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SOME REMARKS ON PRIMAL SUBMODULES

S. EBRAHIMI ATANI AND A. YOUSEFIAN DARANI

Abstract. In this paper, we study the primal submodules of a mod-
ule over a commutative ring with non-zero identity. We generalize the
primal decomposition of ideals (see [2]) to that of submodules. Let R
be a commutative ring, M an R-module and N a submodule of M . We
establish a decomposition of N as an intersection of primal submodules
of M . We show that if R is a Prüfer domain of finite character, then N
has a primal decomposition. Also we prove that the representation of
submodules as reduced intersections of primal submodules is unique.

1. Introduction

In this paper, R will denote a commutative ring with nonzero identity and
all modules are unitary. We wish to study properties of submodules of a
module over a certain Prüfer domain, in particular, their decomposition into
intersections of primal submodules. So far, the literature on this subject is
sparse and mostly restricted to the question of when or which submodules
admit decompositions as intersections of finitely many primary submodules.
We know that every submodule of a Noetherian module can be expressed as
a finite intersection of irreducible submodules. Furthermore, in a Noether-
ian module, every irreducible submodule is primary. Hence if N is a proper
submodule of the Noetherian module M, then N has a decomposition as
an intersection of a finite number of primary submodules. This happens
rarely in non-noetherian modules, because in general, modules irreducible
submodules fail to be primary. Therefore we look for another decomposition
for submodules. We investigate decompositions of submodules of a module
over a Prüfer domain into intersections of primal submodules. As we in-
tend to restrict our considerations to finite intersections, we assume to start
with that our domain are of finite character; i.e. every non-zero element is
contained but in a finite number of maximal ideals.
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The concept of primal ideals in a commutative ring was introduced by L.
Fuchs in [1]. Let R be a commutative ring and let I be an ideal of R. An
element a ∈ R is called prime to I if ra ∈ I (r ∈ R) implies r ∈ I. Denote
by S(I) the set of all elements of R that are not prime to I. A proper ideal
I of R is said to be primal if S(I) forms an ideal of R; this ideal is always a
prime ideal, called the adjoint ideal P of I. In this case we also say that I is
a P -primal ideal [1]. Fuchs also has given a theory of the representation of
an ideal as an intersection of primal ideals. Moreover, the theory of primal
decomposition of ideals is studied extensively in [2].

Let us introduce some definitions that we will use. An R-submodule N
of M is said to be irreducible if N is not the intersection of two submodules
of M that properly contain it. Let N be a submodule of the R-module M ,
a ∈ R and fa : M/N → M/N the canonical homomorphism produced by
multiplication by a. We say that N is a primary submodule of M if N
is proper and for every a ∈ R, fa is either injective or nilpotent, so N is
primary if and only if whenever am ∈ N , for some a ∈ R, m ∈ M , then
either m ∈ N or anM ⊆ N for some positive integer n. We say that r ∈ R
is a zero-divisor for the R-module M if rm = 0 for some 0 6= m ∈ M ,
and otherwise that r is M -regular. The set of zero-divisors of M is written
ZdvR(M). By an arithmetical ring is understood a commutative ring R
with identity for which the ideals form a distributive lattice. Also, a Prüfer
domain is an arithmetical integral domain.

We shortly summarize the content of the paper. In Section 2 we give
some preliminary results about primal submodules. For example, we show
that if R is a commutative ring, P a prime ideal of R and M an R-module,
then a submodule N of M is P -primal if and only if (N :R M) ⊆ P and
ZdvR/(N :RM)(M/N) = P/(N :R M) (Theorem 2.3). Also it is shown in
Proposition 2.11 that over a valuation ring, every submodule of a module is
primal. For every prime ideal P of R, let SP = R\P . Then, as a result, we
will show that over an arithmetical ring R, the SP -component NSP

of N is
primal for every maximal ideal P of R containing (N :R M) (see Theorem
2.13). In section 3 we give some results about the intersection of primal
submodules. It is shown that over a Prüfer domain of finite character,
every submodule has a decomposition as an intersection of a finite number
of primal submodules (Theorem 3.2). In Theorem 3.6 it is shown that if
N = N1 ∩ N2 ∩ · · · ∩ Nk is a reduced representation of N by Pi-primal
submodules Ni, then N is a primal submodule of M if and only if one Pj

divides all the others, in which case Pj is the adjoint prime ideal of N . Also
in Theorem 3.9 we characterize the maximal not-prime-to-N ideals via the
adjoint prime ideals in a reduced representation of N by primal submodules.
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In Theorem 3.11 we prove that the short primal reduced representation of
a submodule of an R-module is unique.

