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ON THE THEORY OF CONVOLUTION INTEGRAL
EQUATIONS RELATED TO LEBEDEV’S TYPE

OPERATORS

SEMYON B. YAKUBOVICH

Abstract. We draw a parallel with the Gakhov-Cherskii method to in-
vestigate a class of convolution integral equations related to the Kontoro-
vich-Lebedev and Lebedev’s type transformations. A relationship with
the Cauchy type integral is obtained. The general convolution equa-
tion is solved being reduced to the Riemann boundary value problem by
means of the Kontorovich-Lebedev transform.

1. Introduction

In this paper we will deal with an integral equation, which contains two
convolution type operators, namely

f(t) + λ1(f ∗m1)1(t) + λ2(f ∗m2)2(t) = g(t), t > 0, (1.1)

where λ1, λ2 ∈ C are parameters, m1(t), m2(t), g(t) are given functions,
f(t) is to be determined and

(f ∗m1)1(t) =
1
2t

∫ ∞

0

∫ ∞

0
e
− 1

2

(
t x2+y2

xy
+ yx

t

)

f(x)m1(y)dx dy, (1.2)

(f ∗m2)2(t) =
∫ ∞

0

∫ ∞

0
K(x, y, t)f(x)m2(y)dx dy (1.3)

with

K(x, y, t) = y

∫ ∞

1
e−vx K1(

√
t2 + y2 + 2tyv)√

t2 + y2 + 2tyv
dv, (1.4)
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where Kν(z) is the modified Bessel function [1]. As we will see below the
operator (1.2) can be factorized by the Kontorovich-Lebedev transform (see
[10], [11], [12])

Kix[f ] =
∫ ∞

0
Kix(t)f(t)dt, x ∈ R, (1.5)

with the kernel

Kix(t) =
1
2

∫ ∞

−∞
e−t cosh ueiuxdu, t > 0, (1.6)

and operator (1.3) will be treated with the aid of the auxiliary transforma-
tion Mix[f ] (see [9], [16])

Mix[f ] =
∫ ∞

0
Mix(t)f(t)dt, x ∈ R, (1.7)

which involves the kernel Mix(t) related to the Bessel functions (cf. [6])

Mix(t) =
∫ ∞

0
e−t cosh u sinxu du, t > 0. (1.8)

Equation (1.1) will be investigated for a certain class of functions, which
is related to mapping properties of transformations (1.5), (1.7). We will
apply the so-called Gakhov-Cherskii method (see [4]) reducing this equation
to the Riemann boundary value problem [3] for the half-plane. Such an
approach was used in [4] to investigate a class of the Fourier type convolution
integral equations. This scheme has been also considered formally in [5] for
a similar equation to (1.1) from the intersection of various weighted L2-
spaces. Concerning convolution integral equations of the first kind, which
are associated with the Kontorovich-Lebedev transform, see [13], [15].

As it is known, the modified Bessel function Kν(z) satisfies the differential
equation

z2 d2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0, (1.9)

for which it is the solution that remains bounded as z tends to infinity on the
real line. It has the asymptotic behaviour (see [1], relations (9.6.8), (9.6.9),
(9.7.2))

Kν(z) =
( π

2z

)1/2
e−z[1 + O(1/z)], z →∞, (1.10)

and near the origin

Kν(z) = O
(
z−|Reν|

)
, z → 0, (1.11)

K0(z) = − log z + O(1), z → 0. (1.12)
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When x ∈ R, then (see (1.6)) Kix(t) is real-valued and even with respect to
the pure imaginary index ix. Furthermore, this integral can be extended to
the strip δ ∈ [0, π/2) in the upper half-plane, i.e.

Kix(t) =
1
2

iδ+∞∫

iδ−∞
e−t cosh z+ixzdz,

and leads for each t > 0 to a uniform estimate

|Kix(t)| ≤ e−|x| arccos βK0(βt), 0 < β ≤ 1. (1.13)

For a product of the modified Bessel functions of different arguments the
Macdonald formula is true [7, Vol. II, relation (2.16.9.1)]

Kν(x)Kν(y) =
1
2

∫ ∞

0
e
− 1

2

(
t x2+y2

xy
+ yx

t

)

Kν(t)
dt

t
. (1.14)

Meanwhile, kernel (1.8) has a relationship with the modified Bessel function
by means of the following integral representation [9]

