

=
1
Pn

O
(
n−αPn

)
+ O

(
1

n + 1

)

= O
(
n−α

)
.

Now let α = 1. It is clear that

Nn (f) (x) =
1
Pn

n∑

m=0

Pn−mAm (f) (x) .

By Abel transform,

Sn (f) (x)−Nn (f) (x) =
1
Pn

n∑

m=1

(Pn − Pn−m) Am (f) (x)

=
1
Pn

n∑

m=1

(
Pn − Pn−m

m
− Pn − Pn−(m+1)

m + 1

)( m∑

k=1

kAk (f) (x)
)

+
1

n + 1

n∑

k=1

kAk (f) (x) ,

and hence

‖Sn (f)−Nn (f)‖p,w ≤
1
Pn

n∑

m=1

∣∣∣∣
Pn − Pn−m

m
− Pn − Pn−(m+1)

m + 1

∣∣∣∣

×
∥∥∥∥

m∑

k=1

kAk (f)
∥∥∥∥

p,w

+
1

n + 1

∥∥∥∥
n∑

k=1

kAk (f)
∥∥∥∥

p,w

.
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Since

Sn (f) (x)− σn (f) (x) =
1

n + 1

n∑

k=1

kAk (f) (x) ,

by Lemma 5 we get
∥∥∥∥

n∑

k=1

kAk (f)
∥∥∥∥

p,w

= (n + 1) ‖Sn (f)− σn (f)‖p,w = O (1) .

Hence,

‖Sn (f)−Nn (f)‖p,w

≤ 1
Pn

n∑

m=1

∣∣∣∣
Pn − Pn−m

m
− Pn − Pn−(m+1)

m + 1

∣∣∣∣ O (1) + O
(
n−1

)

= O

(
1
Pn

) n∑

m=1

∣∣∣∣
Pn − Pn−m

m
− Pn − Pn−(m+1)

m + 1

∣∣∣∣ + O
(
n−1

)
. (6)

By a simple computation, one can see that

Pn − Pn−m

m
− Pn − Pn−(m+1)

m + 1
=

1
m (m + 1)

( n∑

k=n−m+1

pk −mpn−m

)
,

which shows that (
Pn − Pn−m

m

)n+1

m=1

is non-increasing whenever (pn) is non-decreasing and non-decreasing when-
ever (pn) is non-increasing. This implies that

n∑

m=1

∣∣∣∣
Pn − Pn−m

m
− Pn − Pn−(m+1)

m + 1

∣∣∣∣ =
∣∣∣∣pn − Pn

n + 1

∣∣∣∣ =
1

n + 1
O (Pn) .

This and the inequality (6) yields

‖Sn (f)−Nn (f)‖p,w = O
(
n−1

)
.

Combining the last estimate with (4) we obtain

‖f −Nn (f)‖p,w = O
(
n−1

)
.

¤

Proof of Theorem 2. Let 0 < α < 1. By definition of Rn (f) (x) ,

f (x)−Rn (f) (x) =
1
Pn

n∑

m=0

pm {f (x)− Sm (f) (x)} .
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From Lemma 4, we get

‖f −Rn (f)‖p,w ≤
1
Pn

n∑

m=0

pm ‖f − Sm (f)‖p,w

= O

(
1
Pn

) n∑

m=1

pmm−α +
p0

Pn
‖f − S0 (f)‖p,w

= O

(
1
Pn

) n∑

m=1

pmm−α. (7)

By Abel transform,
n∑

m=1

pmm−α =
n−1∑

m=1

Pm

{
m−α − (m + 1)−α}

+ n−αPn

≤
n−1∑

m=1

m−α Pm

m + 1
+ n−αPn,

and
n−1∑

m=1

m−α Pm

m + 1
=

n−1∑

m=1

(
Pm

m + 1
− Pm+1

m + 2

)( m∑

k=1

k−α

)
+

Pn

n + 1

n−1∑

m=1

m−α

= O
(
n−αPn

)

by condition (3) . This yields
n∑

m=1

pmm−α = O
(
n−αPn

)

and from this and (7) we get

‖f −Rn (f)‖p,w = O
(
n−α

)
.

Let’s consider the case α = 1. By Abel transform,

Rn (f) (x) =
1
Pn

n−1∑

m=0

{Pm (Sm (f) (x)− Sm+1 (f) (x)) + PnSn (f) (x)}

=
1
Pn

n−1∑

m=0

Pm (−Am+1 (f) (x)) + Sn (f) (x) ,

and hence

Rn (f) (x)− Sn (f) (x) = − 1
Pn

n−1∑

m=0

PmAm+1 (f) (x) .
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Using Abel transform again yields

n−1∑

m=0

PmAm+1 (f) (x) =
n−1∑

m=0

Pm

m + 1
(m + 1)Am+1 (f) (x)

=
n−1∑

m=0

(
Pm

m + 1
− Pm+1

m + 2

)( m∑

k=0

(k + 1) Ak+1 (f) (x)
)

+
Pn

n + 1

n−1∑

k=0

(k + 1)Ak+1 (f) (x) .

Thus, by considering (5) and (3) we obtain

∥∥∥∥
n−1∑

m=0

PmAm+1 (f)
∥∥∥∥

p,w

≤
n−1∑

m=0

∣∣∣∣
Pm

m + 1
− Pm+1

m + 2

∣∣∣∣
∥∥∥∥

m∑

k=0

(k + 1)Ak+1 (f)
∥∥∥∥

p,w

+
Pn

n + 1

∥∥∥∥
n−1∑

k=0

(k + 1)Ak+1 (f)
∥∥∥∥

p,w

=
n−1∑

m=0

∣∣∣∣
Pm

m + 1
− Pm+1

m + 2

∣∣∣∣ (m + 2) ‖Sm+1 (f)− σm+1 (f)‖p,w

+ Pn ‖Sn (f)− σn (f)‖p,w

= O (1)
n−1∑

m=0

∣∣∣∣
Pm

m + 1
− Pm+1

m + 2

∣∣∣∣ + O

(
Pn

n

)
.

This gives

‖Rn (f)− Sn (f)‖p,w =
1
Pn

∥∥∥∥
n−1∑

m=0

PmAm+1 (f)
∥∥∥∥

p,w

=
1
Pn

O

(
Pn

n

)
= O

(
1
n

)
.

Combining this estimate with (4) yields

‖f −Rn (f)‖p,w = O
(
n−1

)
.

¤
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