2. Basic Results

Let R be a commutative ring, M an R-module and N a submodule of M .
An element a ∈ R is called prime to N if am ∈ N (m ∈ M) implies that
m ∈ N . Denote by S(N) the set of all elements of R that are not prime
to N . A proper submodule N of M is said to be primal if S(N) forms an
ideal of R; this ideal is called the adjoint ideal P of N . In this case we also
say that N is a P -primal ideal. Note that if N is a primal submodule of M ,
then the ideal P = S(N) is a prime ideal, for if ab ∈ P with a /∈ P , there
exists m ∈ M\N with abm ∈ N ; so bm ∈ N implies that b ∈ P .

Lemma 2.1. Let P be a prime ideal of a commutative ring R, M an R-
module and N a submodule of M. Then N is a P -primal submodule of M if
and only if for every r ∈ R\P , the canonical homomorphism fr : M/N →
M/N (sending m + N to rm + N) is injective and, for every r ∈ P , fr is
not injective.

Proof. First assume that N is P -primal. Let r ∈ R\P and let fr(m+N) = 0
for some m + N ∈ M/N . Then, rm ∈ N and r is prime to N implies that
m ∈ N ; hence fr is injective. Now assume that r ∈ P . Then there exists
m ∈ M\N such that rm ∈ N. Thus m + N 6= 0 with fr(m + N) = 0 implies
that fr is not injective.

Conversely, if the desired conditions hold, it is easy to check that P is
exactly the set of elements of R that are not prime to N. Thus N is a
P -primal submodule of M . ¤
Lemma 2.2. Let N be a submodule of an R-module M . Then:

(1) If N is a proper submodule of M , then (N :R M) ⊆ S(N).
(2) If N is a P -primal submodule of M , then (N :R M) ⊆ P .

Proof. (1) Let r ∈ (N :R M). Then N proper gives there exists m ∈ M\N
such that rm ∈ N , so r is not prime to N ; hence r ∈ S(N).

(2) This follows from (1) because every primal submodule is proper. ¤
Theorem 2.3. Let R be a commutative ring, P a prime ideal of R, and M
an R-module. A submodule N of M is P -primal if and only if (N :R M) ⊆ P
and ZdvR/(N :RM)(M/N) = P/(N :R M).

Proof. First assume that N is a P -primal submodule of M . Then, by Lemma
2.2, (N :R M) ⊆ P . Set I = (N :R M). Assume that r + I is an element of
ZdvR/I(M/N). Then rm + N = 0 for some non-zero m + N ∈ M/N . This
implies that r is not prime to N , so r ∈ P ; hence r + I ∈ P/I. Therefore
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ZdvR/I(M/N) ⊆ P/I. Now pick an element a + I in P/I. As a ∈ P , it
follows that am ∈ N for some m ∈ M\N . Thus a+ I ∈ ZdvR/I(M/N), and
hence P/I ⊆ ZdvR/I(M/N) as required.

Conversely, assume that I ⊆ P and ZdvR/I(M/N) = P/I. For every
a ∈ P , we have a+ I ∈ ZdvR/I(M/N). Thus there exists a nonzero element
m+N of M/N such that (a+I)(m+N) = 0. Thus am ∈ N with m ∈ M\N
shows that a is not prime to N . Now assume that r ∈ R is not prime to N .
Then, rm ∈ N for some m ∈ M\N . Therefore (r + I)(m + N) = 0 with
m + N 6= 0. That is r + I ∈ ZdvR/I(M/N) = P/I. Hence r ∈ P . We have
already shown that P consists exactly of those elements of R that are not
prime to N . Hence N is P -primal. ¤

Let M be an R-module and N a submodule of M . Set I = (N :R M)
and let U(N) be the set of those elements r of R such that r + I is a regular
element on the R/I-module M/N . It is easy to see that N is a P -primal
submodule of M if and only if P := R\U(N) is an ideal of R. Also we have
the following result:

Corollary 2.4. Let N be a primal submodule of the R-module M . Then
the adjoint ideal P of N is the unique ideal maximal with respect to the
properties (N :R M) ⊆ P and U(N) ∩ P = ∅.