π

sinhπτ
Miτ (t) =

∫ ∞

0

e−t−y

t + y
Kiτ (y)dy, τ ∈ R\{0}, (1.15)

which will be used in the sequel. In particular, substituting in the left-hand
side of (1.15) the value of Miτ (t) in terms of the integral (1.8), we let τ → 0
through (1.15) via the absolute and uniform convergence to find the result

lim
τ→0

πMiτ (t)
sinhπτ

=
∫ ∞

0

e−t−y

t + y
K0(y)dy =

∫ ∞

0
e−t cosh uu du, t > 0, (1.16)

which defines (1.15) for all τ ∈ R. Finally in this section, putting ν = iτ

in (1.14) we multiply both sides of this equality on e−t−y

t+y and we integrate
with respect to y. Changing the order of integration by Fubini’s theorem
and employing (1.15) we derive

π

sinhπτ
Miτ (t)Kiτ (x) =

1
2

∫ ∞

0

∫ ∞

0
e
− 1

2

(
u x2+y2

xy
+ yx

u

)
−t−y

Kiτ (u)
du dy

u(t + y)

=
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

1
e
− 1

2

(
y x2+u2

xu
+ux

y

)
−v(t+y) Kiτ (u)

u
du dy dv

=
1
2

∫ ∞

0

Kiτ (u)
u

∫ ∞

1
e−vt

∫ ∞

0
e
− 1

2

(
y x2+u2+2vxu

xu
+ux

y

)
dy dv du. (1.17)



122 SEMYON B. YAKUBOVICH

The inner integral with respect to y is calculated by relation (2.3.16.1) in [7,
Vol. I]. Therefore we come out with the following integral representation

π

sinhπτ
Miτ (t)Kiτ (x) = x

∫ ∞

0
Kiτ (u)

∫ ∞

1
e−vt

K1

(√
x2 + u2 + 2vxu

)
√

x2 + u2 + 2vxu
dv du

=
∫ ∞

0
Kiτ (u)K(t, x, u)du, τ ∈ R, (1.18)

where K(t, x, u) is defined by (1.4). This kernel can be written in terms of
the inversion formula for the Kontorovich-Lebedev transformation (1.5) (see
[11, Chapter 2]). Thus we obtain

K(t, x, u) =
1

πu

∫ ∞

−∞
τMiτ (t)Kiτ (x)Kiτ (u)dτ, t, x, u > 0. (1.19)

2. Key properties of the Kontorovich-Lebedev transform.
A relationship with the Cauchy type integral

In this section we will give necessary mapping properties of the Konto-
rovich-Lebedev transform (1.5) in the Lebesgue spaces, which we will use
to establish a solvability theory for integral equation (1.1). In particular,
operator (1.5) is well defined in the Banach ring Lα ≡ L1(R+; Kα(t) dt), α ∈
R (see [10], [11], [14]), i.e. the space of all summable functions f : R+ → C
with respect to the measure Kα(t) dt for which

||f ||Lα =
∫ ∞

0
|f(t)|Kα(t)dt (2.1)

is finite. It is shown (see [11, Chapter 4]) that the operation of multiplication
for two elements f, g of the ring Lα is the convolution (1.2) (f∗g)1. Moreover,
the Macdonald formula (1.14) is used to prove the factorization property for
the convolution (1.2) in terms of the Kontorovich-Lebedev transform (1.5)
in the space Lα, namely

Kix[(f ∗ g)1] = Kix[f ]Kix[g], x ∈ R, (2.2)

where the integral (1.5) exists as a Lebesgue integral. It is also proved,
that the Kontorovich-Lebedev transformation is a bounded operator from
Lα into the space C0(R) of bounded continuous functions on R vanishing at
infinity, admitting the following composition representation

Kix[f ] =
√

π

2
(Fh) (x), (2.3)
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as a Fourier transform [8] of the the function h(u) =
∫∞
0 e−t cosh uf(t)dt ∈

L1(R+; dt). The latter fact can be easily done by the estimate (see (2.1))∫ ∞

0
|h(u)|du ≤

∫ ∞

0
|f(t)|

∫ ∞

0
e−t cosh udu dt =

∫ ∞

0
|f(t)|K0(t)dt

≤
∫ ∞

0
|f(t)|Kα(t)dt < ∞.

