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STABILITY OF ALMOST CLOSED OPERATORS ON A
HILBERT SPACE

SANAA MESSIRDI, MUSTAPHA DJAA AND BEKKAI MESSIRDI

Abstract. We introduce the notion of almost closed linear operators
acting in a Hilbert space. This class of operators contains the set of all
closed linear operators and is invariant under addition, composition and
limits.

1. Introduction

Let us denote by B(H) the algebra of bounded linear operators on a
separable Hilbert space H equipped with an inner product 〈., .〉H ,(‖x‖H =
[〈x, x〉H ]1/2). C(H) is the set of all closed linear operators of dense domain
in H. If A ∈ C(H), the domain of A is denoted by D(A) and its graph by
G(A) = {(x,Ax) ; x ∈ D(A)}, in particular G(A) is a closed subspace of
H ⊕H. N(A) and R(A) denotes respectively the null space and the range
of A. The adjoint of A is denoted by A∗ and I is the identity operator on
H.

The natural operations sum, product and limits are well defined on B(H).
This is thanks to the domain of the bounded operators which is always taken
to be the whole Hilbert space H.

However, one has to be careful with those manipulations when dealing
with unbounded operators, this is essentially due to the domains.

If A, B ∈ C(H), their sum A+B and product AB are respectively defined
on H by

{
(A + B)x = Ax + Bx, for all x ∈ D(A + B) = D(A) ∩D(B)
ABx = A(Bx), for all x ∈ B−1(D(A))

when the operators A + B and AB can just not make any sense.
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The first deficiency is that if D(A + B) or D(AB) is trivial, i.e it reduces
to zero even if strong conditions are imposed on A and B.

Let’s recall that the Fourier transformation F defines a unitary operator
on L2(R) and C∞

0 R∩FC∞
0 (R) = {0}. This last result is known as the Paley-

Wiener theorem (see e.g.[12],[13]), it permits us to construct an example of
two unbounded linear operators with trivial sum.

If Aϕ(x) = xϕ(x) and Bϕ(x) = x2ϕ(x) defined onL2(R) with the follow-
ing domains:

D(A) = C∞
0 (R) and D(B) =

{
ϕ ∈ C∞(R); Fϕ ∈ C∞

0 (R)
}
.

Then, A and B are essentially selfadjoint and D(A + B) = {0}.
For the product, P.R. Chernoff [2] gave a simpler and explicit semi-

bounded operator A satisfying D(A2) = {0}. His idea was based on the
Cayley transform of unbounded operators. A is the multiplication operator
by i(F + 1)(F − 1)−1, where F is some complex function defined on the
Hardy space on the unit circle.

The second deficiency is that if A,B ∈ C(H), then A + B and AB need
not be closed on H.

For instance, if we take (en)n∈N be a basis of H, an = e2n and bn =
e2n + 1

(n+1)e2n+1 for all n ∈ N.

Let M and N the two linear subspaces of H respectively spaned by
(an)n∈N and (bn)n∈N. Then, M ∩N ={0} and M + N is not closed in H.

Let A and B be the projection operators respectively on M and N. Then
A and B are closed operators on H, but A + B is only the restriction of the
identity to M + N. A + B could not be closed operator since M + N is not
closed in H.

An example with A bounded in H and B closed, but AB not closed is
given in [10].

In [9] the example of an unbounded selfadjoint operators A = −i d
dx and

B the multiplication operator by |x| on their respective domains D(A) =
H1(R) the Sobolev space {ϕ ∈ L2(R) ; ϕ′ ∈ L2(R)} (ϕ′ is the derivative of
ϕ in the sense of distributions) and D(B) = {ϕ ∈ L2(R) ; |x|ϕ ∈ L2(R)} is
given. Then D(AB) = {ϕ ∈ L2(R) ; |x|ϕ, −i(|x|ϕ)′ ∈ L2(R)} is dense in
L2(R) since it contains C∞

0 (R), but AB is certainly not closed.
In particular, the sum A+B and the product AB of two closed operators

A and B is closed if some standard necessary conditions are imposed on A
and B (see e.g. [8], [11]).

Different definitions of a product of closed operators were given which
have properties not shared by the usual product.

J. Dixmier [4], gave a new definition of a product × such that A × B ∈
C(H) if A,B ∈ C(H). We say that x ∈ D(A × B) and y = (A × B)x if
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there exists two sequences, (xn)n in D(B) and (yn)n in R(A), xn −→ x and
yn −→ y, such that A−1yn − Bxn −→ 0 (for some well choosen A−1yn and
Bxn).