Let R be a commutative ring, S a multiplicatively closed subset of R
and M an R-module. Consider the S−1R-module S−1M ; the module of
fractions of M with respect to S. A natural question is: “What is the
relation between the primal submodules of M and primal submodules of
S−1M?” In the following theorems we answer this question.

Lemma 2.5. Let S be a multiplicatively closed subset of a ring R, M an R-
module and N a P -primal submodule of M with P ∩S = ∅. If m/s ∈ S−1N ,
then m ∈ N .

Proof. Suppose that m/s ∈ S−1N but m /∈ N . There exists m′ ∈ N and
t ∈ S such that m/s = m′/t. So utm = usm′ ∈ N for some u ∈ S. It follows
that ut is not prime to N ; hence ut ∈ P ∩ S which is a contradiction. ¤

Let S be a multiplicatively closed subset of a ring R, M an R-module
and N a submodule of M . We know that if M is finitely generated, then
S−1(N :R M) = (S−1N :S−1R S−1M) (See [4, Lemma 9.12]). Also we know
that if M is not finitely generated, this equality is not necessarily true. But
for primal submodules we have the following theorem:

Theorem 2.6. Let S be a multiplicatively closed subset of R, M an R-
module and N a P -primal submodule of M with P ∩ S = ∅. Then

S−1(N :R M) = (S−1N :S−1R S−1M).
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Proof. Since the inclusion S−1(N :R M) ⊆ (S−1N :S−1R S−1M) is clear, we
will prove the reverse inclusion. Assume that r/s ∈ (S−1N :S−1R S−1M)
and let m ∈ M . As (rm)/s = (r/s).(m/1) ∈ S−1N we get rm ∈ N
by Lemma 2.5. So r ∈ (N :R M) and hence r/s ∈ S−1(N :R M), as
required. ¤

Proposition 2.7. Let S be a multiplicatively closed subset of R, M an R-
module and N a P -primal submodule of M with P ∩ S = ∅. Then S−1N is
a S−1P -primal submodule of S−1M .

Proof. Clearly S−1P is a prime ideal of S−1R. It is enough to show that
S−1P is exactly the set of elements of S−1R which are not prime to S−1N .
Let r/s ∈ S−1P . Then r is not prime to N , so there exists m ∈ M\N with
rm ∈ N . Since P ∩ S = ∅, we get sm /∈ N , hence (sm)/1 /∈ S−1N by
Lemma 2.5. As (r/s)(sm/1) ∈ S−1N , we obtain r/s is not prime to S−1N .
Now assume that r/s is not prime to S−1N . Then there exists m/t /∈ S−1N
with(r/s)(m/t) ∈ S−1N , hence rm ∈ N by Lemma 2.5. Since m /∈ N , it
follows that r is not prime to N . Thus r ∈ P and hence r/s ∈ S−1P as
required. ¤

Let R be a commutative ring, M an R-module and S a multiplicatively
closed set in R. If K is a submodule of S−1M , define K ∩ M = v−1(K)
where v : M → S−1M is the natural homomorphism. Clearly, K ∩M is a
submodule of M.

Proposition 2.8. Let S be a multiplicatively closed subset of a ring R,
M an R-module and B a Q-primal submodule of the S−1R-module S−1M .
Then the following hold:

(1) B ∩M is a primal submodule of M with adjoint prime ideal Q ∩R.
(2) S−1(B ∩M) = B.

Proof. (1) Clearly, Q∩R is a prime ideal of R. It only remains to show that
Q∩R is exactly the set of elements non-prime to B ∩M . If a /∈ Q∩R, then
a/1 /∈ Q, so (B :S−1M a/1) = B. It follows that (B ∩M :M a) = B ∩M ;
hence such an a is prime to B ∩M . If a ∈ Q ∩ R, then a/1 ∈ P , so there
exists m/s ∈ S−1M such that (am)/s ∈ B, but m/s /∈ B. So am ∈ B ∩M
implies that a is not prime to B ∩M .

(2) Clearly B ⊆ S−1(B ∩ M). For the reverse inclusion, assume that
m/s ∈ S−1(B ∩M). Then, by Lemma 2.5, m ∈ B ∩M ; hence m/1 ∈ B.
Now (s/1).(m/s) = m/1 ∈ B and s/1 /∈ Q implies that m/s ∈ B, as
needed. ¤

Proposition 2.9. Let S be a multiplicatively closed subset of a ring R, M
an R-module and N a P -primal submodule of M . Then the following hold:
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(1) If P ∩ S = ∅, then N = (S−1N) ∩M .
(2) If P ∩ S 6= ∅, then N $ (S−1N) ∩M .