Furthermore, the convolution (1.2) of two functions f, g ∈ Lα exists as a
Lebesgue integral and belongs to Lα. It satisfies the Young type inequality

||(f ∗ g)1||Lα ≤ ||f ||Lα ||g||Lα . (2.4)

Next, we will calculate the transform (1.5) of the convolution (f ∗m2)2(t).
Indeed, taking into account (1.3), (1.4), we change the order of integration
by Fubini’s theorem and by using (1.18) we obtain the equality

Kix[(f ∗m2)2] =
π

sinhπx

∫ ∞

0
Mix(t)f(t)dt

∫ ∞

0
Kix(y)m2(y)dy

=
π

sinhπx
Mix[f ]Kix[m2], x ∈ R. (2.5)

The motivation of this interchange can be done for any f, m2 ∈ Lα, |α| ≥ 1.
But first we appeal to (1.8), (1.13), (1.16), (1.17) to find the estimate

sup
x∈R

∣∣∣ π

sinhπx
Mix(t)Kix(y)

∣∣∣ ≤ sup
x∈R

∣∣∣ πx

sinhπx

∣∣∣K0(y)
∫ ∞

0
e−t cosh uu du

≤ e−tK0(y)
∫ ∞

0
e−2t sinh2(u/2)u du ≤ e−tK0(y)

∫ ∞

0
e−tu2/2u du =

e−t

t
K0(y).

Therefore the iterated integral in the right-hand side of (2.5) converges ab-
solutely and uniformly with respect to x. Precisely, we have for x ∈ R (see
(1.10), (1.11))

π

| sinhπx|
∫ ∞

0
|Mix(t)f(t)|dt

∫ ∞

0
|Kix(y)m2(y)|dy

≤
∫ ∞

0

e−t

t
|f(t)|dt

∫ ∞

0
K0(y)|m2(y)|dy

≤ sup
t>0

[
e−t

Kα(t) t

]
||f ||Lα ||m2||Lα < ∞, |α| ≥ 1,

which motivates the proof of equality (2.5).
Considering, in turn, the Kontorovich-Lebedev integral (1.5) in the case

f(t) ∈ L2(R+; tdt), i.e.

||f ||L2(R+;tdt) =
(∫ ∞

0
|f(t)|2tdt

)1/2

< ∞ (2.6)
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it is not difficult to verify that it generally, does not exist in Lebesgue’s sense
(take, for instance

f(t) =

{
1

t log t , if 0 < t ≤ 1
2 ,

0, if t > 1
2 ,

and use asymptotic formula (1.11)). Thus we define it in the form

Kix[f ] = lim
N→∞

∫ ∞

1/N
Kix(t)f(t)dt (2.7)

with the necessary truncation in the origin, where the limit is taken in the
mean square sense with respect to the norm of the space L2(R; x sinhπx dx).
It has been proved (see [11, Chapter 2], [17]) that the range Kix(L2(R+; tdt))
coincides with the subspace of even functions in the weighted Hilbert space
L2(R; x sinhπx dx). Operator (2.7) is bounded and its square of the norm
satisfies the Parseval identity of the form∫ ∞

−∞
x sinhπx|Kix[f ]|2dx = π2

∫ ∞

0
t|f(t)|2dt. (2.8)

More generally, it gives∫ ∞

−∞
x sinhπxKix[f ]Kix[g]dx = π2

∫ ∞

0
tf(t)g(t)dt, (2.9)

where f, g ∈ L2(R+; tdt). The two definitions (1.5) and (2.6) of the Konto-
rovich-Lebedev operator are equivalent, if we take f ∈ Lα

2 ≡ L2(R+; tdt) ∩
Lα. The inverse operator in the latter case is given by the formula f(t) =
limN→∞ fN (t), where

fN (t) =
1
π2

∫ N

−N
x sinhπx

Kix(t)
t

Kix[f ]dx (2.10)

with the necessary truncation at infinity and the convergence is in the mean
square sense with respect to the norm (2.4) of L2(R+; tdt). Denoting by

KLix ≡ {G ∈ Kix(L2(R+; tdt)); G(x) = Kix[f ], f ∈ Lα
2 }

a set of images under the Kontorovich-Lebedev transform (1.5), which, in
turn, is a subspace of Kix(L2(R+; tdt)), we will consider a restriction of this
map to Kix : Lα

2 → KLix. As we see above, for instance, it has KLix ⊂
C0(R).

