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AN UPPER BOUND ESTIMATE FOR H. ALZER’S
INTEGRAL INEQUALITY

CHU YUMING, ZHANG XIAOMING AND TANG XIAOMIN

Abstract. We get an upper bound estimate for H. Alzer’s integral in-
equality. As applications, we obtain some inequalities for the logarithmic
mean.

1. Introduction

For b > a > 0, the logarithmic mean L(a, b) of a and b is defined as

L(a, b) =
b− a

log b− log a
. (1.1)

The logarithmic mean has numerous applications in physics. Many prop-
erties and inequalities are obtained by many mathematicians (see [1-8] and
the references therein).

In 1989, H. Alzer [9] proved the following result.

Theorem A. Suppose b > a > 0, and f ∈ C[a, b] is a strictly increasing
function. If 1

f−1 is strictly convex, then

∫ b

a
f(x) dx > (b− a)f(L(a, b)). (1.2)

The main purpose of this paper is to get the upper bound estimate for∫ b
a f(x) dx. Our main result is the following Theorem 1.
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Theorem 1. Suppose b > a > 0, and f ∈ C[a, b] is a strictly increasing
function. If 1

f−1 is strictly convex, then
∫ b

a
f(x) dx <

b(L(a, b)− a)f(b) + a(b− L(a, b))f(a)
L(a, b)

. (1.3)

As applications for Theorem A and Theorem 1, we shall give some in-
equalities for the logarithmic mean in Section 3.

2. Proof of Theorem 1

Proof of Theorem 1. Put c = f(a) and d = f(b). Then f−1 : [c, d] → [a, b]
is strictly increasing. For any x ∈ [0, 1], the strict convexity of 1

f−1 implies

1
f−1[xf(a) + (1− x)f(b)]

=
1

f−1[xc + (1− x)d]

<
x

f−1(c)
+

1− x

f−1(d)
=

x

a
+

1− x

b
. (2.1)

Since f is strictly increasing, (2.1) leads to

xf(a) + (1− x)f(b) > f

(
ab

xb + (1− x)a

)
. (2.2)

Next, for any t ∈ [a, b], taking x = a(b−t)
t(b−a) , then 0 ≤ x ≤ 1 and t = ab

xb+(1−x)a .
The inequality (2.2) and the transformation of the variable of integration
yield

∫ b

a
f(t) dt = ab(b− a)

∫ 1

0

f
(

ab
xb+(1−x)a

)

[xb + (1− x)a]2
dx

< ab(b− a)
∫ 1

0

f(a)x + f(b)(1− x)
[(b− a)x + a]2

dx

=
b(L(a, b)− a)f(b) + a(b− L(a, b))f(a)

L(a, b)
.

¤

3. Applications

In this section, we shall prove a number of inequalities for logarithmic
mean underlying H. Alzer’s inequality.

Theorem 2. If b > a > 0 and α > 0, then

L(a, b) >
α + 1

α

ab(bα − aα)
bα+1 − aα+1

(3.1)
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and

L(a, b) <

[
bα+1 − aα+1

(α + 1)(b− a)

] 1
α

. (3.2)

Proof. Taking f(x) = xα, then f : [a, b] → [aα, bα] is strictly increasing, and
g = 1

f−1 : [aα, bα] → [1b ,
1
a ] satisfies

g′′(x) =
1
α

(
1
α

+ 1)x−
1
α
−2 > 0 (3.3)

for x ∈ [aα, bα].
Equation (3.3) implies that 1

f−1 is strictly convex on [aα, bα]. Thus The-
orem A and Theorem 1 imply

(b− a)Lα(a, b) <

∫ b

a
xα dx <

bα+1(L(a, b)− a) + aα+1(b− L(a, b))
L(a, b)

. (3.4)

Equations (3.1) and (3.2) follow from equation (3.4). ¤
The following result is well-known.

Theorem 3. If b > a > 0, then

√
ab < L(a, b) <

1
e

(
bb

aa

) 1
b−a

. (3.5)

Proof. Taking f(x) = log x, then f : [a, b] → [log a, log b] is strictly increas-
ing, and g = 1

f−1 : [log a, log b] → [1b ,
1
a ] satisfies

g′′(x) = e−x > 0 (3.6)

for x ∈ [log a, log b].
Equation (3.6), Theorem A and Theorem 1 yield

(b− a) log L(a, b) <

∫ b

a
log x dx <

b(L(a, b)− a) log b + a(b− L(a, b)) log a

L(a, b)
.