The MM-product proposed by B. Messirdi and M.H. Mortad in [10] is
based upon the bissecting F (A) of an operator A in C(H), F (A) = ASA(I +
SA)−1 if SA =

√
RA and RA = (I+ A∗A)−1; RA,SA, F (A) ∈ B(H). If A

and B are in C(H), this product is defined by A •B = F−1(F (A)F (B)).
The product • is an internal law on C(H) but not commutative. It is,

however, associative but it does not have an identity element. Neverth-
less, this law has a fundamental property about adjoints that is not shared
by the usual product and the product of Dixmier in the unbounded case.
We remark here that the MM-product can be also adapted to the sum of
unbounded operators on H.

Now if we talk about adjoints, the results are not better because the
adjoint of the sum and the product are generally not equal to the sum
and the product of adjoints. The following relations hold for closed linear
operators on H (see e.g. [8],[11]):

1) A∗ + B∗ ⊂ (A + B)∗
2) (A + B)∗ = A∗ + B∗ if A ∈ B(H)
3) B∗A∗ ⊂ (AB)∗ if D(AB) is dense in H
4) (AB)∗ = B∗A∗ if A ∈ B(H)
5) (AB)∗ = B∗A∗ if D(AB) is dense in H and B−1 ∈ B(H)
6) (AB)∗ = B∗ ×A∗ and (A×B)∗ = B∗A∗
7) (A •B)∗ = B∗ •A∗.

It’s known that evolution problems will, in general, lead to not closable
operators with “bad” spectral properties (see for further examples [7] ).
To avoid the problems with closures altogether and to be able to treat for
example linear evolution equations for all linear operators appearing in ap-
plications, some authors have tried to weaken the closedness of operators
([1],[4],[10]). We introduce in this paper the notion of almost closed oper-
ators on H. This class of operators contain C(H) and is invariant under
addition, composition and limits.

Almost closed operators satisfy the usual properties of the adjoint of linear
operators.

We will here assume that the basic space H to be a Hilbert space, this is
done mostly for convenience, the almost closed operators can be considered
also on Banach spaces.

2. Almost closed linear operators

It is interesting to recall in the beginning the well-known procedure of
making a closed linear operator A bounded on H by renorming its domain
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with the graph norm ‖x‖A = (‖x‖2
H +‖Ax‖2

H)1/2 defined by the graph inner
product 〈x, y〉A = 〈x, y〉H + 〈Ax,Ay〉H for all x, y ∈ D(A).

Proposition 1. Let A be an unbounded linear operator on H with domain
D(A) dense in H. Then, A ∈ C(H) if and only if (D(A), 〈., .〉A) is a Hilbert
space.

Proposition 1, implies that the existence of such a procedure permits us
to define a new class of weakly closed linear operators as follows :

Definition 2. A linear operator A with domain D(A) is called almost closed
on a Hilbert space H if there exists an inner product [., .]A on D(A) such
that HA = (D(A), [., .]A) is complete, HA ↪→ H and A is continuous from
HA onto H (ie. A ∈ B(HA,H)).

If A is almost closed operator then D(A) is paracomplete or operator
range and we can observe that A can always be decomposed in a certain
special ways (see [3],[5],[6]). This procedure of factorization suggests to us
to use the notion of almost closable operators. These interesting questions
will be developed in another paper.

Obviously, if HA is a Hilbert space, then A is almost closed if and only
if the graph G(A) of A is closed in HA⊕ H, thus if (xn)n converges to x in
HA and (Axn)n converges to y in H, then x ∈ D(A) and y = Ax.

Before to study this class of operators and to show that the property of
being almost closed is algebraically stable, we remark that an important class
of examples of almost closed operators are sums and products of operators
of C(H).

Let A, B ∈ C(H), such that D(A) ∩ D(B) and D(BA) are not trivial.
Then, A + B and BA are almost closed on H.

Indeed, we choose as HA+B and HBA the Hilbert space HA which is
D(A) equipped with the graph inner product 〈., .〉A . HA ↪→ H. If (xn)n∈N ⊂
D(A) ∩D(B) converges to x in HA and ((A + B)xn)n∈N converges to y in
H, then, 




xn −→ x in H, x ∈ D(A)
Axn −→ Ax in H

Bxn −→ y −Ax in H.

Since B is closed, we deduce that x ∈ D(B) and Bx = y − Ax. Then, it
follows that A + B is closed from HA onto H. The proof is analogue for the
product BA.

The class of almost closed operators contains C(H) (see proposition 1),
but there exists almost closed operators A which are not closable if for
example the graph G(A) of A is dense in H ⊕H.
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We can also construct closable linear operators which are not almost
closed. Consider the identity operator I on the Hilbert space l2 of sequences
f = (fn)n∈N of real or complex numbers such that

∑∞
n=0 |fn|2 < +∞, with

domain l20. l20 is the subset of l2 consisting of all sequences (fn)n∈N such that
fn = 0 for all n ≥ n0.