Let us consider operator (1.5) of the complex variable

Kiz[f ] =
∫ ∞

0
Kiz(t)f(t)dt, z ∈ C. (2.11)

It is not difficult to prove, that if f ∈ Lα, then Kiz[f ] is analytic in the
horizontal strip |Im z| ≤ |α|. Indeed, via (1.6) we observe, that Kiz(t) is
entire with respect to z and |Kiz(t)| ≤ KIm z(t) ≤ Kα(t). Moreover, the



CONVOLUTION EQUATIONS 125

integral (2.11) is convergent absolutely and uniformly in the strip |Im z| ≤
|α|, representing there an analytic function. In particular, when α = 0, we
find that Kix[f ] is infinitely often continuously differentiable on the real axis.
Furthermore, it satisfies there the Hölder condition [3] of any λ, 0 < λ ≤ 1.

Let us establish a relationship of the integral (2.11) and the Cauchy type
integral over real axis with the density function Kiτ [f ], τ ∈ R [3]. Assuming
that f(t) ∈ Lα

2 , it is easily seen from discussions above that the Kontorovich-
Lebedev transform Kiτ [f ] ∈ C0(R) ∩ L2 (R; τ sinhπτ dτ). Therefore it be-
longs to L2(R; dτ) and via representation (2.3) and the Parseval equality
for the Fourier transform [8] we obtain

1
2πi

∫ ∞

−∞

Kiτ [f ]
τ − z

dτ =
1
2

∫ ∞

−∞
h(u)

1
2πi

∫ ∞

−∞

eiτu

τ − z
dτ du

=
1
2

[∫ 0

−∞
+

∫ ∞

0

]
h(u)

1
2πi

∫ ∞

−∞

eiτu

τ − z
dτ du.

Hence taking into account the value of the inner integral with respect to τ
(see, for instance, in [4]) we come out with the equalities

1
2πi

∫ ∞

−∞

Kiτ [f ]
τ − z

dτ =
1
2

∫ ∞

0
h(u)eizudu, Imz > 0, (2.12)

1
2πi

∫ ∞

−∞

Kiτ [f ]
τ − z

dτ = −1
2

∫ ∞

0
h(u)e−izudu, Imz < 0, (2.13)

where

h(u) =
∫ ∞

0
e−t cosh uf(t)dt.

Substituting this value into (2.12), (2.13), we change the order of integration
by Fubini’s theorem since
∫ ∞

0

∣∣∣∣
∫ ∞

0
e−t cosh uf(t) dt

∣∣∣∣ e±izudu dt ≤
∫ ∞

0

∫ ∞

0
e−t cosh u−|Imz|u|f(t)| dt du

≤
∫ ∞

0

∫ ∞

0
e−t cosh u|f(t)| dt du =

∫ ∞

0
K0(t)|f(t)|dt ≤ ||f ||Lα < ∞.

Then taking into account relations (1.6), (1.7), (1.8), (2.11) we can write
(2.12), (2.13) in the form

1
2πi

∫ ∞

−∞

Kiτ [f ]
τ − z

dτ =
1
2

[Kiz[f ] + iMiz[f ]] , Imz > 0, (2.14)

1
2πi

∫ ∞

−∞

Kiτ [f ]
τ − z

dτ = −1
2

[Kiz[f ]− iMiz[f ]] , Imz < 0. (2.15)
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Consequently, since the Cauchy type integral represents a piecewise analytic
function

G(z) =
1

2πi

∫ ∞

−∞

Kiτ [f ]
τ − z

dτ =

{
G+(z), if Im z > 0,

G−(z), if Im z < 0,
(2.16)

in the cut z-plane along the real axis, we have from (2.14), (2.15) that
functions

G+(z) =
1
2

[Kiz[f ] + iMiz[f ]] , (2.17)

G−(z) = −1
2

[Kiz[f ]− iMiz[f ]] (2.18)

are analytic in the upper and lower half-plane, respectively. Moreover, the
Sokhotski formulas take place for the limit values on the real axis

G+(x) =
1
2

[Kix[f ] + iMix[f ]] =
1
2

[
Kix[f ] +

1
πi

∫ ∞

−∞

Kiτ [f ]
τ − x

dτ

]
, x ∈ R,

(2.19)

G−(x) = −1
2

[Kix[f ]− iMix[f ]] = −1
2

[
Kix[f ]− 1

πi

∫ ∞

−∞

Kiτ [f ]
τ − x

dτ

]
, x ∈ R,

(2.20)

which are equivalent to the following relations

G+(x)−G−(x) = Kix[f ], x ∈ R, (2.21)

G+(x) + G−(x) = iMix[f ] =
1
πi

∫ ∞

−∞

Kiτ [f ]
τ − x

dτ, x ∈ R. (2.22)

Besides, since Kix[f ] ∈ C0(R), it gives the condition lim|x|→∞Kix[f ] = 0.

