
SARAJEVO JOURNAL OF MATHEMATICS
Vol.4 (17) (2008), 147–153

ON A RESULT OF HARDY AND RAMANUJAN

M.A. CHARSOOGHI, Y. AZIZI, M. HASSANI AND L. MOLLAZADEH-BEIDOKHTI

Abstract. In this paper, we introduce some explicit approximations
for the summation

∑
k≤n Ω(k), where Ω(k) is the total number of prime

factors of k.

1. Introduction

Let Ω(k) be the total number of prime factors of k. A result of Hardy
and Ramanujan [4] asserts that

∑

k≤n

Ω(k) = n log log n + M ′n + O
( n

log n

)
,

where

M ′ = γ +
∑

p

(
log

(
1− p−1

)
+ (p− 1)−1

)
≈ 1.0346538818.

More related results can be found in Chapter V of [8]. The aim of this paper
is to find an explicit version of this result. We proceed by

n! =
∏

p≤n

pvp(n!),

standard factorization of n! into primes. It is known that

vp(n!) =
m∑

k=1

⌊ n

pk

⌋
,

where bxc is the largest integer less than or equal to x (see for example
[7]) and m = mn,p = b log n

log p c. First, we introduce some explicit (and neat)
approximations for the summation

Υ(n) =
∑

p≤n

vp(n!).
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Then, considering ∑

k≤n

Ω(k) = Ω(n!) = Υ(n),

we obtain the main result as follows.

Main Theorem. For every n ≥ 3 we have∣∣∣∣
∑

k≤n

Ω(k)− (n− 1) log log(n− 1)
∣∣∣∣ < 23(n− 1).

Note that one can modify above result to the following one:∣∣∣∣
∑

k≤n

Ω(k)− n log log n

∣∣∣∣ < 23n,

which is an explicit version of the result of Hardy and Ramanujan.

2. Proof of the Main Theorem

Consider the inequality
n− p

p− 1
− log n

log p
< vp(n!) ≤ n− 1

p− 1
, (2.1)

(see [5] for a proof). To get to the main theorem, we need to approximate
summations of the form

∑
p≤n f(p) with f(p) = 1

log p and f(p) = 1
p−1 (and

more generally, for a given function f ∈ C1(R+)). To do this, we use the
reduction of a Riemann-Stieljes integral to a finite sum [2], which allows us
to get some ways to evaluate the summation

∑
p≤n f(p); two of them are:

• Using ϑ(x) =
∑
p≤x

log p, which ends to the approximation

∑

p≤n

f(p) =
∫ n

2−

f(x)
log x

dϑ(x) =
f(n)ϑ(n)

log n
+

∫ n

2
ϑ(x)

d

dx

(−f(x)
log x

)
dx,

and it is known that for x > 1, we have 200 log2 x|ϑ(x)− x| < 793x,
and log4 x|ϑ(x)− x| < 1717433x (see [3] for more details).

• Using π(x) = #P ∩ [2, x], which leads to the approximation
∑

p≤n

f(p) = f(x)π(x) +
∫ n

2
π(x)

d

dx

(− f(x)
)
dx,

and we have some explicit bounds for π(x) (again see [3] for lots of
them). In this paper we will use the following neat one:

π(x) ≤ x

log x

(
1 +

1.2762
log x

)
(x > 1). (2.2)
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Both of these methods are applicable for the summation
∑

p≤n
1

p−1 , while
first method on the summation

∑
p≤n

1
log p ends to some integrals hard to

approximate. Here, based on some known approximations for both of these
summations, which are obtained using the second method, we give some
neat bounds for them.

Proposition 2.1. For every n ≥ 3, we have

log log(n− 1)− 14 <
∑

p≤n

1
p− 1

< log log(n− 1) + 23.

Proof. It is known [6] that the inequality

log log n + a +
n

(n− 1) log n
− 1717433n

(n− 1) log5 n
<

∑

p≤n

1
p− 1

,

holds for n ≥ 2 with a ≈ −11.86870152. But, for n ≥ 3564183 we have

log log(n− 1)− 14 < log log n + a +
n

(n− 1) log n
− 1717433n

(n− 1) log5 n
.

Thus, for n ≥ 3564183 we obtain

log log(n− 1)− 14 <
∑

p≤n

1
p− 1

,

which is also true for 2 ≤ n ≤ 3564182, since for these values of n the left
hand side of the inequality is positive while the right hand side is negative.
Also, we have [6] the inequality

∑

p≤n

1
p− 1

< log log(n− 1) + b +
n

(n− 1) log n
+

1717433n

(n− 1) log5 n
,

for n ≥ 2 with b ≈ 21.18095291. On the other hand, for n ≥ 7126157 we
have

b +
n

(n− 1) log n
+

1717433n
(n− 1) log5 n

< 23.

So, for n ≥ 7126157 we obtain
∑

p≤n

1
p− 1

< log log(n− 1) + 23.

To verify this inequality for 3 ≤ n ≤ 7126156, we note that because for
p1 ≤ n < p2 where p1 and p2 are two successive primes, the left hand side is
constant, while the right hand side is increasing, therefore we only need to
check this inequality for n equal to prime numbers. The appendix includes
the Matlab program of doing this. The proof is completed. ¤
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Proposition 2.2. For every n ≥ 2, we have∣∣∣∣
∑

p≤n

1
log p

−
{ n

log2 n
+

2n

log3 n
+

6n

log4 n

}∣∣∣∣ < 271382
n

log5 n
.