Clearly, I is closable but not almost closed. Since if we suppose I almost
closed, then there exists a Hilbert space HI ↪→ l2 such that the graph G(I) =
l20 ⊕ l20 is closed in HI ⊕ l2. Thus, G(I) is a complete metric space. However
G(I) is also the union of countably many finite dimensional subspaces and
is thus of first category. But, by Baire’s theorem, complete metric spaces are
of the second category, which is a contradiction.

We establish now some fundamental properties of almost closedness.

Theorem 3. Let A be almost closed operator on H with domain D(A) and
associated Hilbert space HA = (D(A), [., .]A). Then,

1) N(A) is closed linear subspace of HA,
2) If D(A) = H, then A ∈ B(H),
3) If A is invertible, then A−1 is also almost closed on H. In particular,

if R(A) = H and A is invertible then A ∈ B(H).

Proof. 1) Follows directly from Definition 2.
2) The identity operator in H is bijective and bicontinuous by the open

mapping theorem. Consequently, the topologies induced on H by ‖−‖H and
‖−‖HA

are equivalent. Then, A ∈ B(H) since A ∈ B(HA, H).
3) D(A−1) = R(A) is a Hilbert space, denoted by HA−1 , with respect to

the metric generated by the inner product:

[y, z]A−1 = 〈y, z〉H + [A−1y, A−1z]A, for all y, z ∈ R(A).

Furthermore, ∥∥A−1y
∥∥

HA
≤ ‖y‖HA−1

, for all y ∈ R(A)

where ‖y‖HA−1
= ([y, y]A−1)1/2.

Since HA ↪→ H, we obtain that A−1 ∈ B(HA−1 ,H) and thus A−1 is almost
closed on H. ¤
Theorem 4. Let A be almost closed operator on H. Then, A has a densely
defined almost closed extension.

Proof. Suppose D(A) is not dense in H, then its closure D(A) has a com-
plement D̂ in H. Let P the orthogonal projection of H on D(A) along D̂.
P is closed operator and AP is an almost closed extension of A. ¤

We need to verify that sums, products and limits of almost closed opera-
tors are also almost closed operators.
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Theorem 5. If A and B are almost closed operators on H, then A+B and
AB are also almost closed when D(A) ∩D(B) 6= {0} and D(AB) 6= {0}.
Proof. We take HA+B = (D(A) ∩ D(B), [., .]A+B) and HAB = (D(AB),
[., .]AB), where :
{

[x, y]A+B = [x, y]A + [x, y]B + 〈Ax,Ay〉H , for all x, y ∈ D(A) ∩D(B)
[x, y]AB = [x, y]B + [Bx,By]A, for all x, y ∈ D(AB).

Clearly, HA+B and HAB are Hilbert spaces, HA+B ↪→ H and HAB ↪→ H.

i) Let (xn)n∈N a sequence of vectors of HA+B that converges to x in HA+B.
Then, (xn)n∈N converges to x respectively in HA and HB and (Axn)n∈N
converges to Ax in H. The boundedness of B from HB onto H implies that
(Bxn)n∈N converges to Bx in H and then ((A + B)xn)n∈N converges to
(A + B)x in H. Hence, (A + B) ∈ B(HA+B,H).

ii) If (xn)n∈N converges to x in HAB, then (xn)n∈N converges to x in HB

and (Bxn)n∈N converges to Bx in HA. According to the boundedness of
A from HA onto H, we deduce that (ABxn)n∈N converges to ABx in H.
Consequently, AB ∈ B(HAB, H). ¤

Theorem 6. For all ε > 0, let Aε be almost closed operator on H with the
associated Hilbert space Hε = (D(Aε), [., .]Aε). Assume that there exists an
Hilbert space L such that L ↪→ Hε for all ε > 0 and supε>0 ‖Aεx‖H < +∞,
for all x ∈ L.

Then, Ax = lim
ε−→0

Aεx with domain

D(A) =
{

x ∈
⋂

ε>0

D(Aε) ∩ L; lim
ε→0

Aεx exists in H
}

is almost closed operator on H.

Proof. We take HA = (D(A), [., .]A), where

[x, y]A = 〈x, y〉L + lim
ε→0

〈Aεx,Aεy〉H
= 〈x, y〉L + 〈Ax,Ay〉H , for all x, y ∈ D(A).