Proof. (1) Since N ⊆ (S−1N)∩M is trivial, we will prove the reverse inclu-
sion. Pick m ∈ (S−1N)∩M . As m/1 ∈ S−1N , there exist n ∈ N and s ∈ S
such that m/1 = n/s, so tsm = tn ∈ N for some t ∈ S; hence m ∈ N since
ts /∈ P and N is P -primal.

(2) Since P ∩ S 6= ∅, there is an element t ∈ P ∩ S, so t is not prime to
N ; hence (N :M t) % N . Suppose that y ∈ (N :M t) − N . Then we have
y/1 = (ty)/t ∈ S−1N . Thus y ∈ (S−1N) ∩M , as required. ¤
Theorem 2.10. Let P be a prime ideal of a ring R, S a multiplicatively
closed subset of R with P ∩ S = ∅, and let M be an R-module. Then there
exists a one-to-one correspondence between the P -primal submodules of M
and the S−1P -primal submodules of of S−1M .

Proof. This follows from Propositions 2.7, 2.8 and 2.9. ¤
It is proved in [3] that the ring R is arithmetical if and only if RP is a

valuation ring for any maximal ideal P of R. By using this fact we have the
following results.

Proposition 2.11. Let R be a valuation ring, and let M be an R-module.
Then every proper submodule of M is primal.

Proof. Let N be a proper submodule of M . Assume that a, b ∈ R are not
prime to N . We can assume that b = ra for some r ∈ R. There exists
m ∈ M\N such that am ∈ N . Then (a− b)m ∈ N gives a− b is not prime
to N ; hence N is a primal submodule of M . ¤
Corollary 2.12. Let R be an arithmetical ring, P a maximal ideal of R
and M an R-module. Then every proper submodule of MP is primal.

Let R be a commutative ring, M an R-module and S a multiplicatively
closed subset of R. For every submodule N of M , let

NS = {m ∈ M : sm ∈ N for some s ∈ S}.
It is clear that NS is a submodule of M containing N . Also if (N :R M)∩S 6=
∅, then NS = M . NS is called the S-component of N . Let P be a prime ideal
of a commutative ring R and set SP = R\P . Then m ∈ NSP

if and only if
(N :R m) * P . Furthermore NSP

= NP ∩M where NP is the localization
of N at P .

Theorem 2.13. Let R be an arithmetical ring, and let M be an R-module.
Then, for every non-zero submodule N of M and every maximal ideal P
containing (N :R M), NSP

is a primal submodule of M .
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Proof. Clearly, NP is a proper submodule of MP . As RP is a valuation ring,
NP is a primal submodule of MP by Proposition 2.11. Then Proposition 2.8
gives NSP

= NP ∩M is a primal submodule of M . ¤

3. Primal decomposition of submodules of a module

In this section we investigate the primal decomposition of submodules of
a module. Although Lemma 3.1 is known, we do not know an appropriate
reference, and so we include a proof.

Lemma 3.1. Let R be a commutative ring, M an R-module and N an
R-submodule of M . Then N =

⋂
P∈Max(R) NSP

.

Proof. Clearly N ⊆ ⋂
P∈Max(R) NSP

. For the other containment, assume
that m ∈ ⋂

P∈Max(R) NSP
. Set I = (N :R m). Then I is an ideal of R. For

every P ∈ Max(R), as m ∈ NSP
, there exists an element s ∈ S\P such that

sm ∈ N . This implies that I * P for every P ∈ Max(R), so I = R; hence
m ∈ N , and so we have the equality. ¤
Theorem 3.2. Let R be a Prüfer domain of finite character, M an R-
module and N a proper submodule of M . Then N is the intersection of a
finite number of primal submodules.

Proof. We know that N =
⋂

P∈Max(R) NSP
. As R is a domain of finite char-

acter, there are only a finite number of maximal ideals, say P1, P2, . . . , Pk,
containing (N :R M). Moreover if P is a maximal ideal of R not containing
(N :R M), NSP

= M , and if P contains (N :R M), then NSP
is a primal

submodule of M by Theorem 2.13. Therefore N = NSP1
∩NSP2

∩· · ·∩NSPk
,

as required. ¤
Definition 3.3. Let M be an R-module and N a submodule of M . An ideal
I of R is said to be prime to N if (N :M I) = N . Otherwise I is not prime
to N . In the other word I is not prime to N if every element of I is not
prime to N .