Definition. [2] A function G+(z) (G−(z)) (z = x+iy) belongs to the Hardy
class H+

2 (H−2 ) if it is analytic in the upper (lower) half-plane y > 0 (y < 0)
and satisfies the inequality

sup
y>0 (y<0)

∫ ∞

−∞

∣∣∣G(±)(x + iy)
∣∣∣
2
dx < ∞.

We are ready to prove the following result.

Theorem 1. A function G(x) ∈ KLix is a limit value of G+(z) ∈ H+
2 (G−(z)

∈ H−2 ) if and only if Kix[f ] = (±) iMix[f ].

Proof. Necessity. Indeed, let us suppose that G(x) is a limit value of G+(z) ∈
H+

2 . Since G(x) is from the class KLix, we have G(x) = Kix[f ], f ∈ Lα
2 .

Meanwhile (see [2], [8]), G+(z) is representable in the upper half-plane in
terms of the Cauchy type integral (2.16) and hence G+(z) = Kiz[f ]. Thus
G+(x) = Kix[f ] and from (2.17) we find the condition Kix[f ] = iMix[f ].
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If, in turn, G(x) = Kix[f ] is a limit value of G−(z) in the lower half-plane,
then the representation by the Cauchy type integral (2.16) gives the equality
G−(z) = −Kiz[f ]. Consequently, G−(x) = −Kix[f ] and from (2.18) we
deduce Kix[f ] = −iMix[f ].

Sufficiency. Conversely, if Kix[f ] = iMix[f ], then from Sokhotski’s for-
mulas (2.21), (2.22) we get G−(x) = 0 and therefore G+(x) = Kix[f ] = G(x)
is a limit value of G+(z). In the case of Kix[f ] = −iMix[f ] we find from the
same relations that G+(x) = 0 and therefore, G−(x) = −Kix[f ] is a limit
value of G−(z). Theorem 1 is proved. ¤

3. A solvability of convolution type equation (1.1)
in the class Lα

2

We begin to consider a simple case of equation (1.1) letting λ2 = 0. So
we have a convolution type integral equation with operator (1.2)

f(t) + λ1(f ∗m1)1(t) = g(t), t > 0, (3.1)

where λ1 6= 0, m1(t), g(t) are given functions in the class Lα
2 . We seek a

solution in the same class Lα
2 . Taking the operator (2.11) of the Kontorovich-

Lebedev transformation from both sides of (3.1) we use the factorization
property (2.2) and we come out with the algebraic equation with respect to
Kiz[f ]

Kiz[f ] (1 + λ1 Kiz[m1]) = Kiz[g], |Im z| ≤ |α|. (3.2)

Assuming the normality condition

1 + λ1 Kiz[m1] 6= 0, |Im z| ≤ |α|, (3.3)

the unique solution of (3.2) is

Kiz[f ] =
Kiz[g]

1 + λ1 Kiz[m1]
, |Im z| ≤ |α|. (3.4)

But the Wiener type theorem for the Kontorovich-Lebedev transform (see
[11, Theorem 4.15]) says, that there exists a unique element q(t) of the
Banach ring Lα (see (2.1)) such that

1
1 + λ1 Kiz[m1]

= 1 + λ1Kiz[q], |Im z| ≤ |α|. (3.5)

Therefore (3.4) becomes

Kiz[f ] = Kiz[g] (1 + λ1Kiz[q]) . (3.6)

Letting z = x ∈ R in (3.6) we observe that since Kix[g] ∈ KLix and 1 +
λ1Kix[q] is bounded, then the right-hand side of (3.6) belongs to L2(R;
x sinhπx dx). Thus we have Kix[f ] ∈ L2(R;x sinhπx dx) and by virtue of
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inversion (2.10) it defines reciprocally a unique solution f(t) ∈ L2(R+; tdt)
by the formula

f(t) = lim
N→∞

1
π2

∫ N

−N
x sinhπx

Kix(t)
t

Kix[g] (1 + λ1Kix[q]) dx, t > 0. (3.7)

