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ON THE PROXIMINALITY OF RIDGE FUNCTIONS

VUGAR E. ISMAILOV

Abstract. Using two results of Garkavi, Medvedev and Khavinson [7],
we give sufficient conditions for proximinality of sums of two ridge func-
tions with bounded and continuous summands in the spaces of bounded
and continuous multivariate functions respectively. In the first case, we
give an example which shows that the corresponding sufficient condition
cannot be made weaker for some subsets of Rn. In the second case, we
obtain also a necessary condition for proximinality. All the results are
illuminated by numerous examples. The results, examples and following
discussions naturally lead us to a conjecture on the proximinality of the
considered class of ridge functions.

0. INTRODUCTION
In multivariate approximation theory, special functions called ridge func-

tions are widely used. A ridge function is a multivariate function of the
form g (a · x), where g is a univariate function, a = (a1, . . . , an) is a vector
(direction) different from zero, x = (x1, . . . , xn) is the variable and a · x
is the inner product. In other words, a ridge function is a composition
of a univariate function with a linear functional over Rn. These functions
arise naturally in various fields. They arise in partial differential equations
(where they are called plane waves [15]), in computerized tomography (see,
e.g., [19,22]; the name ridge function was coined by Logan and Shepp[19]
in one of the seminal papers on tomography), in statistics (especially, in
the theory of projection pursuit and projection regression; see, e.g., [4,11]).
Ridge functions are also the underpinnings of many central models in neural
networks which has become increasing more popular in computer science,
statistics, engineering, physics, etc. (see [24] and references therein). We
refer the reader to Pinkus [23] for various motivations for the study of ridge
functions and ridge function approximation.
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Let E be a normed linear space and F be a subspace. We say that F is
proximinal in E if for any element e ∈ E there exists at least one element
f0 ∈ F such that

‖e− f0‖ = inf
f∈F

‖e− f‖ .

In this case, the element f0 is said to be extremal to e.
Although at present there are a great deal of interesting papers devoted

to the approximation by ridge functions (see, e.g., [2,3,5,9,12,13,17,18,20,24,
25]), some problems of this approximation have not been solved completely
yet. In the following, we are going to deal with one of such problems, namely
with the problem of proximinality of the set of linear combinations of ridge
functions in the spaces of bounded and continuous functions respectively.
This problem will be considered in the simplest case when the class of ap-
proximating functions is the set

R = R (
a1,a2

)
=

{
g1

(
a1·x)

+ g2

(
a2·x)

: g
i
: R→ R, i = 1, 2

}
.

Here a1 and a2 are fixed directions and we vary over gi. It is clear that this
is a linear space. Consider the following three subspaces of R. The first is
obtained by taking only bounded sums g1

(
a1·x)

+ g2

(
a2·x)

over some set
X in Rn. We denote this subspace by Ra(X). The second and the third are
subspaces of R with bounded and continuous summands gi

(
ai · x)

, i = 1, 2,
on X respectively. These subspaces will be denoted by Rb(X) and Rc(X).
In the case of Rc(X), the set X is considered to be compact.

Let B(X) and C(X) be the spaces of bounded and continuous multivariate
functions over X respectively. What conditions must one impose on X
in order that the sets Ra(X) and Rb(X) be proximinal in B(X) and the
set Rc(X) be proximinal in C(X)? We are also interested in necessary
conditions for proximinality. It follows from a result of Garkavi, Medvedev
and Khavinson (see Theorem 1 [7]) that Ra(X) is proximinal in B(X) for all
subsets X of Rn. There is also an answer (see theorem 2 [7]) for proximinality
of Rb(X) in B(X). This will be discussed in Section 1. Is the set Rb(X)
always proximinal in B(X)? There is an an example of a set X ⊂ Rn and a
bounded function f on X for which there does not exist an extremal element
in Rb(X).

In Section 2, we will obtain sufficient conditions for the existence of ex-
tremal elements from Rc(X) to an arbitrary function f ∈ C(X). Based on a
result of Marshall and O’Farrell [21], we will also give a necessary condition
for proximinality of Rc(X) in C(X). All the theorems, following discussions
and examples of this paper will lead us naturally to a conjecture on the
proximinality of the subspaces Rb(X) and Rc(X) in the spaces B(X) and
C(X) respectively.
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At the end of this section, we want to draw the readers attention to the
more general case in which the number of directions is more than two. In
this case, the set of approximating functions is

R (
a1, . . . ,ar

)
=

{ r∑

i=1

gi

(
ai · x)

: gi : R→ R, i = 1, . . . , r

}
.