(3.7)
Equation (3.5) follows from equation (3.7). ¤
Theorem 4. If b > a > 0, then

log
eb − ea

b− a
< L(a, b) <

ab(eb − ea)
(b− 1)eb − (a− 1)ea

. (3.8)

Proof. Taking f(x) = ex, then f : [a, b] → [ea, eb] is strictly increasing, and
g = 1

f−1 : [ea, eb] → [1b ,
1
a ] satisfies

g′′(x) =
log x + 2
x2(log x)3

> 0 (3.9)
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for x ∈ [ea, eb].
Equation (3.9), Theorem A and Theorem 1 yield

(b− a)eL(a,b) <

∫ b

a
ex dx <

b(L(a, b)− a)eb + a(b− L(a, b))ea

L(a, b)
. (3.10)

Equation (3.8) follows from equation (3.10). ¤

Theorem 5. If π
2 > b > a > 0, then

tanL(a, b) <
log cos a− log cos b

b− a
(3.11)

and

L(a, b) >
ab(tan b− tan a)

(b tan b + log cos b)− (a tan a + log cos a)
. (3.12)

Proof. Taking f(x) = tanx, then f : [a, b] → [tan a, tan b] ⊂ (0, +∞) is
strictly increasing, and g = 1

f−1 : [tan a, tan b] → [1b ,
1
a ] satisfies

g′′(x) =
2(1 + x arctanx)

(1 + x2)2(arctanx)3
> 0 (3.13)

for x ∈ [tan a, tan b].
Equation (3.13), Theorem A and Theorem 1 yield

(b−a) tan L(a, b) <

∫ b

a
tanx dx <

b(L(a, b)− a) tan b + a(b− L(a, b)) tan a

L(a, b)
.

(3.14)
Equations (3.11) and (3.12) follow from equation (3.14). ¤

Theorem 6. If b > a > 0, then

arctanL(a, b) <
b arctan b + 1

2 log(1 + a2)− a arctan a− 1
2 log(1 + b2)

b− a
(3.15)

and

L(a, b) >
2ab(arctan b− arctan a)
log(1 + b2)− log(1 + a2)

. (3.16)

Proof. Taking f(x) = arctanx, then f : [a, b] → [arctan a, arctan b] is strictly
increasing, and g = 1

f−1 : [arctan a, arctan b] → [1b ,
1
a ] satisfies

g′′(x) = 2 cscx cotx > 0 (3.17)

for x ∈ [arctan a, arctan b].
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Equation (3.17), Theorem A and Theorem 1 yield

(b− a) arctanL(a, b) <

∫ b

a
arctanx dx

<
b(L(a, b)− a) arctan b + a(b− L(a, b)) arctan a

L(a, b)
. (3.18)

Equations (3.15) and (3.16) follow from equations (3.17) and (3.18). ¤

Theorem 7. If π
3 ≥ b > a > 0, then

sinL(a, b) <
cos a− cos b

b− a
(3.19)

and

L(a, b) >
ab(sin b− sin a)

(b sin b + cos b)− (a sin a + cos a)
. (3.20)

Proof. Taking f(x) = sinx, then f : [a, b] ⊂ (0, π
3 ] → [sin a, sin b] ⊂ (0,

√
3

2 ]
is strictly increasing, and g = 1

f−1 : [sin a, sin b] ⊂ (0,
√

3
2 ] → [1b ,

1
a ] satisfies

g′′(x) =
2
√

1− x2 − x arcsinx

(1− x2)
3
2 (arcsinx)3

> 0 (3.21)

for x ∈ [sin a, sin b] ⊂ (0,
√

3
2 ].

Equation (3.21), Theorem A and Theorem 1 yield

(b− a) sinL(a, b) <

∫ b

a
sinx dx <

b(L(a, b)− a) sin b + a(b− L(a, b)) sin a

L(a, b)
.

(3.22)
Equations (3.19) and (3.20) follow from equation (3.22). ¤

Theorem 8. If 1 ≥ b > a > 0, then

arcsinL(a, b) <
b arcsin b +

√
1− b2 − a arcsin a−√1− a2

b− a
(3.23)

and

L(a, b) >
ab(arcsin b− arcsin a)√

1− a2 −√1− b2
. (3.24)

Proof. Taking f(x) = arcsinx, then f : [a, b] ⊂ (0, 1] → [arcsin a, arcsin b] ⊂
(0, π

2 ] is strictly increasing, and g = 1
f−1 : [arcsin a, arcsin b] ⊂ (0, π

2 ] → [1b ,
1
a ]

satisfies
g′′(x) = csc x(1 + 2 cot2 x) > 0 (3.25)

for x ∈ [arcsin a, arcsin b].
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Equation (3.25), Theorem A and Theorem 1 yield

(b− a) arcsinL(a, b) <

∫ b

a
arcsinx dx

<
b(L(a, b)− a) arcsin b + a(b− L(a, b)) arcsin a

L(a, b)
. (3.26)

Equations (3.23) and (3.24) follow from equation (3.26). ¤
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