However, our goal is to show that f(t) ∈ Lα
2 . In fact, relation (3.7), factor-

ization equality (2.2) being written for g, q ∈ Lα and the boundedness of
Kix[q] will guarantee the property (g ∗ q)1(t) ∈ Lα

2 . Moreover, from (3.7) we
deduce

f(t) = g(t) + lim
N→∞

λ1

π2

∫ N

−N
x sinhπx

Kix(t)
t

Kix[g]Kix[q]dx

= g(t) + lim
N→∞

λ1

π2

∫ N

−N
x sinhπx

Kix(t)
t

Kix[(g ∗ q)1]dx

= g(t) + λ1(g ∗ q)1(t), t > 0.

Hence
f(t) = g(t) + λ1(g ∗ q)1(t), q ∈ Lα (3.8)

is the desired unique Lα
2 -solution of equation (3.1) and we have proved the

following

Theorem 2. Under normality condition (3.3) there exists a unique solution
of the convolution integral equation (3.1) in the class Lα

2 , α ∈ R given by
formula (3.8).

Let us consider convolution integral equation (1.1), where λ1, λ2 ∈ R\{0},
m1(t), m2(t) and g(t) are given functions in the class Lα

2 , |α| ≥ 1, assuming
that m1(t),m2(t) are real-valued. We will seek a solution in the same class.
In fact, taking the Kontorovich-Lebedev transform (1.5) from both sides of
(3.9) and invoking relations (2.2), (2.5) we obtain

Kix[f ] (1 + λ1Kix[m1]) +
λ2π

sinhπx
Mix[f ]Kix[m2] = Kix[g], x ∈ R. (3.9)

But relations (2.21), (2.22) yield the equation

(G+(x)−G−(x)) (1 + λ1Kix[m1])− i(G+(x)

+ G−(x))
λ2πKix[m2]

sinhπx
= Kix[g], x ∈ R, (3.10)

which can be rewritten as

G+(x) = D(x)G−(x) + H(x), x ∈ R, (3.11)

where

H(x) =
sinhπxKix[g]

sinhπx (1 + λ1Kix[m1])− iλ2πKix[m2]
,
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D(x) =
sinhπx (1 + λ1Kix[m1]) + iλ2πKix[m2]
sinhπx (1 + λ1Kix[m1])− iλ2πKix[m2]

, (3.12)

and
sinh2 πx (1 + λ1Kix[m1])

2 + λ2
2π

2K2
ix[m2] 6= 0, x ∈ R (3.13)

via the normality condition. Consequently, we have arrived at the Riemann
boundary value problem (3.11) for the half-plane. Namely, the problem is to
find a piecewise bounded analytic function G(z) in the cut plane along the
real axis whose limit values satisfy the boundary condition (3.11). Moreover,
we seek solutions in the class of functions vanishing at infinity due to an
asymptotic behavior of the Kontorovich-Lebedev transformation (1.5). This
problem is solved in detail in [3], and we will appeal to the necessary formulas
for the solution. Indeed, denoting by κ the index of the problem (3.11)
κ = IndD(x) we have accordingly:

1. If κ > 0 then the problem (3.11) is solvable and its solution can be
written in the form

G(z) = X(z)
[
Ψ(z) +

Pκ−1(z)
(z + i)κ

]
, (3.14)

where Pκ−1(z) is an arbitrary polynomial of degree κ − 1. The so-called
canonic function in (3.14) X(z) by definition represents a piecewise analytic
function satisfying the boundary condition X+(t) = D(t)X−(t), t ∈ R,
where

X+(z) = eΓ+(z), X−(z) =
(

z − i

z + i

)−κ

eΓ−(z), (3.15)

and

Γ(z) =
1

2πi

∫ ∞

−∞
log

[(
τ − i

τ + i

)−κ

D(τ)
]

dτ

τ − z
(3.16)

Meanwhile, with the Sokhotzki formulas [3] we find from (3.16)

Γ+(t) =
1
2

log
[(

t− i

t + i

)−κ

D(t)
]

+ Γ(t),

Γ−(t) = −1
2

log
[(

t− i

t + i

)−κ

D(t)
]

+ Γ(t).