In a similar way as above, one can define the sets Ra(X), Rb(X) and
Rc(X). Using the results of [7], one can obtain sufficient (but not neces-
sary) conditions for proximinality of these sets. This needs, besides paths
(see Section 1), the consideration of some additional and more complicated
relations between points of X. The case r ≥ 3 will not be considered in
the current paper, since our main purpose is to draw readers’ attention to
the given problems of proximinality in the simplest case of approximation.
For the existing open problems connected with the set R (

a1, . . . ,ar
)
, where

r ≥ 3, see [13] and [23].

1. Proximinality of Rb(X) in B(X)

We begin this section with the definition of a path with respect to two
different directions a1 and a2. A path with respect to the directions a1 and
a2 is a finite or infinite ordered set of points (x1,x2, . . . ) in Rn with the
units xi+1 − xi, i = 1, 2, . . . , in the directions perpendicular alternatively
to a1 and a2. In the sequel, we simply use the term “path” instead of the
long expression “path with respect to the directions a1 and a2”. The length
of a path is the number of its points and can be equal to ∞ if the path
is infinite. A singleton is a path of the unit length. We say that a path(
x1, . . . ,xm

)
belonging to some subset X of Rn is irreducible if there is not

another path
(
y1, . . . ,yl

) ⊂ X with y1 = x1, yl = xm and l < m. If in a
path

(
x1, . . . ,xm

)
m is an even number and the set

(
x1, . . . ,xm,x1

)
is also

a path, then the path
(
x1, . . . ,xm

)
is said to be closed. The notion of a path

in the case when the directions a1 and a2 are basis vectors in R2 was first
introduced by Diliberto and Straus [6] and exploited further in a number
of works devoted to the approximation of bivariate functions by univariate
functions (see, for example, [1,8,10,14,21]). Braess and Pinkus [2] used the
notion in their solution to one problem of interpolation by ridge functions.
It also appeared in characterization and construction of an extremal element
from the set Rc(X) to a given continuous multivariate function (see [13]).

The following theorem follows from theorem 2 of [7]:

Theorem 1.1. Let X ⊂ Rn and the lengths of all irreducible paths in X be
uniformly bounded by some positive integer. Then each function in B(X)
has an extremal element in Rb(X).
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There are a large number of sets in Rn satisfying the hypothesis of this
theorem. For example, if a set X has a cross section determined by one of
the directions a1 or a2, then the set X satisfies the hypothesis of Theorem
1.1. By a cross section determined by the direction a1 we mean any set
Xa1 = {x ∈ X : a1 · x = c}, c ∈ R, with the property: for any y ∈ X
there exists a point y1 ∈ Xa1 such that a2 · y = a2 · y1. By the similar way,
one can define a cross section determined by the direction a2. Regarding
Theorem 1.1, one may ask if the condition of the theorem is necessary for
proximinality of Rb(X) in B(X). While we do not know a complete answer
to this question, we are going to give an example of a set X for which
Theorem 1.1 fails. Let a1 = (1;−1), a2 = (1; 1). Consider the set

X = {(2;
2
3
), (

2
3
;−2

3
), (0; 0), (1; 1), (1 +

1
2
; 1− 1

2
), (1 +

1
2

+
1
4
; 1− 1

2
+

1
4
),

(1 +
1
2

+
1
4

+
1
8
; 1− 1

2
+

1
4
− 1

8
), . . . }.

In what follows, the elements of X in the given order will be denoted by
x0,x1,x2, . . . . It is clear that X is a path of the infinite length and xn → x0

, as n →∞. Let
∑∞

n=1 cn be any divergent series with the terms cn > 0 and
cn → 0, as n →∞. In addition let f0 be a function vanishing at the points
x0,x2,x4, . . . , and taking values c1, c2, c3, . . . at the points x1,x3, x5, . . .
respectively. It is obvious that f0 is continuous on X. The set X is compact
and satisfies all the conditions of Proposition 2 of [21]. By this proposition,
Rc(X) = C(X). Therefore, for any continuous function on X, thus for f0,

inf
g∈Rc(X)

‖f0 − g‖C(X) = 0. (1.1)

Since Rc(X) ⊂ Rb(X), we obtain from (1.1) that

inf
g∈Rb(X)

‖f0 − g‖B(X) = 0. (1.2)

Suppose that f0 has an extremal element g0
1

(
a1·x)