Definition 3.4. Let M be an R-module and N a submodule of M . A
representation

N = N1 ∩N2 ∩ · · · ∩Nk (1)
will be called irredundant if no Ni contains the intersection of the remaining
ones, and it is called reduced if no component may be replaced by one of its
proper divisors.

Lemma 3.5. Assume that (1) is a reduced representation of N by Pi-primal
submodules Ni. Then an ideal I of R is not prime to N if and only if I ⊆ Pj

for some 1 ≤ j ≤ k.
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Proof. First assume that I is not prime to N . For every a ∈ I, there exists
m ∈ M\N with am ∈ N ⊆ Ni for every 1 ≤ i ≤ k. As m /∈ N , there exists
1 ≤ j ≤ k with m ∈ M\Nj . Therefore a is not prime to Nj and a ∈ Pj since
Nj is Pj-primal. Therefore I ⊆ ∪k

i=1Pi and hence I ⊆ Pi for some 1 ≤ i ≤ k
by the Prime Avoidance Theorem.

Conversely, assume that I ⊆ Pi for some i. For every a ∈ I ⊆ Pi,
there exists m ∈ M\Ni with am ∈ Ni. Since Ni $ Ni + Rm and (1) is
reduced, there exists m′ ∈ N1 ∩N2 ∩ · · ·Ni−1 ∩ (Ni + Rm)∩Ni+1 ∩ · · · ∩Nk

with m /∈ N . So m′ = ni + rm for some ni ∈ Ni and r ∈ R. In this case
am′ = ani+arm ∈ Ni and so am′ ∈ N1∩N2∩· · ·∩Nk = N with m′ ∈ M\N .
This implies that a is not prime to N ; hence I is not prime to N . ¤

The intersection of primal submodules need not be necessarily primal;
however, we have the following result:

Theorem 3.6. Assume that (1) is a reduced representation of N by Pi-
primal submodules Ni. Then N is a primal submodule of M if and only if
one Pj divides all the others, in which case Pj is the adjoint prime ideal of
N .

Proof. First assume that there is 1 ≤ j ≤ k such that Pi ⊆ Pj for all
1 ≤ i ≤ k. Then Pj = ∪k

i=1Pi. If a ∈ R is not prime to N , then a ∈ Pj by
lemma 3.5. On the other hand, Pj is not prime to N by lemma 3.5. So that
S(N) = Pj , that is N is Pj-primal.

Conversely, assume that N is a primal submodule of M with adjoint prime
ideal P . Since P is not prime to N , P ⊆ Pj for some 1 ≤ j ≤ k by Lemma
3.5. On the other hand every Pi is not prime to N by Lemma 3.5. As N is
P -primal, Pi ⊆ P for every 1 ≤ i ≤ k. Thus Pj = P ⊇ Pi; hence Pj divides
the other P ′

is. ¤
Definition 3.7. Let M be an R-module and N a submodule of M . The
maximal not-prime-to-N ideal is an ideal which is maximal in the - ”inclu-
sion ordered” set of prime ideal divisors of (N :R M) which are not prime
to N .

Remark 3.8. Let N be a submodule of an R-module M . Then, in general,
there may be no the maximal not-prime-to-N ideal, since the union of an
ascending chain of prime ideals need not be again prime.

Theorem 3.9. Assume that (1) is a reduced representation of N as an in-
tersection of Pi-primal submodules Ni of M . Then the maximal not prime to
N ideals are the maximal not-prime-to-N ideals and are in fact the maximal
elements of the ”inclusion ordered” set {P1, P2, · · · , Pk}.
Proof. Let P be a maximal not prime to N ideal. There exists 1 ≤ i ≤ k
such that P ⊆ Pi by Lemma 3.5. Furthermore, by Lemma 3.5, Pi is not
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prime to N , so P = Pi by the maximality of P ; hence P is a prime ideal, as
needed.