[., .]A is clearly an inner product on D(A), we show that HA is complete.
Let (xn)n∈N be a Cauchy sequence in HA. Then, (xn)n∈N is Cauchy in L
and thus in Hε for all ε > 0. Thus, (xn)n∈N converges to x in L, H and Hε

for all ε > 0, then x ∈ ⋂
ε>0 D(Aε)∩L. It follows from the almost closedness

of the operators Hε that (Aεxn)n∈N converges to Aεx in H for all ε > 0.
Since (xn)n∈N is Cauchy in HA there exists C > 0 such that

‖xn‖HA
= [xn, xn]1/2

A ≤ C , for all n ∈ N
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and
‖x‖2

HA
= lim

n→+∞ ‖xn‖2
L + lim

ε→0
lim

n→+∞ ‖Aεxn‖2
H ≤ 2C2.

We obtain that x ∈ HA.
Let η > 0. Then, by vertue of the assumption supε>0 ‖Aεx‖H < +∞ on

L and the uniform boundedness principle, there exists i0 ∈ N such that for
all n, m ≥ i0 and ε > 0,

‖xn − xm‖HA
≤ η

2
‖Aεxn −Aεxm‖H ≤ C

η

2
.

Moreover, we have

‖xn − x‖HA
=

[
lim

n→+∞ ‖xn − xm‖2
L + lim

ε→0
lim

n→+∞ ‖Aεxn −Aεxm‖2
H

]1/2

≤ η

2
(1 + C2)1/2, for all n ≥ i0.

Consequently, HA is a Hilbert space, HA ↪→ H and A is bounded from
HA onto H. ¤

We know that almost closedness is stable under an almost closed per-
turbation. We now try to extend this stability to a relatively bounded
perturbation.

Theorem 7. Let A and B be unbounded linear operators on H, and let B
be A-bounded with A-bound smaller than 1. Then A + B is almost closed if
and only if A is almost closed.

Proof. D(A) ⊂ D(B) and for all x ∈ D(A) we have

‖Bx‖H ≤ a ‖Ax‖H + b ‖x‖H

where a, b are nonnegative constants, a < 1.
Hence, we obtain for all x ∈ D(A)

{
‖Ax‖H ≤ 1

1−a ‖(A + B)x‖H + b
1−a ‖x‖H

‖(A + B)x‖H ≤ (1 + a) ‖Ax‖H + b ‖x‖H .

If A is almost closed there exists a Hilbert space HA such that HA ↪→ H
and A ∈ B(HA,H). D(A + B) = D(A), let HA+B = HA. Then, there exists
K > 0 such that for all x ∈ D(A)

‖(A + B)x‖H ≤ K[‖Ax‖H + ‖x‖HA
]

≤ K(1 + ‖A‖B(HA,H)) ‖x‖HA
.

Thus, (A + B) is almost closed on H.
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Conversely, if (A+B) is almost closed on a Hilbert space HA+B , HA+B ↪→
H and (A + B) ∈ B(HA+B ,H), let again HA = HA+B. Then, there exists
K ′ > 0 such that for all x ∈ D(A)

‖Ax‖H ≤ K ′[‖(A + B)x‖H + ‖x‖HA
]

≤ K ′(1 + ‖A + B‖B(HA,H)) ‖x‖HA
.

This shows that A is almost closed on H. ¤
Remark 8. If A ∈ B(H) and B is almost closed operator on H, then
(A + B)∗ = A∗ + B∗ and (AB)∗ = B∗A∗.

This follows directly from the almost closedness of B and the properties
of adjoint in the continuous case.
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Toulouse, 4èmesé rie, 11 (1974), 101–106.
[5] M. R. Embry, Factorization of operators on Banach spaces, Proc. Amer. Math. Soc.,

38 (1973), 587–590.
[6] P. A. Fillmore and J. P. Williams, On operator ranges, Adv. Math. 7 (1971), 254–281.
[7] E. Hille and R. S. Philips, Functional Analysis and Semi-Groups, Amer. Math. Soc.,

Providence, Rhode Island, 1957.
[8] T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer, 1980.
[9] B. Messirdi, M. H. Mortad, A. Azzouz and G. Djellouli, A topological characterization

of the product of two closed operators, Colloq. Math., 112 (2) (2008), 269–278.
[10] B. Messirdi and M. H. Mortad, On different products of closed operators, Banach J.

Math. Anal., 2 (1) (2008), 40–47.
[11] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Functional

Analysis, Vol. 2, Fourier Analysis, Self-adjointness, Academic Press, 1978.
[12] W. Rudin, Functional Analysis, Mc Graw Hill, 1973.
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Département de Mathématiques
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Säıda 20000, Algeria
E-mail: mustaphadjaa@hotmail.com