+ g0
2

(
a2 ·x)

in Rb(X).
By the definition of Rb(X), the ridge functions g0

i , i = 1, 2, are bounded on
X. From (1.2) it follows that f0 = g0

1

(
a1 ·x)

+ g0
2

(
a2·x)

. Since a1 · x2n =
a1 · x2n+1 and a2 · x2n+1 = a2 · x2n+2, for n = 0, 1, . . . , we can write

k∑

n=0

cn+1 =
k∑

n=0

[
f0(x2n+1)− f0(x2n)

]

=
k∑

n=0

[
g0
2(a

2 · x2n+1)− g0
2(a

2 · x2n)
]

= g0
2(a

2 · x2k+1)− g0
2(a

2 · x0). (1.3)

Since
∑∞

n=1 cn = ∞, we deduce from (1.3) that the function g0
2

(
a2·x)

is not bounded on X. This contradiction means that the function f0 does
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not have an extremal element in Rb(X). Therefore, the space Rb(X) is not
proximinal in B(X).

Remark. The above example is a slight generalization and an adaptation
of Havinson’s example (see [10]) to our case.

2. Proximinality of Rc(X) in C(X)

In this section, we are going to give sufficient conditions and also a nec-
essary condition for proximinality of Rc(X) in C(X).

Theorem 2.1. Let the system of independent vectors a1 and a2 has a com-
plement to a basis {a1, . . . ,an} in Rn with the property: for any point x0 ∈ X
and any positive real number δ there exist a number δ0 ∈ (0, δ] and a point
xσ in the set

σ = {x ∈ X : a2 · x0 − δ0 ≤ a2 · x ≤ a2 · x0 + δ0},
such that the system





a2 · x′ = a2 · xσ

a1 · x′ = a1 · x∑n
i=3

∣∣ai · x′ − ai · x∣∣ < δ

(2.1)

has a solution x′ ∈ σ for all points x ∈ σ. Then the space Rc(X) is proxim-
inal in C(X).

Proof. Introduce the following mappings and sets:

πi : X → R, πi(x) = ai · x, Yi = πi(X), i = 1, . . . , n.

Since the system of vectors {a1, . . . ,an} is linearly independent, the map-
ping π = (π1, . . . πn) is an injection from X into the Cartesian product
Y1 × · · · × Yn . Besides, π is linear and continuous. By the open mapping
theorem, the inverse mapping π−1 is continuous from Y = π(X) onto X. Let
f be a continuous function on X. Then the composition f ◦ π−1(y1, . . . yn)
will be continuous on Y, where yi = πi(x), i = 1, . . . , n, are the coordinate
functions. Consider the approximation of the function f ◦ π−1 by elements
from

G0 = {g1(y1) + g2(y2) : gi ∈ C(Yi), i = 1, 2}
over the compact set Y . Then one may observe that the function f has
an extremal element in Rc(X) if and only if the function f ◦ π−1 has an
extremal element in G0. Thus the problem of proximinality of Rc(X) in
C(X) is reduced to the problem of proximinality of G0 in C(Y ).
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Let T, T1, . . . , Tm+1 be metric compact spaces and T ⊂ T1 × · · · × Tm+1.
For i = 1, . . . , m, let ϕi be the continuous mappings from T onto Ti. In [7],
the authors obtained sufficient conditions for proximinality of the set

C0 =
{ n∑

i=1

gi ◦ ϕi : gi ∈ C(Ti), i = 1, . . . m

}

in the space C(T ) of continuous functions on T. Since Y ⊂ Y1×Y2×Z3, where
Z3 = Y3× · · · × Yn, we can use this result in our case for the approximation
of the function f ◦ π−1 by elements from G0. By this theorem, the set G0

is proximinal in C(Y ) if for any y0
2 ∈ Y2 and δ > 0 there exists a number

δ0 ∈ (0, δ) such that the set σ(y0
2, δ0) = [y0

2 − δ0, y
0
2 + δ0] ∩ Y2 has (2, δ)

maximal cross section. Hence there exists a point yσ
2 ∈ σ(y0

2, δ0) with the
property: for any point (y1, y2, z3) ∈ Y, with the second coordinate y2 from
the set σ(y0

2, δ0), there exists a point (y′1, y
σ
2 , z′3) ∈ Y such that y1 = y′1 and

ρ(z3, z
′
3) < δ, where ρ is a metrics in Z3. Since these conditions are equivalent

to the conditions of Theorem 2.1, the space G0 is proximinal in the space
C(Y ). Then by the above conclusion, the space Rc(X) is proximinal in
C(X). ¤

Let us give some simple examples of compact sets satisfying the hypothesis
of Theorem 2.1. For the sake of brevity, we restrict ourselves to the case
n = 3.