Proof. In a similar process [6], we have
n

log2 n
+

2n

log3 n
+

6n

log4 n
+

1607n
100 log5 n

− 1717433n
log6 n

+a <
∑

p≤n

1
log p

(n ≥ 564),

where a ≈ −16.42613005. Also, we have
∑

p≤n

1
log p

<
n

log2 n
+

2n

log3 n
+

6n

log4 n
+

54281n

800 log5 n
+

1717433n
log6 n

+ b (n ≥ 2),

where b ≈ 30.52238614. Computation gives
−271382n

log5 n
<

1607n
100 log5 n

− 1717433n

log6 n
+ a (n ≥ 564).

Also
54281n

800 log5 n
+

1717433n
log6 n

+ b <
271382n
log5 n

(n ≥ 569).

Therefore, we obtain the following inequality:∣∣∣∣
∑

p≤n

1
log p

−
{ n

log2 n
+

2n

log3 n
+

6n

log4 n

}∣∣∣∣ < 271382
n

log5 n
(n ≥ 569).

A computer program verifies the above inequality for 2 ≤ n ≤ 568, too. The
proof is complete. ¤
Proof of the Main Theorem. Considering the right hand side of (2.1) and
the Proposition 2.1, for every n ≥ 3 we have

Υ(n) ≤ (n− 1)
∑

p≤n

1
p− 1

< (n− 1) log log(n− 1) + 23(n− 1).

On the other hand, considering the left hand side of (2.1) and the Proposition
2.1, for every n ≥ 3 we have

(n− 1) log log(n− 1)− 14(n− 1)−R(n) < (n− 1)
∑

p≤n

1
p− 1

− π(n)− log n
∑

p≤n

1
log p

< Υ(n),

where
R(n) = π(n) + log n

∑

p≤n

1
log p

,
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and considering (2.2) and the Proposition 2.2, we have

R(n) ≤ n

log n

(
1 +

1.2762
log n

)
+

n

log n
+

2n

log2 n
+

6n

log3 n
+

271382n
log4 n

=
2n

log n
+

3.2762n

log2 n
+

6n

log3 n
+

271382n
log4 n

.

But, for n ≥ 563206 the right hand side of this relation is strictly less than
9(n− 1). So, we obtain

(n− 1) log log(n− 1)− 23(n− 1) < Υ(n),

for n ≥ 563206, which holds true for 3 ≤ n ≤ 563205 too, because for these
values of n, the left hand side is positive while the right hand side is negative.
This completes the proof. ¤

3. Remarks for further studies

3.1. Improving the main result. Of course the factor 23 in the main
theorem is not optimal, and one can improve it. But, it is the best one with
our methods and computational tools.

3.2. Explicit approximation of the function Ω(n). Concerning the
main theorem, considering n! = Γ(n + 1), one can reform the above result
as

|Ω(Γ(n))− (n− 2) log log(n− 2)| < 23(n− 2),
then replacing n by Γ−1(n) (inverse of Gamma function), it yields to∣∣Ω(n)− (Γ−1(n)− 2) log log(Γ−1(n)− 2)

∣∣ < 23
(
Γ−1(n)− 2

)
.

This suggests an explicit approximation for the function Ω(n) for some spe-
cial values of n in terms of the inverse of Gamma function, then by approx-
imating Γ−1, one can make it in terms of elementary functions.

3.3. An extension of the function vp(n!). The function vp(n!), defined
by

n! =
∏

p≤n

pvp(n!),

can be generalized for every positive integer m ≤ n instead of prime p ≤ n.
Fix n and consider canonical decomposition

m =
∏

p≤n

pvp(m).

Same for vp(n!), we define vm(n!) in which mvm(n!)‖n!. So,

mvm(n!) =
∏

p≤n

pvp(m)vm(n!)
∥∥∥

∏

p≤n

pvp(n!).
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Therefore, we must have vp(m)vm(n!) ≤ vp(n!) for every prime p ≤ n; that
is

vm(n!) ≤ min
p≤n

vp(m)6=0

{vp(n!)
vp(m)

}
.

This leads to the following definition:

Definition. For positive integers m,n with m ≤ n, we set

vm(n!) =
⌊

min
p≤n

vp(m) 6=0

{vp(n!)
vp(m)

}⌋
.

Note that in the above definition, vp(N) for a positive integer N and
prime p, is a well defined notation for the greatest power of p dividing N .
Related to this generalization, the following question comes to mind:

Question. Find the function F(n) such that
n∑

m=1

vm(n!) = F(n)
∑

p≤n

vp(n!).
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Appendix. Matlab program for verifying the inequality∑
p≤n

1
p−1 < log log(n− 1) + 23 for prime values of n

n=8000000;

r=primes(n);

s(1)=0;

for i=2: length(r)

s(i)=s(i-1)+1/(r(i)-1);

end

plot(r,s,’.’,r,log(log(r)))+23,’.’)

Final step of program plots both sides of the inequality for comparison.
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