Conversely, assume that Pj is a maximal member of the set {P1, P2,. . . ,Pk}
with respect to inclusion. In this case Pj is a maximal prime of N , other-
wise, there exists an ideal Q of R that is not prime to N and Pj ⊂ Q. As
Q is not prime to N , by Lemma 3.5, we have Q ⊂ Pi for some 1 ≤ i ≤ k.
Hence Pj ⊂ Pi which contradicts the maximality of Pj . ¤

Let N be a submodule of an R-module M . By a short primal represen-
tation N = N1 ∩ · · · ∩Nt of N we shall mean one where

(1) No component can be omitted, and
(2) Where the adjoint prime ideals P1, . . . , Pn of the primal components

Ni are pairwise incomparable.

Theorem 3.10. Let (1) be a reduced representation of N as an intersection
of Pi- primal submodules Ni of M . Then N has a short primal representa-
tion whose adjoint ideals are the maximal not-prime-to-N ideals.

Proof. We can assume that the representation (1) is irredundant since oth-
erwise we can eliminate some Ni’s and the remaining intersection is again re-
duced. Without loss of generality we may assume that P1, P2, . . . , Pr(r ≤ k)
are the maximal elements of the set {P1, P2, . . . , Pk}. Let

N ′
1 = ∩{Ni : Pi ⊆ P1}

and N ′
j = ∩{Ni : Pi ⊆ Pj and Pi * Pt if t < j}. In this case N = N ′

1 ∩
N ′

2 ∩ · · · ∩N ′
r. Also, for every 1 ≤ j ≤ r, N ′

j is Pj-primal by Theorem 3.6.
For every j 6= k, N ′

j ∩N ′
k is a reduced intersection of primal submodules of

M whose adjoint ideals are incomparable. Therefore N ′
j ∩N ′

k is not primal
by Theorem 3.6. Thus the representation N = N ′

1 ∩N ′
2 ∩ · · · ∩N ′

r is short.
Moreover, since for every 1 ≤ i ≤ r, Pi is a maximal member of the set
{P1, P2, . . . , Pk}, we must have P1, . . . , Pr are the maximal not-prime-to-N
ideals. ¤
Theorem 3.11. Let N be a submodule of an R-module M . Then, for any
short primal reduced representation of N , the adjoint ideals and the number
of primal components are uniquely determined.

Proof. Let N = N1 ∩N2 ∩ · · · ∩Nk with adjoint prime ideals P1, P2, . . . , Pk

and N = N ′
1 ∩ N ′

2 ∩ · · · ∩ N ′
t with adjoint prime ideals P ′

1, P
′
2, . . . , P

′
t be

two short primal reduced representation of N . Since both representations
are short, neither Pi properly contains the another Pj and nor P ′

i properly
contains another P ′

j . Thus by Theorem 3.9, both sets {P1, P2, . . . , Pk} and
{P ′

1, P
′
2, . . . , P

′
k} are the set of maximal not-prime-to-N ideals. Hence k = t

and {P1, P2, . . . , Pk} = {P ′
1, P

′
2, . . . , P

′
k} ¤
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Proposition 3.12. Let N be a submodule of an R-module M which has a
primal decomposition N = N1 ∩ N2 ∩ · · · ∩ Nk where Ni is Pi-primal for
every 1 ≤ i ≤ k. Let S be a multiplicatively closed subset of R. Assume that
Pi∩S = ∅ for all i = 1, . . . , h, and that (Ni :R M)∩S 6= ∅ for the remaining
i. Then NS = N1 ∩N2 ∩ · · · ∩Nh.

Proof. Let x ∈ N1 ∩ N2 ∩ · · · ∩ Nh. Then, for every h + 1 ≤ i ≤ k, there
exists si ∈ (Ni :R M) ∩ S. As ((sh+1 . . . sk)M ⊆ Nh+1 ∩ · · · ∩ Nk, we have
((sh+1 . . . sk)x ∈ N1∩· · ·∩Nk = N ⊆ NS . It follows that N1∩N2∩· · ·∩Nh ⊆
NS . Now let x ∈ NS . There exists s ∈ S with sx ∈ N = N1 ∩N2 ∩ · · · ∩Nk.
For every 1 ≤ j ≤ h, s /∈ Pj , so s is prime to Nj . Therefore from sx ∈ Nj

we have x ∈ Nj . Consequently, NS ⊆ N1 ∩ N2 ∩ · · · ∩ Nh. Thus NS =
N1 ∩N2 ∩ · · · ∩Nh. ¤
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