(a) Let X be a closed ball in R3, a1 and a2 be two arbitrary orthogonal
directions. Then Theorem 2.1 holds. Note that in this case, we can
take δ0 = δ and a3 as an orthogonal vector to both the vectors a1

and a2.
(b) Let X be the unit cube, a1 = (1; 1; 0), a2 = (1;−1; 0). Then Theo-

rem 2.1 also holds. In this case, we can take δ0 = δ and a3 = (0; 0; 1).
Note that the unit cube does not satisfy the hypothesis of the the-
orem for many directions (take, for example, a1 = (1; 2; 0) and
a2 = (2;−1; 0)).

In the following example, one can not always chose δ0 to be equal to δ.
(c) Let X = {(x1, x2, x3) : (x1, x2) ∈ Q, 0 ≤ x3 ≤ 1}, where Q is the

union of two triangles A1B1C1 and A2B2C2 with the vertices A1 =
(0; 0), B1 = (1; 2), C1 = (2; 0), A2 = (11

2 ; 1), B2 = (21
2 ;−1), C2 =

(31
2 ; 1). Let a1 = (0; 1; 0) and a2 = (1; 0; 0). Then it is easy to see

that Theorem 2.1 holds (the vector a3 can be chosen as (0; 0; 1)).
In this case, δ0 can not be always chosen as equal to δ. Take, for
example, x0 = (13

4 ; 0; 0) and δ = 13
4 . If δ0 = δ, then the second

equation of the system (2.1) has not a solution for a point (1; 2; 0)
or a point (21

2 ;−1; 0). But if we take δ0 not more than 1
4 , then for
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xσ = x0 the system has a solution. Note that the last inequality∣∣a3 · x′ − a3 · x∣∣ < δ of the system can be satisfied with the equality
a3 · x′ = a3 · x if a3 = (0; 0; 1).

It should be remarked that the results of [7] tell nothing about necessary
conditions for proximinality of the spaces considered there. To fill this gap
in our case, we want to give a necessary condition for proximinality ofRc(X)
in C(X). Our result will be based on the result of Marshall and O’Farrell
given below. First, let us introduce some notation. By Ri

c, i = 1, 2, we will
denote the set of continuous ridge functions g

(
ai · x)

on the given compact
set X ⊂ Rn. Note that Rc = R1

c + R2
c . Besides, let R3

c = R1
c ∩ R2

c . For
i = 1, 2, 3, let Xi be the quotient space obtained by identifying points y1

and y2 in X whenever f(y1) = f(y2) for each f in Ri
c. By πi denote the

natural projection of X onto Xi, i = 1, 2, 3. Note that we have already
dealt with the quotient spaces X1, X2 and the projections π1, π2 in the
previous section (see the proof of Theorem 2.1). The relation on X, defined
by setting y1 ≈ y2 if y1 and y2 belong to some path, is an equivalence
relation. Following Marshall and O’Farrell [21] the equivalence classes are
called orbits. By O(t) denote the orbit of X containing t. For Y ⊂ X, let
ωY f be the oscillation of a function f on the set Y. That is,

ωY f = sup
x,y∈Y

|f (x)− f (y)| .

Theorem 2.2. Suppose that the space Rc(X) is proximinal in C(X). Then
there exists a positive real number c such that

sup
t∈X

ωO(t)f ≤ c sup
t∈X

ωπ−1
2 (π2(t))f (2.2)

for all f in R1
c .

The proof is simple. In [21], Marshall and O’Farrell proved the following
result (see Proposition 4 in [21]): Let A1 and A2 be closed subalgebras of
C(X) that contain the constants. Let (X1, π1), (X2, π2) and (X3, π3) be
the quotient spaces and projections associated with the algebras A1, A2 and
A3 = A1 ∩ A2 respectively. Then A1 + A2 is closed in C(X) if and only if
there exists a positive real number c such that

sup
z∈X3

ωπ−1
3 (z)f ≤ c sup

y∈X2

ωπ−1
2 (y)f (2.3)

for all f in A1.
IfRc(X) is proximinal in C(X), then it is necessarily closed and therefore,

by the above proposition, (2.3) holds for the algebras Ai
1 = Ri

c, i = 1, 2, 3.
The right-hand side of (2.3) is equal to the right-hand side of (2.2). Let t
be some point in X and z = π3(t). Since each function f ∈ R3

c is constant
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on the orbit of t (note that f is both of the form g1