Therefore, relations (3.15) yield

X+(t) = eΓ(t)

[ (
t− i

t + i

)−κ

D(t)
]1/2

, t ∈ R

X−(t) = eΓ(t)

[ (
t− i

t + i

)−κ

D(t)
]−1/2

, t ∈ R.
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Now we observe from (3.16) taking the definition of D(x) that Γ(z) = Γ(−z).
Hence we see that X+(−t) = X−(t). An analytic function Ψ(z) in (3.14) is
defined by the Cauchy type integral as follows (see (3.11))

Ψ(z) =
1

2πi

∫ ∞

−∞

H(τ)
X+(τ)

dτ

τ − z
, (3.17)

and again invoking (3.12), the property D(−t) = 1/D(t) and the definitions
of H(t), X+(t) we derive the relation Ψ(z) = −Ψ(−z). So returning to
(3.14) we write solutions in the form

G+(t) = X+(t)
[
Ψ+(t) +

Pκ−1(t)
(t + i)κ

]
,

G−(t) = X−(t)
[
Ψ−(t) +

Pκ−1(t)
(t + i)κ

]
,

where accordingly from (3.17) it has

Ψ+(t) =
1
2

H(t)
X+(t)

+ Ψ(t),

Ψ−(t) = −1
2

H(t)
X+(t)

+ Ψ(t).

Since G+(t)−G−(t) = Kit[f ] is even we should get

X+(−t)
[
Ψ+(−t) +

Pκ−1(−t)
(i− t)κ

]
−X−(−t)

[
Ψ−(−t) +

Pκ−1(−t)
(i− t)κ

]

= X+(t)
[
Ψ+(t) +

Pκ−1(t)
(i + t)κ

]
−X−(t)

[
Ψ−(t) +

Pκ−1(t)
(i + t)κ

]
(3.18)

and taking into account our discussions above the latter equality will be true
if and only if

(
X+(−t)−X−(−t)

) Pκ−1(−t)
(i− t)κ

=
(
X+(t)−X−(t)

) Pκ−1(t)
(i + t)κ

, t ∈ R,

i.e.
Pκ−1(−t)
(i− t)κ

= −Pκ−1(t)
(i + t)κ

, t ∈ R, (3.19)

because X+(t) 6= X−(t), t ∈ R. Consequently, we will consider for our
solutions only the polynomials Pκ−1(z), which satisfy the boundary condi-
tion (3.19). However, the Liouville theorem immediately concludes that the
only solution of (3.19) is Pκ−1(z) ≡ 0. Therefore the Kontorovich-Lebedev
transform Kit[f ] = G+(t)−G−(t) ∈ KLit can be written as the right-hand
side of the equation (3.18)

Kit[f ] =
1
2

H(t)
(

1 +
1

D(t)

)
+

(
X+(t)−X−(t)

)
Ψ(t), t ∈ R, (3.20)
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and the Lα
2 - solution f of the convolution integral equation (1.1) will be

found by the inversion formula (2.10)

f(x) =
1
π2

∫ ∞

−∞
t sinhπt

Kit(x)
x

[
1
2

H(t)
(

1 +
1

D(t)

)

+
(
X+(t)−X−(t)

)
Ψ(t)

]
dt, x > 0, (3.21)

where the convergence of the integral is in L2-sense.
2. When κ ≤ 0, formula (3.14) simply becomes G(z) = X(z)Ψ(z). How-

ever, this unique solution is zero when κ = 0 and when κ < 0 for its existence
it is necessary and sufficient the fulfilment of −κ solvability conditions∫ ∞

−∞

H(τ)
X+(τ)

dτ

(τ + i)k
, k = 1, 2, . . . ,−κ. (3.22)

In this case as above, the solution of the convolution integral equation (1.1)
is given by (3.21). Thus we have proved the final

Theorem 3. Let λ1, λ2 ∈ R\{0}, m1(t),m2(t) and g(t) be given functions
in the class Lα

2 , |α| ≥ 1, assuming that m1(t),m2(t) are real-valued. Let also
the normality condition (3.13) be true. Denoting by κ = IndD(x), x ∈ R,
where D(x) is defined by (3.12), the solution of equation (1.1) is given by
formula (3.21) for κ > 0. When κ = 0 the solution is trivial. Finally, for
κ < 0 it is represented by (3.21) under the existence conditions (3.22).
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