(
a1·x)

and of the form
g2

(
a2·x)

), O(t) ⊂ π−1
3 (z). Hence,

sup
t∈X

ωO(t)f ≤ c sup
z∈X3

ωπ−1
3 (z)f. (2.4)

From (2.3) and (2.4) we obtain (2.2).
Note that the inequality (2.3) provides not weaker but a less practicable

necessary condition for proximinality than the inequality (2.2) does. On
the other hand, there are many cases in which both the inequalities are
equivalent. For example, let the lengths of irreducible paths of X be bounded
by some positive integer n0. In this case, it can be shown that the inequality
(2.3), hence (2.2), holds with the constant c = n0

2 and moreover O(t) =
π−1

3 (z) for all t ∈ X, where z = π3(t) (see the proof of Theorem 5 in [13]).
Therefore, the inequalities (2.2) and (2.3) are equivalent for the considered
class of sets X. The last argument shows that all the compact sets X ⊂ Rn

over which Rc(X) is not proximinal in C(X) should be sought in the class of
sets having irreducible paths consisting sufficiently large number of points.
For example, let I = [0; 1]2 be the unit square, a1 = (1; 1), a2 = (1; 1

2).
Consider the path

lk = {(1; 0), (0; 1), (
1
2
; 0), (0;

1
2
), (

1
4
; 0), . . . , (0;

1
2k

)}.
It is clear that lk is an irreducible path with the length 2k+2, where k may

be very large. Let gk be a continuous univariate function on R satisfying the
conditions: gk( 1

2k−i ) = i, i = 0, . . . , k, gk(t) = 0 if t < 1
2k , i−1 ≤ gk(t) ≤ i if

t ∈ ( 1
2k−i+1 , 1

2k−i ), i = 1, . . . , k, and gk(t) = k if t > 1. Then it can be easily
verified that

sup
t∈X

ωπ−1
2 (π2(t))gk(a1·x) ≤ 1. (2.5)

Since maxx∈I gk(a1·x) = k, minx∈I gk(a1·x) = 0 and ωx∈O(t1)gk(a1·x) = k
for t1 = (1; 0), we obtain that

sup
t∈X

ωO(t)gk(a1·x) = k. (2.6)

Since k may be very large, from (2.5) and (2.6) it follows that the inequal-
ity (2.2) cannot hold for the function gk(a1 ·x) ∈ R1

c . Thus the space Rc(I)
with the directions a1 = (1; 1) and a2 = (1; 1

2) is not proximinal in C(I).
It should be remarked that if a compact set X ⊂ Rn satisfies the hypoth-

esis of Theorem 2.1, then the length of all irreducible paths are uniformly
bounded (see the proof of Theorem 2.1 and lemma in [7]). We have already
seen that if the last condition does not hold, then the proximinality of both
Rc(X) in C(X) and Rb(X) in B(X) fail for some sets X. Besides the ex-
amples given above and in Section 1, one can easily construct many other
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examples of such sets. All these examples, Theorems 1.1, 2.1, 2.2 and the
following remarks justify the statement of the following conjecture:

Conjecture. Let X be some subset of Rn. The space Rb(X) is proximinal
in B(X) and the space Rc(X) is proximinal in C(X) (in this case, X is
considered to be compact) if and only if the lengths of all irreducible paths
of X are uniformly bounded.

Remark 1. After completion of this work, Medvedev’s result came to our
attention (see [16, p.58]). His result, in particular, states that the set Rc(X)
is closed in C(X) if and only if the lengths of all irreducible paths of X are
uniformly bounded. Thus, in the case of C(X), the necessity of the above
conjecture was proved by Medvedev.

Remark 2. Note that there are situations in which a continuous function
(a specially chosen function on a specially constructed set) has an extremal
element in Rb(X), but not in Rc(X) (see [16, p.73]). One subsection of [16]
(see p.68) is devoted to the proximinality of sums of two univariate functions
with continuous and bounded summands in the spaces of continuous and
bounded bivariate functions respectively. If X ⊂ R2 and a1,a2 be linearly
independent directions in R2, then the linear transformation y1 = a1·x , y2 =
a2 ·x reduces the problems of proximinality of Rb(X) in B(X) and Rc(X) in
C(X) to the problems considered in that subsection. But in general, when
X ⊂ Rn, n > 2, our case cannot be obtained from that of [16].

Acknowledgment. I learned about the monograph by Khavinson [16] from
Allan Pinkus at the Technion. Using this opportunity, I would like to express
my sincere gratitude to him.
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